
Research Article
Pattern Mathematical Model for Fingerprint Security Using
Bifurcation Minutiae Extraction and Neural Network
Feature Selection

Nesreen Alsharman ,1 Adeeb Saaidah ,2 Omar Almomani ,2 Ibrahim Jawarneh ,3

and Laila Al-Qaisi 2

1Computer Science Department, �e World Islamic Sciences Education University, Amman, Jordan
2Computer Network and Information Systems Department, �e World Islamic Sciences Education University, Amman, Jordan
3Mathematics Department, Al-Hussein Bin Talal University, Ma’an, Jordan

Correspondence should be addressed to Nesreen Alsharman; nesreen.alsharman@wise.edu.jo

Received 11 November 2021; Revised 3 February 2022; Accepted 25 February 2022; Published 16 April 2022

Academic Editor: Luigi Catuogno

Copyright © 2022 Nesreen Alsharman et al. 'is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Biometric based access control is becoming increasingly popular in the current era because of its simplicity and user-friendliness.
'is eliminates identity recognition manual work and enables automated processing.'e fingerprint is one of the most important
biometrics that can be easily captured in an uncontrolled environment without human cooperation. It is important to reduce the
time consumption during the comparison process in automated fingerprint identification systems when dealing with a large
database. Fingerprint classification enables this objective to be accomplished by splitting fingerprints into several categories, but it
still poses some difficulties because of the wide intraclass variations and the limited interclass variations since most fingerprint
datasets are not categories. In this paper, we propose a classification and matching fingerprint model, and the classification
classifies fingerprints into three main categories (arch, loop, and whorl) based on a pattern mathematical model using GoogleNet,
AlexNet, and ResNet Convolutional Neural Network (CNN) architecture and matching techniques based on bifurcation minutiae
extraction. 'e proposed model was implemented and tested using MATLAB based on the FVC2004 dataset. 'e obtained result
shows that the accuracy for classification is 100%, 75%, and 43.75% for GoogleNet, ResNet, and AlexNet, respectively. 'e time
required to build a model is 262, 55, and 28 seconds for GoogleNet, ResNet, and AlexNet, respectively.

1. Introduction

Biometrics science is used to identify people using their
physical characteristics. 'ese characteristics are fingerprint,
iris, palm, face, DNA, and voice [1]. Among these charac-
teristics, the fingerprint is one the most accurate and reliable
for identifying a person [2] since fingerprints are the unique
biometric characteristics of any person; therefore, it is used
in forensic divisions worldwide for criminal investigations
where even the twins have nonidentical fingerprints.

'erefore, fingerprints have been confirmed to be good
and secure biometrics. 'e process of fingerprint identifi-
cation is to confirm or refuse if a scanned fingerprint belongs

to a specific person or not. 'e increasing commercial
applications and number of civilians that depend on fin-
gerprint-based identification lead to a huge fingerprint
database. Matching specific fingerprints stored in the da-
tabase is computationally time-consuming. 'e subject of
automatic fingerprint identification has received intensive
attention among researchers.

To solve automatic fingerprint identification, finger-
prints can be stored in databases based on the characteristics
of their ridge and furrow patterns. In general, fingerprints
can be divided into three major classes known as whorl (W),
loop (L), and arch (A) according to Galton [3]. 'e Galton
classification scheme is shown in Figure 1. 'e database of

Hindawi
Security and Communication Networks
Volume 2022, Article ID 4375232, 16 pages
https://doi.org/10.1155/2022/4375232

mailto:nesreen.alsharman@wise.edu.jo
https://orcid.org/0000-0003-1369-8527
https://orcid.org/0000-0002-8587-5070
https://orcid.org/0000-0003-3160-6542
https://orcid.org/0000-0002-6153-8571
https://orcid.org/0000-0002-0149-6760
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4375232

fingerprints can now be indexed based on one of these three
classes [4].

Determining the classes that fingerprint belongs to al-
lows fingerprint matching on the portion or index of the
database corresponding to that particular class. By doing
this, the time required for fingerprint identification is re-
duced. Such an indexing mechanism for fingerprint forms is
the basis of fingerprint classification.

Edward Henry improved the classification of Galton by
increasing the number of classes to five [5]. 'e Edward
Henry classification scheme’s five classes are arches, tented
arches, left loop, right loop, and whorl, which are shown in
Figure 2. Several approaches have been proposed for au-
tomatic fingerprint classification. 'ese approaches are
categorized based on rule-based, structural-based, fre-
quency-based, and syntactic [6]. Other approaches are
statistical-based, neural network-based, and multiclassifier-
based [7]. After fingerprint classification is completed,
fingerprint matching is required. Figure 3 shows the general
fingerprint matching processes.

Preprocessing stage aims to improve and enhance the
quality of the image. 'e preprocessing stage has two
functions: ridge enhancement restoration and segmentation
of fingerprint images. In the classification stage, the input
image is commonly classified into three or five main classes,
as shown in Figures 1 and 2. In the stage of feature ex-
traction, the block of the relevant information is extracted
that will be applied for identification with the template
fingerprint. In the verification stage, the decision is deter-
mined based on the percentages or matching results of
similarity. Several techniques for fingerprint matching have
been proposed. 'ese techniques are minutiae-based [8],
correlation-based [9], and pattern-based [10].

