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Power information is an important guarantee for energy security. As an important technical means of safety management and risk
control, video monitoring is widely used in the power industry. Power video monitoring system uses efficient processing of
multimodal video data and automatically identifies abnormal events and equipment status, replacing human monitoring with
machine. Video monitoring data of power substations usually contain both visual information and auditory information, and the
data types are diversified. )e multimodal video data provides a rich underlying data source for the intelligent monitoring
function, but it requires multiple service forms for efficient processing. Most intelligent edge monitoring equipment are only
equipped with lightweight computing resources and limited battery supply, limited resources, and weak local processing data
capabilities. Power video monitoring system has the characteristics of distribution, openness, interconnection, and intellectu-
alization. Its intelligent edge video equipment is widely distributed, which also brings convenience and also brings security risks in
terms of data security and reliability. For the outdoor multimodal power video monitoring system scenario, this paper adopts the
edge-cloud distributed system architecture to solve the problem of resource shortage and adopts the first proposed service
function virtualization (SFV) to solve the problem of multimodal video data processing. At the same time, the problem of security
protection is solved by introducing blockchain to establish trust among intelligent video equipment and service providers. Under
the security protection of virtualized service consortium blockchain (VSCB), virtualization technology is introduced into the
service function chain (SFC) to realize SFV and solve the resource optimal allocation problem of multimodal video data
processing. )e work mainly involves the joint mapping of virtual resources, physical resources, and the joint optimization of
computing and communication resources. Problems such as large state space and high dimensionality of action space have an
impact on resource allocation. )e stochastic optimization problem of resource allocation is established as a Markov decision
process (MDP) model, and SFV technology is used to optimize cost and delay. )e resource allocation optimization algorithm
(RAOA-A3C) based on asynchronous advantage actor-critic algorithm (A3C) is proposed. Simulation experiments show that the
RAOA-A3C proposed in this paper is more suitable for high-dynamic, multidimensional, and distributed power videomonitoring
system scenario and has achieved better optimization results in reducing time delay and deployment costs.

1. Introduction

Power is the energy basis for economic development, and
power information is an effective guarantee for energy se-
curity. )e power transformer is the most important core
equipment in the operation of the power grid. If they fail, they

will have a significant impact. )erefore, real-time video
monitoring and fault location of the transformer’s operating
states play a key role in ensuring the stable operation of the
distribution network. For example, in order to ensure the
long-term, high-efficiency, and safe operation of unattended
or few-person-attended power equipment, the video
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monitoring system have played an important role in the work
of patrolling field equipment. As an important member of
smart grid security protection, the power video monitoring
system has the characteristics of distribution, openness, in-
terconnection, and intelligence. First of all, most intelligent
edge monitoring equipment equipped with limited battery
supply and lightweight computing resources work without
manual control. )ese equipment have obvious shortages of
computing and storage resources and communication re-
sources. Secondly, the interactive data of various types of
intelligent edge monitoring equipment require multiple
services to provide support. )irdly, the widespread distri-
bution of intelligent edge monitoring equipment makes se-
curity usually difficult to guarantee [1–4].

SFC is constituted by service requests for multimodal
video data of intelligent edge monitoring equipment. SFV
uses virtualization technology to realize the joint allocation
of computing resources and communication resources.

)e distributed power video monitoring system needs
the support of edge computing technology. Edge computing
is close to the edge of the network at the source of things or
data and provides edge intelligent services nearby. It is an
open platform that integrates core capabilities of network,
computing, storage, and applications. It can meet the key
demands of industry digitalization in agile connection, real-
time business, data optimization, intelligence application,
and so on [5–7]. Although the edge computing framework is
suitable for application in the distributed power transformer
video monitoring system scenario, it also faces challenges in
terms of security.

)e distributed power video monitoring system is a
heterogeneous network, and its security needs the strong
support of blockchain technology. Blockchain has the
characteristics of smart contracts, distributed decision-
making, collaborative autonomy, high security against
tampering, openness, and transparency. Blockchain is
similar to the power video monitoring system in terms of
operation mode, topology, and especially security protection
[8, 9]. Blockchain technology is an effective solution to
establish trust among heterogeneous networks and realize
reliable autonomous transaction management [10].

In view of the high dynamic and multidimensional
characteristics of the power video monitoring system, Deep
reinforcement learning (DRL) has gradually become a highly
concerned optimization method [11–13]. DRL combines the
perceptual ability of deep learning (DL) with the decision-
making ability of reinforcement learning (RL). DRL is an
artificial intelligence method that is closer to the way of
human thinking and provides solutions for the perception
and decision-making problems of complex systems [14].
DRL is suitable for solving complex optimization problems.

Edge computing systems can allocate resources to the
edge of the network and provide low-delay network services
for terminal equipment. However, there are still important
issues such as resource management and safety protection in
practical applications in the power video monitoring system
scene [15].

It is very important to allocate resources reasonably and
efficiently. Resources mainly include CPU resources, storage

resources, and communication resources. )ese resources
are allocated by the controller to better solve problems such
as cost and delay. In order to better improve the quality of
service (QoS), edge computing and SFV are combined to
decouple service functions from hardware equipment. SFV
can realize flexible regulation and on-demand allocation of
service resources [16, 17]. )e use of mobile edge computing
(MEC) technology can enable edge nodes to better achieve
transaction autonomy [10]. Factors such as equipment
heterogeneity, power supply status, and resource location of
the power video monitoring system make the resource al-
location more complicated. How to design the optimal
resource allocation policy of SFC is a very challenging
scientific issue [18]. DRL is widely regarded as an effective
method to solve decision-making problems in complex
environments [19, 20]. )e SFC orchestration
method based on DRL is used to solve the NP-hard problem
of high-dimensional and intensive calculation [21–23]. DRL
continuously interacts with the environment, automatically
learns the optimal actions to be taken in different states, and
optimizes resource allocation according to the optimal
strategy.