'e rest of the paper is organized as follows: Section 2
explains the related work. Section 3 shows the proposed
method. Section 4 elaborates the used dataset and the
mathematical model used to classify the dataset. Section 5
presents results and discussion. Finally, Section 6 concludes
the paper.

2. Related Work

'e classifications of fingerprints shall be made on the basis
of following characteristics: ridges, ends, bifurcations, delta,
and cores. Fingerprints are classified into whorl, right loop,
double loop, left loop, and arch classes based on these
characteristics. Most of the fingerprints datasets have a large
size. To find a match-out fingerprint of such a large dataset, a
correct classification of the images is required. Machine
learning (ML) is one of the applications that is attracting the
growth of categorization of fingerprints in impractical ap-
plication domains. As a result, various research studies
employing machine learning to classify fingerprints have
been done. 'erefore, several studies have been conducted
for fingerprint classification using ML.

'e study by [11] implemented a fingerprint classifica-
tion system using a fuzzy neural network classifier and its
output in the recognition method. 'e classification scheme
is based on the extraction of the fingerprint feature, which

involves encoding the singular points along with their rel-
ative positions and directions from a fingerprint image of the
binaries. Analysis of images is carried out in four steps,
namely, segmentation, estimation of directional image,
extraction of singular points, and encoding of features. 'is
involves the encoding of the singular points (core and delta)
with direction and location.

Zhang and Yan [12] presented ridge tracing analysis and
curves features for fingerprint classification. SVM is an ML
algorithm that adopts a robust approach to fingerprint
classification. 'e presented approach provided a system of
classification that was highly accurate. 'e algorithm’s
benefit is seen when classifying fingerprints into different
classes.

Moreover, Hong and Wang et al. [13] proposed a
combination of the SVM and the naive Bayes to classify the
fingerprints based on the number of fingerprint core and
delta points.

While Wang et al. [14] proposed a fingerprint classifi-
cation algorithm based on a depth neural network to im-
prove classification accuracy, they adopted the softmax
regression for fuzzy classification.'ey gave the “suspicious”
fingerprints a secondary class.

Furthermore, Kouamo and Tangha [15] proposed a fin-
gerprint authentication model using a neural network with a

Arch (A) Loop (L) Whorl (W)

Figure 1: Galton–Henry classification of fingerprints classes.

le� loop right loop whorl

arch tented arch

Figure 2: Edward Henry classification of fingerprints classes.

Pre-processing

Post-processing

Classification

Matching

Feature Extraction

Figure 3: Matching process.

2 Security and Communication Networks

multilayer perceptron structure and extraction algorithm.'ey
used probability calculations to identify the subblocks of the
input image. More recently neural network fingerprint clas-
sification method is [16] where the proposed method is

retrained over AlexNet, GoogleNet, and ResNet with an av-
erage precision of 95.55%, 92.51, and 94, 88 respectively.

Matching fingerprints is the mechanism by which the
similarity scores between the two fingerprints match. Due to

Input
Grayscale

Finger Print
Image

2D to 3D binaraization Thining

Feature extraction
using mathematical

model

Loop Arch Whorl

Selection of
test image

Best pattern
(Loop pattern or

Arch or whorl
pattern)

Minutiae extraction
feature

Data store

Pre-processing

2D to 3D binaraization Thining

Feature extraction
using mathematical

model

Loop Arch Whorl

Pre-processing

2D to 3D binaraization Thining

Pre-processing

Neural network
classifier

Check if the
new image match

data store
Identify

Not identify

YES

NO

Training

Testing

Figure 4: Architecture of proposed model.

Security and Communication Networks 3

its intraclass correlation diversities from the fingerprint im-
ages of the same finger and its correlation similarities from the
fingerprint images of different fingers, fingerprint matching is
a challenging pattern-recognition problem. 'is form of di-
versity occurs particularly due to the pressure of the finger, the
placement-rotation of the finger, the dryness of the skin and
finger cuts, and so on. For the form of similarity similarities,
this happens primarily when the method only describes the
print for three types of fingerprint patterns (arch, loop, and
whorl). Several studies have been proposed for fingerprint
matching; here is a review of some of them.

Peralta et al. [17] proposed a general technique of de-
composition for the matching algorithm based on minutiae.
It breaks up the matching scores into very comprehensive
processes. Any minute algorithm can be adapted to
frameworks like MapReduce or Apache Spark by
decomposition.

In another study conducted by Lee et al. [18], they
proposed a new partial fingerprint matching for all sensors
in mobile devices using minutiae and ridge-form features
(RSFs). RSFs are the small ridge segments that observe
unique edge shapes. 'ere have been numerous algorithms
of fingerprint classification developed [12, 19–26]. Among
them, the generally used features are orientation and sin-
gularities image information. Combining these character-
istics is a common occurrence. Unfortunately, singularity
points are not always present in a fingerprint image: either
the acquisition process was not perfect, resulting in a
fractured fingerprint, or the fingerprint belongs to the arch
class. Pseudosingularity points will be discovered and
extracted in the circumstances mentioned above, allowing
for fingerprint categorization and matching [27].

'e geometric properties of major ridge curves in a
fingerprint image called orientation field flow curves were
used to achieve a manual fingerprint categorization (OFFCs)
[28]. Recently, a method for detecting a fingerprint’s ref-
erence point was proposed, which involved examining the
curvatures of the fingerprint ridges, more information [29],
which had a total execution time of 143milliseconds for the
most important stages. Distinctive Ridge Point (DRP), a
recent fingerprint feature, has been developed [30], along
with an enhancement triangle-based representation that
includes minutiae. In this method, to achieve better out-
comes, this strategy must reduce the dependence of ridge
points on minutiae. Recently, a receiver operating charac-
teristic (ROC) [31] curve model was suggested that used a
weighted empirical approach to account for both the order
constraint and the within-cluster correlation structure. As a
result, the additional time complexity is required for
statistical assessment of performance fingerprint match-
ing data. Most recently, a novel technique [32] has been
offered for fingerprint reconstruction that takes into ac-
count orientation field direction and minutiae density,
although the suggested method for reconstruction of
orientation field simply takes into account the local ori-
entation pattern.

In the next section, we present the proposed model for
fingerprint classification based on neural networks and
matching based on bifurcation minutiae extraction.

3. Proposed Model

Identification of fingerprints is the oldest forensic science
known to humans. Over time, fingerprints have proved to be
the fastest, most accurate, and most cost-effective means of
identifying unknown deceased persons, especially in a mass
disaster setting. In addition, the fingerprint is one of the
most accurate and discriminating biometrics that has been
investigated and used to identify human beings for hundreds
of years [33]. In order to address the limitations of existing
contact-based fingerprint identification systems, improve
recognition accuracy, and reduce time analysis function, a
fingerprint database with categories and prepossessing using
neural network classification technique has attracted
growing attention in order to improve accuracy and reduce
the time for fingerprint classification and matching. Figure 4
shows the architecture of the proposed model.

Algorithm 1 for the proposed model is given in the
following box.

System 1 shows the mathematical model for the con-
centric whorl pattern, which is illustrated in Figure 5; see [4].

_x � y,

_y � −x x
2

− 1
2
.

(1)

System 2 represents the mathematical model for the
upper right-lower left (UR-LL) spiral whorl pattern, which is
shown in Figure 6; see [4].

_x � y,

_y � −x x
2

− 1
2

+ 0.2y x
2

− 1
2
.

(2)

System 3 describes the mathematical model for the lower
right-upper left (LR-UL) spiral whorl pattern, which is
explained in Figure 7; see [4].

_x � y,

_y � −x x
2

− 1
2

− 0.2y x
2

− 1
2
.

(3)

System 4 clarifies the mathematical model for the
composite whorl with the S core pattern, which is shown in
Figure 8; see [4].

_x � y,

_y � −x x
2

− 1
2

+ 0.9y x
2

− 1
2
.

(4)

System 5 represents the mathematical model for the plain
arch pattern, which is appeared in Figure 9; see [35].

_x � y
2
,

_y � −0.001x.
(5)

System 6 shows the mathematical model for the tented
arch pattern, which is shown in Figure 10; see [35].

_x � y
2
,

_y � −0.5x.
(6)

4 Security and Communication Networks

System 7 represents the mathematical model for the
strong arch pattern, which is explained in Figure 11; see [35].

_x � y
2
,

_y � −5x.
(7)

3.1. Preprocessing. A fingerprint image has a lot of redun-
dant information when it is captured. To get an acceptable
and accurate image, the problems such as images with scars,
too dry or too moist fingers, or incorrect pressure must be
overcome. Hence, the input fingerprint images need to

be preprocessed. 'e preprocess for fingerprint images can
be done using some processes such as image enhancement,
normalization, filtering, noise reduction, binarization, and
thinning [36]. In this research, binarization and thinning are
applied since they are widely used before fingerprint clas-
sification and matching. In the proposed architecture,
preprocessing consists of three phases: 2D grayscale to 3D
color, binarization, and thinning.

(i) 2D grayscale to 3D color: the main idea to convert
from 2D grayscale to 3D color is that the CNNs just
accept the image with 3D color so that the following
MATLAB function is used for converting:

(a) (b)

Figure 5: Simulation of the concentric whorl fingerprint: (a) phase portrait of the model and (b) image of the concentric whorl fingerprint.

Step 1: Preprocessing the dataset (image categorization using categorization method, 2D grayscale to 3D color, binarization, and
thinning) and a test set of fingerprint images.

Step 2: Training the dataset using CNNs (GoogleNet, AlexNet, and ResNet).
Where 70% of data are for training and 30 for testing.

Step 3: Input the image and preprocess the image (2D grayscale to 3D color, binarization, and thinning).
Step 4: Classify the input image using neural network classifiers.
Step 5: After the input fingerprint is classified into a specific pattern, matching using minutiae extraction will be done.