)e heterogeneity of edge nodes makes edge com-
puting more complex and uncertain [24, 25]. )e central
control node may also suffer a single point of failure,
which may cause data to leakage or malicious tampering
and ultimately lead to task execution failure or economic
loss [26]. Both the equipment themselves and the com-
munications among equipment are facing threats of
various security attacks. For example, the equipment may
malfunction or be malicious so that the transmitted in-
formation may be leaked or tampered with. )erefore, it is
very important to ensure data security. Blockchain is a
kind of cryptology-supported, verifiable, and immutable
ledger. Blockchain ensures interaction through transac-
tion records and distributed consensus on the validity of
transaction records. Blockchain with the characteristics of
pan-central, distributed, and trustworthy provides new
ideas for designing the framework and paradigm of cloud-
edge computing [27].

In summary, the integration of SFV, blockchain, edge
computing, and DRL technology to solve the resource al-
location optimization problem of the power video moni-
toring system is very worthy of discussion.

2. Related Work

At present, there have been some papers that combine edge
computing with blockchain. )e introduction of blockchain
can solve the security problem of the cloud-edge computing
environment. Reference [28] proposes to use blockchain for
decentralized task allocation and scheduling in MEC. )e
purpose is to eliminate the increase in the computational
burden of the central server due to the attacker’s distributed
denial of service attack, so it affects the accuracy of data
transmission. Reference [29] proposes an internet of vehicles
(IoV) file-sharing scheme based on blockchain smart con-
tracts and attribute encryption. Under the premise of en-
suring the efficiency of filesharing, the file-sharing solution
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adopts blockchain smart contract technology to avoid third-
party participation and protect data security. Reference [30]
proposes a blockchain-based energy transaction framework
for energy transactions among electric vehicles and smart
grids. )e autonomous and controllable consensus mech-
anism puzzle generated by the edge server helps increase
transaction speed. References [31, 32] propose that edge
servers and terminal equipment participate in the block-
chain, and the consortium blockchain is used to manage the
virtual resources. Users registered in the consortium
blockchain can define and deploy their own virtual systems
and read and write blocks. )e allocation mechanism of the
virtual network function (VNF) improves the efficiency of
resource allocation while ensuring security. Reference [33]
uses a static VNF allocation policy to reduce the cost of
operators while ensuring users’ QoS. However, the network
environment is dynamically changing, and it is more rea-
sonable to consider long-term optimization. Reference [34]
achieves the purpose of reducing end-to-end delay by re-
ducing transmission delay and processing delay, but it does
not pay attention to the utilization of physical network
resources. Reference [35] realizes the reduction of service
provider’s capital expenditure and operating expenditure,
but it sacrifices reliability and does not consider the end-to-
end delay. Reference [36] proposes an algorithm based on
deep Q-learning (DQL) to solve the decision-making
problem of computing resource allocation at the edge of a
multiuser shared network. Reference [37] applies the DRL
algorithm to jointly optimize the computational efficiency of
the MEC system and the transaction throughput of the
blockchain system for the industrial internet system based
on the blockchain.

Although the above papers have optimized the secu-
rity and system performance of the cloud-edge computing
environment to varying degrees, there are few related
studies in the power video monitoring system scenario,
and there are still some potential problems and challenges.
First of all, although the introduction of blockchain
technology can solve the security problem, the consensus
process in the blockchain is inefficient, and there is a
serious computational overhead in the system. Secondly,
resource allocation still has the following problems. For
example, most studies in many papers are based on the
prerequisite of the known state of the environment and do
not take into account the dynamic changes in the envi-
ronment over time. Nor does it take into account the fact
that the arrival of a large number of service requests will
easily cause a backlog of service requests, which will affect
the stability of the network. It also failed to take into
account the user’s QoS while optimizing the cost of re-
source allocation. )irdly, there are also problems in
solving optimization. )e continuous increase in the
number of agents will explode the dimensions of the state
space, and it becomes infeasible to use the traditional
tabular method to solve the problem. DRL can solve the
problem of state space explosion caused by the increase in
the number of nodes [38, 39]. DRL has been proven to
effectively approximate the Q value of RL by using a deep
neural network (DNN) [20]. )e goal of this paper is to

achieve low-delay, low-cost resource optimization
through the use of blockchain, DRL, and SFV technology
in the cloud-edge computing environment.

A power video monitoring system is a distributed
heterogeneous cloud-edge network. )e key to solving the
problem is how to select server and physical links that
meet service requirements from limited physical re-
sources for allocation [40, 41]. )e goal is to maximize
resource utilization while ensuring network performance.
)is paper combines edge computing and SFV to build a
cloud-edge computing basic model in order to achieve
transaction autonomy at the edge and achieve better QoS.
Power video monitoring system is a distributed hetero-
geneous network involving different public and private
networks. )e unreliability is obvious. )is paper intro-
duces blockchain technology to achieve reliable transac-
tion autonomy. )e resource optimization allocation
problem is an intensive calculation problem. It is a high-
dimensional NP-hard problem. )is paper introduces
DRL technology to solve the NP-hard problem. In
summary, the resource allocation optimization problem is
modeled as an MDP, and the resource allocation policy is
optimized through SFV to maximize long-term utility
performance. )is paper proposed the RAOA-A3C al-
gorithm based on A3C in order to obtain the optimal
resource allocation policy and finally achieved the goal of
improving safety protection and efficient resource
management.

)e main contributions of this paper are as follows:

(1) )e SFV concept was first proposed based on the
characteristics of the power video monitoring sys-
tem. Multimodal video data service requests con-
stitute service function chains, which use SFV
technology to optimize the allocation of computing
resources and communication resources.

(2) SFV, blockchain, edge computing, and DRL tech-
nology are used to solve the resource allocation
optimization problem of the power video monitor-
ing system. )e optimization problem mainly in-
volves the joint mapping of virtual resources and
physical resources and the joint optimized allocation
of computing resources and communication
resources.

(3) )e system architecture is built. )e proposed VSCB
solves the problem of safety protection. )e random
optimization problem of resource allocation is
modeled as an MDP model, and the RAOA-A3C
algorithm is proposed. Simulation experiments show
that the delay and cost of the RAOA-A3C algorithm
are superior to other methods.

)e structure of this paper is arranged as follows.
Section 1 introduces the background. Section 2 introduces
related work. Section 3 gives the system architecture and
workflow. Section 4 proposes the system model. Section 5
proposes the optimization algorithm. Section 6 introduces
performance evaluation and analysis. Section 7 summa-
rizes the work.
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3. Blockchain-Enabled SystemArchitecture and
Work Flow

3.1. Blockchain-Enabled System Architecture. �e system
architecture of the power video monitoring system is shown
in Figure 1.

�is paper combines the requirements of the power
video monitoring system in resource management and
safety protection to build a system architecture. �is ar-
chitecture mainly includes the following three layers:

(1) Intelligent Equipment Layer: �e intelligent equip-
ment layer containing multiple types of equipment is
at the bottom. Intelligent equipment mainly com-
plete the work of data acquisition and data intelligent
processing. Because the resources of the intelligent
equipment layer are limited, the intelligent equip-
ment layer that �lters out data that have been pro-
cessed locally send service requests to edge clouds or
the core cloud layer.

(2) Edge Layer: �e edge layer is composed of hetero-
geneous edge clouds. �e distribution and hetero-
geneity of the edge layer make the traditional edge
layer unable to guarantee the reliability of the service.
�e edge layer applied with VSCB has the ability to
ensure service consistency and provide reliable
service management. Each edge cloud in the system
model contains three components: (1) service node,
(2) blockchain module, and (3) controller.

(3) Cloud Layer: �e core cloud layer and the edge layer
reach consensus in the same blockchain. �e power

video monitoring system belongs to a distributed
heterogeneous cloud-side computing environment
involving public and private networks. Its system
architecture uses VSCB to build a trusted cloud-side
computing environment. When the resources of the
edge layer cannot meet the service quality and re-
source constraints of the terminal equipment, it can
continue to send service request information to the
core cloud in order to obtain relevant resources of
the core cloud platform to complete the current
service request. �e cloud layer also mainly includes
three components: (1) service node, (2) blockchain
module, and (3) controller.

Next, the three main components included in both the
cloud layer and the edge layer are introduced.

(1) Service Nodes: Service nodes of the edge cloud and
the core cloud are mainly composed of servers. Each
server node is the actual host of the virtual service
functions (VSF), which speci�cally provides various
resource services.

(2) Blockchain Module: �e blockchain module is
composed of high-performance equipment or other
lightweight equipment. It is responsible for resource
registration, user registration, authentication, smart
contract, and transaction registration to ensure
trusted and reliable resource allocation [10].

(3) Controller: �e controller mainly includes SFV.
�e essence of SFV is to turn dedicated hardware
equipment into general software equipment to
achieve the purpose of sharing hardware
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Figure 1: Blockchain-enabled system architecture.
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infrastructures. )e software equipmentcalled
VSFs realize functions such as the rapid estab-
lishment of the network among VSFs and the rapid
allocation of resources. )e quality of resource
allocation by the controller affects the efficiency of
service provision and physical resource usage [42].
)e resource allocation optimization algorithm is
deployed in the controller. )e controller manages,
allocates, and monitors the underlying resources.
)e controller obtains the system information
reported from the bottom layer; analyzes the net-
work topology, equipment operation energy con-
sumption, resource utilization, and so on; and then
performs tasks such as resource mapping, traffic
scheduling, and policy management [21]. )e
controller helps improve the efficiency of resource
management.

3.2. ConsortiumBlockchain. Blockchain is a kind of chained
data structure that combines data blocks sequentially in a
time sequence. It is a distributed ledger that cannot be
tampered with and cannot be forged, and it is guaranteed by
cryptography [43, 44]. )e data of the blockchain is col-
lectively maintained. Data operations are witnessed and
stored by all nodes, so the data cannot be changed, and it is
safe and reliable [45, 46]. Blockchain is a technology that
realizes information security and information transparency
based on a consensus mechanism. )e consortium block-
chain is a relatively new way of applying blockchain tech-
nology to businesses. It is suitable for providing services for
joint collaboration among multiple enterprises, and it has
the characteristics of partial decentralization. )e consensus
participants of the consortium blockchain are a group of
preapproved nodes on the network, and the consortium
blockchain can exercise a greater degree of control over the
network.

Blockchain has been widely used in many fields. Re-
source allocation in the cloudedge computing environment
is one of the typical cases.)e VSCB system proposed in this
paper is based on a limited number of enterprises to form the
consortium blockchain, and the number of nodes is also
limited. Even if there is an expansion of nodes, it will not
increase infinitely. )e workflow trusted authentication
mechanism of VSCB proposed in this paper is described as
follows: For any node in the system, its operation is limited
by the role control and permission control information on
the consortium blockchain to limit its operation scope. )e
node can read the role control and permission control in-
formation to ensure that its work is legal. When the node
completes the work and writes the flow information, the role
control and permission control are authenticated on the
entire consortium blockchain to ensure the normal opera-
tion of the entire workflow. At the same time, when the node
wants to operate, it must reach a consensus on its authority
on the consortium blockchain before writing its operation
into the consortium blockchain. When the workflow

continues to flow to the next link, if there is a problem with
the authority, then data writing and workflow flow cannot
proceed normally.

)is paper adopts the practical Byzantine fault tolerance
(PBFT) algorithm. )e advantages are: first, the system can
be separated from the existence of encrypted tokens, the
nodes of the algorithm consensus are composed of business
participants or supervisors, and the security and stability are
guaranteed by business stakeholders. Secondly, the time
delay of consensus is short, which basically meets the re-
quirements of commercial real-time processing. )irdly, the
consensus efficiency is high, which can meet the needs of the
high-frequency trading volume. Moreover, because of the
independence of the smart contract, its execution process
and the generated transaction information will not be
“maliciously polluted” by the outside world on the con-
sortium blockchain, making the credibility of the transaction
information far more than that of the public blockchain.
)erefore, the consortium blockchain adopts a more
competitive PBFT algorithm, which can improve the ap-
plication level of the consortium blockchain at the enterprise
level to a new level.