Categorization method:
(1) For (i� 1, i� length of data set, i++)
(2) {
(3) X� read image
(4) if X satisfies {x_� y, y_� −x(x2 −1)2}
(5) OR {x_� y, y_� −x(x2 −1)2 + 0.2y(x2 −1)2} OR {x_� y, y_� −x(x2 −1)2 − 0.2y(x2 −1)2} OR {x_� y, y_� −x(x2 −1)2 + 0.9y

(x2 −1)2}
(6) THEN
(7) X belong to Whorl patterns
(8) else if X satisfies x_� y2, y_� 0.001x OR x_� y2, y_� 0.5x
(9) {− }
(10) {− }
(11) OR x˙� y2, y˙� 5x THEN
(12) {− }
(13) X belong to Arch patterns; else
(14) X belong to loop patterns
(15) }

ALGORITHM 1: 'e algorithm for the proposed model.

Security and Communication Networks 5

AugmentedTrainingSet� augmentedImageDatastore
(imageSize, trainingSet, ‘ColorPreprocessing’,
‘gray2rgb’); augmentedTestSet� augmentedImage-
Datastore (imageSize, testSet, ‘ColorPreprocessing’,
‘gray2rgb’);

(ii) 'e separation of the object and background is
known as binarization. 'e applied imbinarize
function (I) using MATLAB generates a binary
image from 2D grayscale or 3D color image by
replacing all values above a globally determined
threshold with 1s and setting all other values to 0s.
By default, imbinarize uses Otsu’s method,
which chooses the threshold value to minimize the

intraclass variance of the threshold black and white
pixel [37]. Imbinarize uses a 256-bin image histo-
gram to compute Otsu’s threshold.

(iii) One way to make a skeleton is through thinning
algorithms.'e technique takes a binary image of a
fingerprint and makes the ridges that appear in
print just one pixel wide without changing the
overall pattern and leaving gaps in the ridges
creating a sort of “skeleton” of the image. 'inning
makes it easier to find minutiae and removes a lot
of redundant data that would have resulted in
longer process time and sometimes different re-
sults [38].

(a)

LR connectionUL connection

spiral core

deltas

(b)

Figure 7: Simulation of the lower right-upper left (LR-UL) spiral whorl fingerprint: (a) phase portrait of the model and (b) image of the
lower right-upper left (LR-UL) spiral whorl fingerprint.

(a) (b)

Figure 6: Simulation of the upper right-lower left (UR-LL) spiral whorl fingerprint: (a) phase portrait of the model and (b) image of the
upper right-lower left (UR-LL) spiral whorl fingerprint.

6 Security and Communication Networks

(a) (b)

Figure 9: Simulation of the plain fingerprint: (a) phase portrait of the model and (b) image of the plain fingerprint [34].

(a)

deltas

spiral with “S’ core

(b)

Figure 8: Simulation of the composite whorl with S core fingerprint: (a) phase portrait of the model and (b) image of the composite whorl
with “S” core.

(a) (b)

Figure 10: Simulation of the tented arch fingerprint: (a) phase portrait of the model and (b) image of the tented fingerprint.

Security and Communication Networks 7

Figure 12 shows the preprocessing image after applying
binarization and thinning.

3.2. Neural Network. ML algorithms are a field of Artificial
Intelligence (AI) that provides computers with intelligence
by studying the underlying relationships between the data
and making decisions without explicit programming. Since
the late 1990s, several and numerous ML algorithms have
been implemented to mimic sensory human responses such
as speech and vision but have generally failed to achieve
satisfaction at the human level [39, 40]. 'e challenging
nature of Machine Vision (MV) tasks produces a specific
class of neural networks called CNN [41].

CNN is considered one of the best strategies for learning
image content and shows state-of-the-art results related to

image recognition, segmentation, detection, and retrieval-re-
lated tasks [42–44]. CNN’s success has attracted attention
outside academia, industry, and companies including Google,
Microsoft, AT&T, NEC, and Facebook that have formed active
study groups to explore CNN’s new architectures [45]. At
present, deep CNN-based models are employed by most of the
frontrunners in image processing competitions. CNN is also a
special one-size-fits-all multilayer neural network developed to
recognize visual patterns directly from pixel images with
minimal preprocessing [46]. Figure 13 shows the structure of a
CNN. 'is research uses the AlexNet, GoogleNet, and ResNet
CNN architecture classifier [47] for training fingerprint datasets.

3.2.1. AlexNet. 'e usage of AlexNet [47, 48] since the be-
ginning of deep CNNs was limited to hand digit recognition

(a) (b)

Figure 11: Simulation of the strong arch fingerprint: (a) phase portrait of the model and (b) image of the strong arch fingerprint.

Input image Binarization image Thinned image

Input image Binarization Thinning

Figure 12: Preprocessing steps.

Input

feature maps
pooled

feature maps

pooled
feature maps

Fully-connected 1
feature maps

Convolutional
layer 1

Convolutional
layer 2

Pooling 1 Pooling 2
Outputs

p(y | x)

Figure 13: 'e structure of a CNN [51].

8 Security and Communication Networks

tasks and did not scale well to all classes of images. AlexNet [49]
is considered as the first deep CNN architecture, which showed
groundbreaking results for image classification and recognition
tasks. AlexNet was proposed by Lee et al. [18]. 'ey improved
the learning capacity of the CNN by doing it deeper and by
applying several parameter optimizations strategies [49].
Technology constraints in the early 2000s curtailed the learning
ability of deep CNN architecture by limiting it to limited di-
mensions. To gain from CNN’s representational ability,
AlexNet was simultaneously trained on two NVIDIAGTX 580
GPUs to address hardware deficiencies. With AlexNet, feature
extraction stages have been expanded from 5 (LeNet) to 8 to
render CNN accessible for different image categories [47].