)is paper uses the token-free optimized PBFT algo-
rithm [10]. )e master node is not determined by complex
computing puzzles, the master node is determined by cir-
cular selection. )erefore, this optimization algorithm can
better meet the needs of the power video monitoring system
in terms of saving resources.

3.3. Work Flow. )e workflow is roughly described as fol-
lows: In the cloud-edge computing environment, resources
are registered as digital assets on the VSCB, and resource
management is realized through the controller. )e two
main events of this system architecture are resource regis-
tration and resource allocation.

3.3.1. Resource Registration. )e core cloud or edge cloud
needs to register resource information on the blockchain
module before providing services. )ey send information
such as equipment identification and related attributes to the
blockchain module. )e blockchain module is maintained a
list of information to form a resource pool and then uses this
information to form a block. In this way, the core cloud or
edge cloud can provide hosts for VSFs under the supervision
of the VSCB.

3.3.2. Resource Allocation. When the smart equipment layer
sends out a service request, the current request is first al-
located to the adjacent edge cloud in the edge layer. )e
blockchain module in the edge cloud first verifies the user’s
identity. After the identity of the user who sent the service
request is authenticated, the request is passed to the con-
troller to obtain the optimal resource allocation. If the re-
source constraints of the adjacent edge cloud and the QoS of
the user cannot be guaranteed, the service request is sent to
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the controller on the core cloud layer to obtain the optimal
resource con�guration.

Since the important component functions of the core
cloud are the same as those of the edge cloud, their work�ow
is shown in Figure 2.�e process includes the following four
steps:

(1) User Registration and Authentication: User infor-
mation related to equipment identi�cation, en-
cryption data keys, and equipment attributes needs
to be registered on the blockchain module. After a
user sends a service request, the user’s information
will be authenticated.

(2) Resource Optimization Department: �e intelligent
equipment sends a service request to the controller,
and the service request invokes the RAOA-A3C
algorithm in the controller to obtain the optimal
resource allocation.

(3) Provide Services: �e controller controls the relevant
service nodes to provide services to users according
to the optimal resource allocation.

(4) Transaction Registration: �e registration transac-
tions that include information such as intercon-
nection, attributes, sequence of virtual �les, user
information, and QoS trigger the smart contract on
the VSCB. �e registration transaction executes the
consistent process of the optimized PBFTalgorithm.
A new block is generated, the resource allocation
transaction takes e�ect, and the trusted service is
completed.

�is paper uses the RAOA-A3C algorithm to achieve the
parallel execution e�ect. Each controller as an agent extracts
state information from the environment, and then the
controller obtains the action probability by processing the
state information, and then the controller calculates the
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Figure 2: Resource allocation work�ow.
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reward based on the agent’s action. During the interaction
between the controller and the local environment, the agent
updates its local action probability according to the reward
and regularly pushes its gradient to the global network.

4. System Model and Problem Formulation

)e physical network of the optimized model in this paper
mainly involves servers and physical links. )ey provide
instantiated computing resources including CPU resources
and storage resources and instantiated bandwidth resources
for the VSFs that constitute each SFC. In this paper, CPU
resources are used to represent computing resources. )e
physical network feeds back the current CPU resources and
bandwidth resources to the RAOA-A3C in the controller.
)e algorithm makes decisions based on the current CPU
resource status of the node, the current resource status of the
link, and the current queue status in the SFC. )en the
controller optimizes the resource allocation policy through
the resource management entity [38]. )is section intro-
duces the network model, service request model, cost model,
delay model, and optimization goals.

4.1.NetworkModel. )e physical network is abstracted as an
undirected graph UGP � (SNP, YP), where SNP represents a
collection of nodes, the nodes are divided into two cate-
gories: (1) server nodes n ∈ NP, which provide instantiated
CPU resources for VSFs, and each server can instantiate
multiple VSFs. And (2) switch nodes, which forward the
traffic. YP represents a collection of physical links. CP

n

represents the CPU capacity of each server n. In order to
ensure the resource utilization of the server and achieve the
purpose of energy-saving, it is necessary to set a CPU re-
source threshold φP

n for the server. As long as the remaining
CPU resources of the server in each time slot are less than φP

n ,
the server can be used. BP

mn represents the bandwidth ca-
pacity of the physical link mn connecting adjacent servers n
and m.

4.2. Service Request Model. SF represents the collection of
SFCs.)e i-th SFC can be formalized as an undirected graph
UGN

i � (VN
i , LN

i ), where VN
i represents the collection of

different types of VSFs on the i-th SFC and LN
i represents the

collection of virtual links on the i-th SFC. VN
i,j represents the

j-th VSF on the i-th SFC; Cn
i,j represents the CPU resource

allocated by the server to the j-th VSF on the i-th SFC; and
Bmn

i,jk represents the virtual link bandwidth resource allocated
by the physical link to the adjacent VSF jk on the i-th SFC.Di

represents the maximum delay limit of the i-th SFC. θn
i,j

represents the mapping of VSF to the server, which is a
Boolean variable. θn

i,j � 1 represents the j-th VSF on the i-th
SFC mapping the server n, and θn

i,j � 0 represents no
mapping relationship. ηmn

i,jk represents the mapping of virtual
links to physical links, which is also a Boolean variable.
ηmn

i,jk � 1 represents the virtual link l
jk
i connecting the ad-

jacent VSF jk on the i-th SFC that is mapped to the physical
link ymn connecting the adjacent server mn, and ηmn

i,jk � 0

represents no mapping relationship. )is paper makes the
following constraints.

In time slot t, each VSF VN
i,j can only select one server for

mapping. )at is,


n∈NP

θn
i,j(t) � 1, ∀i ∈ SF, ∀j ∈ V

N
i . (1)

)e binary variable that represents the mapping of VSF
to the server is expressed as follows:

θn
i,j(t) � 0, 1{ }, ∀i ∈ SF, ∀j ∈ V

N
i , ∀n ∈ N

P
. (2)

In time slot t, the amount of CPU resources allocated by
the server should not exceed its CPU capacity CP

n so that the
system stability can be guaranteed. )at is,


i∈SF



j∈VN
i,j

θn
i,j(t)C

n
i,j(t)≤C

P
n , ∀n ∈ N

P
.

(3)

In time slot t, the remaining CPU capacity Rn(t) of the
server n can be expressed as the CPU capacity CP

n minus the
amount of CPU resources. )at is,

Rn(t) � C
P
n − 

i∈SF



j∈VN
i,j

θn
i,j(t)C

n
i,j(t), ∀n ∈ N

P
.

(4)

And the constraint is as follows:

Rn(t)≤φP
n , ∀n ∈ N

P
. (5)

In time slot t, each virtual link l
jk

i connected to adjacent
VSF jk can only select one physical link ymn connected to
adjacent server mn for mapping. )at is,


n,m∈NP

ηmn
i,jk(t) � 1, ∀i ∈ SF, ∀j, k ∈ V

N
i . (6)

)e binary variable that represents the mapping of
virtual links to physical links is expressed as follows:

ηmn
i,jk(t) � 0, 1{ }, ∀i ∈ SF, ∀j, k ∈ V

N
i , ∀n, m ∈ N

P
. (7)

In time slot t, the amount of bandwidth resources al-
located by physical link mn cannot exceed its bandwidth
capacity BP

mn. )at is,


i∈SF



j,k∈VN
i,j

θn
i,j(t)θm

i,k(t)ηmn
i,jk(t)B

nm
i,jk(t)≤B

P
mn, ∀n, m ∈ N

P
.

(8)

In time slot t, the remaining bandwidth resource Rnm(t)

can be expressed by the bandwidth capacity BP
mn minus the

bandwidth resource. )at is,

Rnm(t) � B
P
mn − 

i∈SF



j,k∈VN
i,j

θn
i,j(t)θm

i,k(t)ηmn
i,jk(t)B

nm
i,jk(t), ∀n, m ∈ N

P
.

(9)

4.3. Cost Model. )e allocation cost of resource allocation
mainly includes the cost of occupying CPU resources OCn

i,j

and the cost of occupying physical link bandwidth resources
OBnm

i,jk [47]. OCn
i,j(t) is inversely proportional to the
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remaining CPU resource Rn(t) of server n in time slot t. )at
is,

OC
n
i,j(t) �

α
Rn(t)

, (10)

where α is a positive number.
OBnm

i,jk is inversely proportional to the remaining
bandwidth resources Rnm(t) of physical link nm, that is,

OB
nm
i,jk(t) �

β
Rnm(t)

, (11)

where β is a positive number.
In summary, in time slot t, the resource allocation cost

on the i-th SFC is

Oi(t) � 

j∈VN
i


n∈NP

θn
i,j(t)

α
Rn(t)

+ 

j,k∈VN
i


n,m∈NP

θn
i,j(t)θm

i,k(t)ηmn
i,jk(t)

β
Rnm(t)

, ∀i ∈ SF.

(12)

4.4.DelayModel. )e optimization model not only gives the
attributes and order of VSFs but also provides QoS con-
straints. )e delay of this model mainly considers the
queuing delay, processing delay, and link transmission delay.
We take the i-th SFC as an example; Qi(t) represents its
queue length in time slot t; Pi(t) represents the size of the
data packet, and it is assumed that the size of the data packet
obeys the exponential distribution of parameter P; and Ai(t)

represents the data packet arrival process of the i-th SFC, and
it is assumed that the arrival of data packets obeys the
Poisson distribution with a parameter of λi [48]. )e update
process of the queue is expressed as follows:

Qi(t + 1) � max Qi(t) − ℓi,1(t) + Ai(t), 0 , (13)

where ℓi,1(t) represents the first VSF service rate of the i-th
SFC and the service rate ℓi,j(t) of the j-th VSF on the i-th
SFC is determined by the amount of CPU resources allo-
cated to the j-th VSF by the server, that is, ℓi,j(t) � Cn

i,j · ε,
where ε is the service rate coefficient, which represents the
ratio between CPU resources and service rate [49]. )e
constraints of the delay model are as follows.

Qmax
i (t) represents the maximum queue length of the i-

th SFC. In order to ensure that the queue length does not
overflow, Qi(t) satisfies

Qi(t)<Q
max
i (t), ∀i ∈ SF. (14)

Twait
i represents the queuing delay of the i-th SFC.

According to little theorem, the queuing delay Twait
i is

T
wait
i (t) �

Qi(t)

λi(t)
. (15)

T
proc
i,j represents the processing delay generated by each

VSF, and T
proc
i,j is

T
proc
i,j (t) �

DRi,j(t)

ℓi,j(t)
. (16)

DRi,j(t) represents the amount of data packets arriving
at VSF VN

i,j in time slot t, and the processing delay T
proc

i (t) of
the i-th SFC is

T
proc
i (t) � 

j∈VN
i

T
proc
i,j (t).

(17)

Ttran
i,jk represents the transmission delay of the amount of

data. Ttran
i,jk is related to the amount of data transmitted and

the bandwidth resources allocated by the physical link. Ttran
i,jk

is

T
tran
i,jk (t) �

DRi,k(t)

B
mn
i,jk(t)

. (18)

DRi,k(t) represents the amount of data from VSF VN
i,j to

VSF VN
i,k, that is, the amount of data packets arriving at VSF

VN
i,k in time slot t. )e transmission delay Ttran

i (t) of the i-th
SFC in time slot t is

T
tran
i (t) � 

j,k∈VN
i

T
tran
i,jk (t).