3.2.2. GoogleNet. GoogleNet is called Inception-V1. 'e key
goal of GoogleNet’s architecture was to achieve high precision
and reduce computational costs [50]. It presented the latest
definition of the initiation block in CNN, where it integrates
multiscale convolutionary transformations through the no-
tion of separating, transforming, and merging. 'is block
encapsulates filters of different sizes (1× 1, 3× 3, and 5× 5) to
capture various scales of spatial information (at both fine and
coarse grain levels). In GoogleNet, convolutionary layers are
substituted in small blocks, as suggested in the Network in
Network (NIN) architecture, such as replacing each layer with
micro-NN [51]. GoogleNet’s exploitation of the concept of
splitting, transforming, and merging has helped resolve a
problem related to understanding various types of variations
found in the same category of various pictures. GoogleNet’s
emphasis was on making the CNN parameter effective in
addition to increasing learning efficiency.

3.2.3. ResNet (2015). Residual Neural Network (ResNet) was
introduced by He et al. [52] as a novel architecture featuring
“skip connections” and fast batch normalization. 'ese skip
connections are also known as gated units or gated recurrent
units and have a clear resemblance to recent effective elements
introduced in RNNs [53]. 'is technique is able to train a NN
with 152 layers while still having lower complexity than
VGGNet [54]. It achieves a top-5 error rate of 3.57%, which
beats human-level performance on this dataset.

3.3. Classification Method. In general, the study of finger-
prints for matching purposes involves a comparison of
several print pattern features. 'ese include patterns that are
aggregate features of ridges, as well as minutia points that are
unique features contained within patterns. 'e three main
classifications for fingerprints include the loop arch and
whorl. 'erefore, this research categorized the dataset into
three main fingerprint patterns (arches, loops, and whorls)
that make CNN works efficiently. To categorize the dataset
into three main fingerprint patterns, mathematical systems
for each pattern were used to identify pattern types.

3.3.1. Whorls. We have considered three mathematical sys-
tems of the whorl patterns as mentioned above in the cate-
gorization method: concentric, spiral, and composite with “S”

core [4]. If the image satisfies one of these systems, then it
belongs to whorl patterns. Figure 5 shows the phase portrait of
the concentric whorl, Figures 6 and 7 show the phase portrait
for the spiral whorl, and Figure 8 shows the phase portrait for
the composite with the “S” core.'e pattern of the concentric
has three equilibrium points, the origin is center, and the
points (1, 0) and (−1, 0) are cusps; also, there are two orbits
between the endpoints from the above side and below side.
On the other hand, the pattern of the spiral has three
equilibrium points, the origin is spiral out, and the points (1,
0) and (−1, 0) are cusps. In addition, the image has connection
orbits between the origin and the other two points on the left
and right sides. In the pattern of the composite with the “S”
core, the spiral core is twistedmore as “S” with the existence of
the cusps.

3.4. Arches. To complete the categorization method on the
dataset for the three main patterns in fingerprint (whorls,
arches, and loops), we have to state the three mathematical
models for arch patterns which are plain, tented, and strong
arch; see [55]. 'e phase portrait of all classes of arch fin-
gerprint has only one singular point at the origin, that is,
cusp with varying in the length of its vertical ridges in the
middle. 'e plain pattern is represented by equation (5).

3.5. Matching. After preprocessing, the image is taken as an
input to binarization and thinning to be performed. 'en,
the pattern of the input image is determined. Minutiae is
extracted from the thinning image, and matching is con-
ducted in a specific part in the database that is determined
during classify input image stage to reduce time complexity
function. 'e type of minutiae can also be classified into
ridge bifurcation and ridge ending. Figure 14 shows an
example of a ridge ending and bifurcation. A ridge bifur-
cation minutia is a point where a ridge splits from a single
path to two paths, while a ridge ending minutia is a point
where a ridge terminates.

Ultimately, if the image does not belong to the previous
systems, then the image belongs to the form of loops pattern.

4. Dataset Description

In order to evaluate the proposed model, we use the
FVC2004 [56] competitions dataset. 'ese datasets are
commonly used as benchmarks for evaluating fingerprint
matchers in the context of fingerprint verification. Figure 15
shows a sample of fingerprints of the dataset. FVC2004 was
also revealed via mailing lists and online magazines affiliated
with biometrics. 'e creation of four new databases was
performed using three commercially available scanners and
a synthetic fingerprint generator [57]. 'e subset of each
database consists of 80 fingerprints made available to the
participants from 10 fingers.

5. Experimental Results

5.1. Experiments Setting. In this section, we describe a
number of experiments conducted to test the proposed

Security and Communication Networks 9

model for fingerprint classification and matching. 'e
proposed model implementation runs using a MATLAB
environment with a PC containing 4GB of RAM and 4 Intel
cores i5 (2.0GHz each). In our experiments, we used the
FVC2004 dataset to test the proposed model. 'e perfor-
mance evaluation of the proposed model is done under three
different CNN architectures, ResNet, AlexNet, and Goo-
gleNet. 'e data have trained with various convolutional
layers to find the best architecture of CNN. 'e CNN-based
classifier has been implemented with varying layer numbers,
and the GoogleNet has been implemented with 22 layers,
where ResNet-18 has been implemented with 18 layers; fi-
nally, AlexNet has been implemented with 8 layers. Figure 16
shows the list of parameters setting and their candidate
values for different CNN models. In order to make a fair
experiment, different CNN models run under the same
options.