(19)

In summary, the total delay Ti(t) of the i-th SFC is

Ti(t) � T
wait
i (t) + T

proc

i (t) + T
tran
i (t). (20)

And the constraints are as follows:

Ti(t)<Di, ∀i ∈ SF. (21)

4.5. Optimization Goals. )e main optimization goal of this
paper is to minimize the cost of resource allocation under
the premise of ensuring security and meeting the require-
ments of delay. CPU resources and physical link bandwidth
resources are reasonably allocated, which is conducive to the
realization of low-delay and low-cost resource allocation.
)e utility function U(t) is defined as follows:

U(t) � −e1
i∈SFOi(t)

Omax
− e2

i∈SFTi(t)

i∈SFDi(t)
, (22)

where e1 and e2 are the weight values and e1 + e2 � 1.
Omax represents the maximum value of the allocation cost.
After the algorithm normalizes the allocation cost, the
optimization goal is expressed as follows:
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max
θn

i,j(t),θm
i,k(t),ηmn

i,jk
(t),Cn

i,j
(t),Bnm

i,jk
(t)

U(t),

s.t.C1: 
n∈NP

θn
i,j(t) � 1, ∀i ∈ SF, ∀j ∈ V

P
i ,

C2: 
m,n∈NP

ηmn
i,jk(t) � 1, ∀i ∈ SF, ∀j, k ∈ V

P
i ,

C3: 
i∈SF



j∈VN
i,j

θn
i,j(t)C

n
i,j(t)≤C

P
n , ∀n ∈ N

P
,

C4: 
i∈SF



j,k∈VN
i,j

θn
i,j(t)θm

i,k(t)ηmn
i,jk(t)B

nm
i,jk(t)≤B

P
mn, ∀n, m ∈ N

P
,

C5: Rn(t)≤φP
n , ∀n ∈ N

P
,

C6: Qi(t)<Q
max
i (t), ∀i ∈ SF,

C7: Ti(t)<Di, ∀i ∈ SF,

C8: θn
i,j(t) � 0, 1{ }, ∀i ∈ SF, ∀j ∈ V

N
i , ∀n ∈ N

P
,

C9: ηmn
i,jk(t) � 0, 1{ }, ∀i ∈ SF, ∀j, k ∈ V

N
i , ∀n, m ∈ N

P
,

(23)

where C1 guarantees that each VSF in the virtual network
can only select one server in the physical network for
mapping. C2 guarantees that the virtual link of adjacent
VSFs can only select the physical link of adjacent servers in
the physical network for mapping. C3 guarantees that the
sum of the CPU resources allocated by each server cannot
exceed the CPU capacity of the server. C4 makes the sum of
all communication resources mapped to a certain physical
link not exceed the total bandwidth resources of the physical
link. C5 makes the remaining CPU resources of each server
lower than the threshold, guarantees the resource utilization
of the server, and further achieves the effect of energy-
saving. C6 guarantees that the queue length of each SFC does
not overflow. C7 guarantees that each SFC must meet the
delay requirement in any time slot. C8 and C9 are re-
quirements for binary variables. In summary, the utility
function is restricted by the C1–C7 constraints to ensure the
effectiveness of the optimization objective.

5. Proposed Algorithm

In this section, the resource allocation optimization problem
of the power videomonitoring system is modeled as anMDP
model, and then the RAOA-A3C algorithm is proposed in
the cloud-edge computing environment to achieve the goals
of security protection and efficient resource management.

5.1. Problem Transformation. )e MDP model mainly in-
cludes state space, action space, transition probability, and
reward function [38].

5.1.1. State Space. S represents the state space, which is
mainly composed of the queue status of each SFC, the
remaining CPU resources of the server, and the remaining
resources of the physical link bandwidth. s(t) represents the

state of the network in time slot t, which is expressed as
follows:

s(t) � Qi(t), Rn(t), Rnm(t)  ∀m, n ∈ N
P
, ∀i ∈ SF. (24)

5.1.2. Action Space. A represents the action space, which
mainly includes allocating CPU resourceCn

i,j(t), allocating
bandwidth resource allocation Bnm

i,jk(t), and deploying θn
i,j(t)

and ηmn
i,jk(t). a(t) represents the action taken by the network

in time slot t, which is expressed as follows:

a(t) � C
n
i,j(t), B

nm
i,jk(t), θn

i,j(t), ηmn
i,jk(t)  ∀n, m ∈ N

P
,

∀i ∈ SF, ∀j, k ∈ V
N
i .

(25)

5.1.3. Transition Probability. In time slot t, there is a
probability that the network state s(t) takes action a(t) and
transitions to the network state s(t + 1). Pr(s(t), a(t), s(t +

1)) represents the transition probability, and Pr(s(t), a(t),

s(t + 1)) is expressed as follows:

Pr(s(t), a(t), s(t + 1)) �

Pr Qi(t), a(t), Qi(t + 1)( 

Pr Rn(t), a(t), Rn(t + 1)( 

Pr Rnm(t), a(t), Rnm(t + 1)( 

.

(26)

5.1.4. Reward Function. )is section uses the aforemen-
tioned utility function as a reward. r(s(t), a(t)) represents
the reward function, which is the reward after the network
state s(t) takes an action a(t). r(s(t), a(t)) can be expressed
as follows:

r(s(t), a(t)) � U(t). (27)
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5.2. Algorithm Description. Based on formula (23) and the
MDP model, the key problem to be solved in this paper is to
determine the target server and resource allocation policy.
�e algorithm obtains the optimal value function of the state
of each slot and then obtains the optimal action corre-
sponding to the state, that is, the optimal action of each slot
constitutes the optimal policy π∗. �is paper introduces the
DRL algorithm to solve the optimization problem of the
MDP model. DRL uses DNN to e�ectively identify high-
dimensional state spaces and uses RL algorithms to learn
complex state tasks in an end-to-end manner. DRL does not
require complicated manual preprocessing of state features.