5.2. Results and Discussion. To analyze the effect of the
proposed model, different CNN architecture classifiers were
applied. CNN architecture classifiers used in this paper are
GoogleNet, AlexNet, and ResNet. 'e following presents
results and a discussion of each CNN architecture classifier.

5.2.1. ResNet Results. 'e first experiments are performed
by applying ResNet-18 to the proposed model. Table 1 shows

the results that are obtained from the experiment. 'e
training accuracy used to report during training corresponds
to the accuracy of the particular training at the defined it-
eration. Figure 17 shows training and testing accuracy and
training and testing loss with respect to iteration. From the
results, we can observe that training accuracy rises to 100%
in iterations 15, 69, 87, 99, and 102, whichmeans that there is
overfitting in training. 'e testing accuracy rises to 75% in
iterations 99, 102, and 108.'e overall validation accuracy is
75%. 'e time required to build a model for training and
testing for all iterations is 55 seconds. Loss is used to op-
timize a deep learning algorithm. 'e loss is measured on
training and testing, and its meaning is dependent on how
well the model in these two sets is doing. It is observable that
when the accuracy is high, the loss is low.

5.2.2. AlexNet Results. From the results in Table 2, we can
observe that training accuracy rises to 100% in iterations 87,
90, and 102. 'e testing accuracy rises to 81.25% in iteration
96. 'e overall validation accuracy is 43.75%. 'e time
required to build a model for training and testing for all
iterations is 28 seconds. It is observable that when the ac-
curacy is high, the loss is low. Figure 18 shows accuracy and
loss for AlexNet-8, showing “training and testing accuracy”
and “training and testing loss” with respect to iteration.

5.2.3. GoogleNet Results. In the experiment of the Goo-
gleNet-22 that is applied to the proposed model, Table 3
shows the results that are obtained from training of the
GoogleNet-22 architecture to the proposed model. Figure 19
obtained results from the experiment.

From the results, we can observe that training accuracy
rises to 100% in iterations 48, 57, 60, 63, 66, 69, 78, 81, 84, 87,
90, 93, 96, 99, 102, 105, and 108.

'e testing accuracy rises to 100% in iterations 60, 63, 66,
75, 78, 90, 93, 96, 99, 102, 105, and 108.'e overall validation
accuracy is 100%. 'e time required to build a model for
training and testing for all iterations is 262 seconds. It is
observable that when the accuracy is high, the loss is low.

5.2.4. Comparison of CNN Architecture Classifier. In addi-
tion, it has three main categories of fingerprints (whorls,
arches, and loop). After applying three CNNs (ResNet,
AlexNet, and GoogleNet) mentioned in the previous section
using the MATLAB tool, the accuracy results are 100%, 75%,
and 43.75% for GoogleNet, ResNet, and AlexNet, respec-
tively. 'e training time results are 262, 55, and 28 for
GoogleNet, ResNet, and AlexNet, respectively. Figures 20
and 21 show the accuracy and time results, respectively.
According to Figure 20, GoogleNet is the accurate one.
According to Figure 21, the AlexNet is the faster one.
Furthermore, the fingerprint could be utilized to solve one of
the most difficult problems in the system and network se-
curity: user authentication. For user authentication, time is
critical. 'e embedded access points for trusted data and
resources access in HPC systems [58] are one of interesting
related work that discussed one possible solution for user

Ridge ending Ridge bifurcation

Figure 14: Ridge bifurcation and ridge ending.

Figure 15: Sample of used dataset.

Parameters

Number of
convolutional layers
Mini Batch Size

Max Epochs

Initial Learn Rate

Validation Frequency

Training Set

Test Set

GoogleNet

22

7

12

1.0000e-04

3

70%

30%

AlexNet

8

7

12

1.0000e-04

3

70%

30%

ResNet

18

7

12

1.0000e-04

3

70%

30%

Figure 16: Parameters setting for CNN architecture classifier.

10 Security and Communication Networks

Table 1: ResNet-18 architecture classifier results.

Epoch Iteration Time elapsed Training accuracy (%) Testing accuracy (%) Training loss Testing loss
1 1 00 : 00 : 01 57.14 31.25 1.0842 2.8786
1 3 00 : 00 : 02 42.86 31.25 6.2243 6.7976
1 6 00 : 00 : 03 57.14 18.75 2.1485 11.0027
1 9 00 : 00 : 05 42.86 43.75 8.1363 5.0982
2 12 00 : 00 : 06 42.86 37.50 1.8785 5.8701
2 15 00 : 00 : 08 100.00 43.75 0.0096 4.1785
2 18 00 : 00 : 09 42.86 56.25 5.4363 3.5828
3 21 00 : 00 :11 57.14 31.25 1.8393 8.3207
3 24 00 : 00 :13 57.14 56.25 1.2059 4.9842
3 27 00 : 00 :14 85.71 56.25 0.3168 4.8677
4 30 00 : 00 :16 42.86 50.00 5.3774 5.2108
4 33 00 : 00 :17 71.43 31.25 0.4266 10.4761
4 36 00 : 00 :19 57.14 50.00 1.5931 5.6201
5 39 00 : 00 : 20 42.86 43.75 6.6447 6.5483
5 42 00 : 00 : 22 85.71 56.25 0.6081 6.3882
5 45 00 : 00 : 23 57.14 31.25 6.2282 8.7916
6 48 00 : 00 : 25 57.14 50.00 5.8847 5.5018
6 51 00 : 00 : 26 57.14 43.75 4.9419 6.9097
6 54 00 : 00 : 28 57.14 31.25 4.9069 10.0431
7 57 00 : 00 : 29 57.14 68.75 4.1653 4.778
7 60 00 : 00 : 31 57.14 62.50 2.622 4.9376
7 63 00 : 00 : 32 42.86 68.75 3.5718 4.0243
8 66 00 : 00 : 34 71.43 68.75 2.525 3.7462
8 69 00 : 00 : 35 100.00 62.50 2.06E−06 5.2429
8 72 00 : 00 : 37 57.14 50.00 3.3527 4.7472
9 75 00 : 00 : 38 57.14 43.75 4.4912 7.9152
9 78 00 : 00 : 40 85.71 43.75 2.2775 6.7274
9 81 00 : 00 : 41 57.14 68.75 6.5187 4.9828
10 84 00 : 00 : 43 42.86 62.50 3.2893 4.2506
10 87 00 : 00 : 44 100.0 68.75 4.18E−05 3.6644
10 90 00 : 00 : 46 71.43 56.25 3.4216 4.0034
11 93 00 : 00 : 47 85.71 68.75 0.6548 4.3335
11 96 00 : 00 : 49 85.71 68.75 0.5733 3.5268
11 99 00 : 00 : 50 100.00 75.00 0.006 3.0587
12 102 00 : 00 : 52 100.00 75.00 0.0946 0.5617
12 105 00 : 00 : 54 85.71 62.50 2.2777 3.4835
12 108 00 : 00 : 55 85.71 75.00 0.6971 3.7687

Results
Validation accuracy:
Training finished:

75.00%
Reached final iteration

Training Time
Start time:
Elapsed time:

11-Feb-2020 11:37:52
55 sec

Training Cycle

Iteration:
Iterations per epoch:
Maximum Iterations:

108 of 108
Epoch: 12 of 12

9
108

Lo
ss

0

5

10

10
Final

0 20 40 60
Iteration

80 100

Training (smoothed)
Training
Validation

100

Ac
cu

ra
cy

 (%
) 80

60

40

20

0 10

Final

0 20 40 60
Iteration

80 100

Training (smoothed)
Training
Validation

Figure 17: Accuracy and loss for ResNet-18.

Security and Communication Networks 11

Table 2: AlexNet-8 architecture classifier results.

Epoch Iteration Time elapsed Training accuracy (%) Testing accuracy (%) Training loss Testing loss
1 1 00 : 00 : 01 57.14 25.00 1.4978 2.5875
1 3 00 : 00 : 01 57.14 50.00 3.2016 2.103
1 6 00 : 00 : 02 42.86 37.50 3.628 2.7452
1 9 00 : 00 : 03 71.43 50.00 4.1279 6.3035
2 12 00 : 00 : 04 42.86 37.50 1.2736 1.3775
2 15 00 : 00 : 04 42.86 75.00 3.2486 0.9802
2 18 00 : 00 : 05 0.00 50.00 6.9613 3.4558
3 21 00 : 00 : 06 57.14 68.75 6.2496 4.8568
3 24 00 : 00 : 07 42.86 31.25 3.8846 3.7702
3 27 00 : 00 : 07 85.71 50.00 1.6855 5.8037
4 30 00 : 00 : 08 71.43 31.25 0.809 3.6344
4 33 00 : 00 : 09 28.57 37.50 2.6885 5.7263
4 36 00 : 00 : 09 57.14 43.75 2.5091 5.9148
5 39 00 : 00 :10 71.43 50.00 1.6331 6.5207
5 42 00 : 00 :11 71.43 50.00 1.151 2.7441
5 45 00 : 00 :12 71.43 62.50 0.9064 4.4997
6 48 00 : 00 :12 57.14 56.25 4.6229 4.368
6 51 00 : 00 :13 71.43 56.25 0.3475 2.8
6 54 00 : 00 :14 28.57 68.75 3.9778 1.9498
7 57 00 : 00 :15 57.14 62.50 5.3242 4.9202
7 60 00 : 00 :15 42.86 68.75 7.2394 1.6834
7 63 00 : 00 :16 28.57 56.25 7.191 1.1742
8 66 00 : 00 :17 57.14 50.00 3.7439 5.3485
8 69 00 : 00 :18 42.86 62.50 7.8516 4.5162
8 72 00 : 00 :19 42.86 43.75 4.5165 5.194
9 75 00 : 00 :19 85.71 68.75 1.4853 4.3325
9 78 00 : 00 : 20 42.86 68.75 8.5128 4.982
9 81 00 : 00 : 21 71.43 50.00 0.4735 4.0692
10 84 00 : 00 : 22 71.43 37.50 1.1465 6.3691
10 87 00 : 00 : 23 100.00 68.75 0.0377 3.0489
10 90 00 : 00 : 24 100.00 62.50 0.0272 2.7935
11 93 00 : 00 : 24 71.43 56.25 0.4595 2.0301
11 96 00 : 00 : 25 85.71 81.25 0.4496 0.7833
11 99 00 : 00 : 26 85.71 75.00 2.3075 2.355
12 102 00 : 00 : 27 100.00 62.50 0.0001 4.9323
12 105 00 : 00 : 28 42.86 56.25 7.8079 4.4485
12 108 00 : 00 : 28 71.43 43.75 1.8536 5.0001