Most intelligent monitoring equipment have the capa-
bility of parallel computing. A3C is an asynchronous actor-
critic parallel learning algorithm based on the advantage
function. It is a lightweight DRL framework. �e framework
uses an asynchronous gradient descent method to optimize
the parameters of the controller, which is suitable for solving
the problems of too large state space and the high dimension
of action space in the optimal allocation of resources. �is
paper proposes the RAOA-A3C algorithm to solve the MDP
model.

As shown in Figure 2, after the user sends a service
request and performs security authentication, the controller
in the server node collects the environment status and takes
actions to react to the status. �e general work�ow of the
algorithm is shown in Figure 3. �e environment state is
provided to the actor network and the critic network, and the
policy and the value function are obtained, respectively. �e
actor executes the action, and then the critic evaluates
whether the action is good or bad. �e policy π is a function
of state s, which returns the probability distribution of all
actions, and sums up to 1. �at is, π(a|s) represents the
probability of choosing action a(t) in state s(t). In the actual
execution process, the actor selects actions based on the
distribution of policy π(a(t)|s(t); θ) or directly selects the
action with the highest probability. Accordingly, the critic
evaluates the current policy based on the TD error between
the value functionV(s(t); θv) and the current reward, where
θ is the actor network parameter, θv is the critic network
parameter, and TD-error is used to update θ to correct the
action probability; θv can improve the accuracy of the value
evaluation.

�e algorithm uses the following iterative de�nition as
the value function V(s) of the expected discount return:

V(s) � Eπ(s) r + cV s′( )( ). (28)

�e return obtained in the current state is the sum of the
return obtained in the next state and reward r obtained
during the state transition, where c represents the discount
factor in RAOA-A3C.

�ere is also an action value function Q(s, a) closely
related to the value function, which is de�ned as follows:

Q(s, a) � r + cV s′( ). (29)

�e advantage function A(s, a) is de�ned as follows:

A(s, a) � Q(s, a) − V(s) � r + cV s′( ) − V(s), (30)

whereA(s, a) represents that action a is good or bad in
state s. If action a is better than average, then A(s, a) is
positive; otherwise, it is negative.

�e algorithm de�nes the objective function J(π) used to
measure the quality of the policy as follows:

J(π) � Eρs0 V s0( )[ ], (31)

where J(π) represents all the average discount rewards
obtained by a policy starting from the initial state s0.

According to the policy gradient theorem, the algorithm
can obtain the de�nition of the gradient of the objective
function:

∇θJ(π) � Es∼ρπ ,a ∼ π(s) A(s, a) · ∇θlog π(a|s)[ ]. (32)

�e function obtains the reward obtained from
sample(s0, a0, r0, s1), and then the function predicts the
value in the next step and provides an estimated approxi-
mation. However, the function uses more steps to provide n-
step return.

V s0( )⟶ r0 + cr1 + · · · + cnV sn( ). (33)

�e advantage of the n-step return is that the change in
the approximate function propagates is faster.

By extending the advantage function A(s, a), the gra-
dient dθ of the update policy π in the actor network can be
obtained as follows:

dθ⟵dθ + ∇θ′ log π at|st; θ′( )

× ∑
k−1

i�0
cir(t + i) + ckV st+k; θv′( ) − V st; θv′( )  + δ∇θ′

H π st; θ′( )( ),

(34)

where H represents the entropy to avoid premature con-
vergence to the suboptimal deterministic policy. δ is the
entropy hyperparameter, which is used to control the
strength of the entropy regularization term. θv′ is a parameter
of the state value function in the critic network, descending

Actor
(Policy)

Environment

reward

state
actionCritic

(Value Function)

TD-error

Figure 3: Algorithm basic work�ow.
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by a gradient in TD mode. )e updated gradient dθv in the
critic network is as follows:

dθv←dθv+

z


k−1
i�0 c

i
r(t + i) + c

k
V st+k; θv

′(  − V st; θv
′(  

2

zθv
′

.

(35)

)e network structure of the RAOA-A3C algorithm
mainly uses convolutional neural networks and fully con-
nected neural networks, and the output of the fully con-
nected layer is used as the input of the actor network and the
critic network.)e actor network outputs the corresponding

action value to select actions; the critic network outputs a
state value to calculate the advantage.

We use Algorithm 1 to solve equation (23). )e pseu-
docode of the RAOA-A3C Algorithm 1 is described as
follows:

)e RAOA-A3C algorithm consists of two parts. It
mainly includes network initialization and resource allo-
cation optimization. Xn,v represents a feasible resource al-
location scheme. )e mapping service node x of the VSFs in
the edge cloud needs to be authenticated through the
blockchain module. If it is not registered on the VSCB, x will
be deleted from the configuration scheme set. )en, when
the edge cloud resource configuration scheme is empty,

Input:
(1) Initialize the actor network with parameter θ
(2) Initialize the critic network with parameter θv

(3) Initialize the actor network parameters θ′ for each thread
(4) Initialize the critic network parameters θ’v for each thread
(5) for each SFC f ∈ SF do
(6) for each VSF resource allocation scheme x in Xn,v in edge cloud do
(7) if x is not registered in the VSCB then
(8) remove x from Xn,v

(9) end for
(10) if Xn,v is empty then
(11) Calculate Xn,v in core cloud
(12) Select the VSF allocation method θn

i,j from Xn,v

(13) Select the VSF allocation method ηmn
i,jk from Xn,v

(14) Calculate the total cost
(15) end for
(16) while the SF set is not empty do
(17) Set the gradient of the two networks dθ ←0 and dθv←0
(18) Synchronize the parameters of the thread θ′←θ and θv

′←θv tstart � t

(19) Obtain state st

(20) Repeat:
(21) )e state features are extracted from the network based on a multiple threshold mechanism, and action at is executed

according to policy π(at|st; θ′)
(22) Get the reward rt of environmental feedback and the next state st+1
(23) t←t + 1
(24) Until termination status St, or t − tstart� � tmax

(25) Obtain R �

0for termin al st

V(st, θv
′)

for non − termin al st

//Boot strap from last state

⎧⎪⎨

⎪⎩
from the critic network

(26) for each step t←t − 1, . . . , tstart do
(27) R � rt + cR

(28) Calculate the gradient of the actor network about θ′:
dθ ←dθ+

∇θ′ log π(at|st; θ′)×
[

k−1
i�0 c

i
r(t + i) + c

k
V(st+k; θv

′) − V(st; θv
′)] + δ∇θ′

H(π(st; θ′))

(29) Calculate the gradient of the critic network about θ’v:
dθv←dθv+

z(
k−1
i�0 c

i
r(t + i) + c

k
V(st+k; θv

′) − V(st; θv
′))2/zθv
′

(30) t←t − 1
(31) end for
(32) Use dθ and dθv to asynchronously update the global shared parameters θ and θv. Send the dθ and dθv to SFC agent
(33) end while

Output: π∗(s)

ALGORITHM 1: RAOA-A3C algorithm.
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select the core cloud and authenticate again. VSF resource
allocation methods are randomly selected from the available
con�guration scheme Xn,v. �e resources can be optimally
allocated.

6. Performance Evaluation and Analysis

6.1. Simulation Settings. In the experiment, Docker 18.06,
Python 3.0, TensorFlow, and OpenAI Gym were installed in
Ubuntu 16.04 to con�gure the environment, and MATLAB
was used for simulation experiments. Other related settings
are as follows: the virtual machines are interconnected via a
1Mbit/s virtual LAN card, and each blockchain node has a
2.0GHz 8-VCPUs attribute. �ere are 30 nodes (10 server
nodes and 20 switches) and 50 links. �e discount factor c is
0.9, and the entropy hyperparameter δ is 0.1 [10]. �e
maximum delay limit of SFC Di is 30ms; the data packet
arrival process follows the independent identical distributed
Poisson process; and the parameter value is λi � 2.�e packet
size is 500 kb/packet; the physical link bandwidth resource is
640MB; the CPU resource capacity of server n is 8 cores; the
service rate of a single CPU is ℓ � 25MB/s; the positive
number is α � 30; and the positive number β � 20 [38].

6.2. Performance Evaluation. Firstly, eight and ten consor-
tium peers were deployed on the core cloud and the edge
cloud, respectively; for comparison, it is veri�ed that the
RAOA-A3C algorithm has the performance of consistent
delay.

As shown in Figure 4, the consensus e¦ciency of the core
cloud is higher than the edge cloud. �e delay increases
signi�cantly as the number of SFCs increases. �e reason is
that users who send service requests need to be authenti-
cated; SFC transactions also need to be registered on the
VSCB; and when the number of consortium partners in-
creases, the consensus delay also increases with the increase
in the number of SFCs.

�e weighted values e1 and e2 are iterated by using max
equality constraints, optimality constraints, and max in-
equality constraints. Assuming that 200 SFCs arrive in the
virtual network, and after 10,000 iterations, the allocation
cost and average delay are shown in Figures 5 and 6.

As shown in Figures 5 and 6, after 10,000 iterations, the
allocation cost and the average delay under di�erent con-
straints are obtained. When the number of iterations reaches
about 6,000, the convergence is obvious. �e algorithm is
e�ective.

In the following, the RAOA-A3C algorithm is compared
with DQN [21] and A3C [10] algorithms in the three aspects
of total allocation cost, average delay, and utility function.

As shown in Figures 7 and 8, as the number of SFCs
increases, the average delay and total allocation cost of the
three algorithms are increasing. �e RAOA-A3C algorithm
has a lower allocation cost than DQN and A3C algorithms.
DQN algorithm is mainly suitable for solving the discrete
action space, but the action space in this paper is a con-
tinuous value, which causes the DQN algorithm to be

signi�cantly weaker than the A3C algorithm and the RAOA-
A3C algorithm in optimizing the delay and allocation cost.

As shown in Figure 8, when the number of SFCs is less
than 100, the RAOA-A3C algorithm is higher than the A3C
algorithm in the system average delay. �e reason is that
there is a time delay in the resource authentication stage.
However, as the number of SFCs increases, the proportion of
time delay in the blockchain becomes smaller, and the in-
�uence becomes weaker, and advantages of the RAOA-A3C
algorithm are revealed.
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As shown in Figure 9, the total system delay and total
allocation cost increase; as the number of SFCs increases, the
utility will also decrease as the number of SFCs increases, but
the utility of the RAOA-A3C algorithm proposed in this
paper decreases the slowest.

As shown in Figure 10, when the number of SFCs is less
than 200, the RAOA-A3C algorithm �uctuates due to the
in�uence of the consortium blockchain. When the number
of SFCs is greater than 200, the advantages of RAOA-A3C

are better re�ected, and the variance of server usage of
RAOA-A3C is lower than that of DQN and A3C.

As shown in Figure 11, the variance of the utilization rate
of the link of RAOA-A3C is lower than that of DQN and
A3C on the whole.

As shown in Figures 10 and 11, the experiment compares
the variance of the link usage rate and the variance of the
server usage rate of the DQN, A3C, and RAOA-A3C al-
gorithms. It can be seen that a smaller di�erence indicates
that the service is more evenly distributed on the server and
the link. �e RAOA-A3C algorithm congestion control
results are better.
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7. Conclusion

Although the power video monitoring system based on the
cloud-edge computing architecture brings many bene�ts.
�e problems of distribution and heterogeneity cannot
guarantee the reliability and durability of the service. In
order to establish trust between service providers and users,
VSCB is integrated into the management of the power video
monitoring system. In addition, the SFV technology was �rst
proposed to realize the optimal allocation of resources; the

MDP model was constructed; and then the RAOA-A3C
algorithm was proposed. Simulation experimental results
show the advantages of the resource allocation optimization
model in cost-saving, time-saving, and security.
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