Results
Validation accuracy:
Training finished:

43.75%
Reached final iteration

Training Time
Start time:
Elapsed time:

11-Feb-2020 11:41:52
28 sec

Training Cycle

Iteration:
Iterations per epoch:
Maximum Iterations:

108 of 108
Epoch: 12 of 12

9
108

Lo
ss

0
2
4
6
8

10

Final

0 20 40 60
Iteration

80 100

Training (smoothed)
Training
Validation

100

Ac
cu

ra
cy

 (%
) 80

60

40

20

0 10

Final

0 20 40 60
Iteration

80 100

Training (smoothed)
Training
Validation

Figure 18: Accuracy and loss for AlexNet-8.

12 Security and Communication Networks

Table 3: GoogleNet-22 architecture classifier results.

Epoch Iteration Time elapsed Training accuracy (%) Testing accuracy Training loss Testing loss
1 1 00 : 00 : 03 42.86 37.50% 1.1722 1.0717
1 3 00 : 00 : 08 57.14 50.00% 0.9451 1.0425
1 6 00 : 00 :16 57.14 50.00% 1.3488 1.2365
1 9 00 : 00 : 23 57.14 50.00% 0.8974 1.4963
2 12 00 : 00 : 30 28.57 31.25% 1.179 1.332
2 15 00 : 00 : 38 71.43 56.25% 1.1686 1.5411
2 18 00 : 00 : 45 42.86 68.75% 1.7907 0.7173
3 21 00 : 00 : 52 57.14 50.00% 0.7581 1.5879
3 24 00 : 00 : 59 42.86 50.00% 1.1363 0.8127
3 27 00 : 01 : 06 57.14 68.75% 0.8824 0.7707
4 30 00 : 01 :13 71.43 68.75% 0.8792 0.6418
4 33 00 : 01 : 20 85.71 81.25% 0.402 0.432
4 36 00 : 01 : 27 71.43 b 68.75% 0.5519 0.5142
5 39 00 : 01 : 34 85.71 50.00% 0.5002 0.6351
5 42 00 : 01 : 42 71.43 87.50% 0.3781 0.3745
5 45 00 : 01 : 49 71.43 75.00% 0.6498 0.4651
6 48 00 : 01 : 56 100.00 81.25% 0.2742 0.4266
6 51 00 : 02 : 03 71.43 87.50% 0.4637 0.3808
6 54 00 : 02 :10 57.14 93.75% 0.7768 0.3296
7 57 00 : 02 :18 100.00 93.75% 0.2694 0.313
7 60 00 : 02 : 26 100.00 100.00% 0.1386 0.2526
7 63 00 : 02 : 33 100.00 100.00% 0.2667 0.2256
8 66 00 : 02 : 40 100.00 100.00% 0.2094 0.2087
8 69 00 : 02 : 47 100.00 93.75% 0.0676 0.1964
8 72 00 : 02 : 54 71.43 93.75% 0.4086 0.1807
9 75 00 : 03 : 01 85.71 100.00% 0.2515 0.1776
9 78 00 : 03 :10 100.00 100.00% 0.0403 0.1587
9 81 00 : 03 :17 100.00 93.75% 0.2288 0.1578
10 84 00 : 03 : 25 100.00 93.75% 0.0995 0.1556
10 87 00 : 03 : 32 100.00 93.75% 0.0399 0.1481
10 90 00 : 03 : 40 100.00 100.00% 0.1824 0.1303
11 93 00 : 03 : 47 100.00 100.00% 0.0628 0.1631
11 96 00 : 03 : 54 100.00 100.00% 0.0656 0.0656
11 99 00 : 04 : 01 100.00 100.00% 0.1219 0.0998
12 102 00 : 04 : 08 100.00 100.00% 0.0187 0.0962
12 105 00 : 04 :15 100.00 100.00% 0.0499 0.1034
12 108 00 : 04 : 22 100.00 100.00% 0.1435 0.0834

Results
Validation accuracy:
Training finished:

100.00%
Reached final iteration

Training Time
Start time:
Elapsed time:

11-Feb-2020 09:52:12
4 min 22 sec

Training Cycle

Iteration:
Iterations per epoch:
Maximum Iterations:

108 of 108
Epoch: 12 of 12

9
108

Lo
ss

0
0 20 40 60

Iteration
80 100

0.5
1

1.5
2

2.5

Final10

Training (smoothed)
Training
Validation

100

Ac
cu

ra
cy

 (%
) 80

60

40

20

0

Final

10
0 20 40 60

Iteration
80 100

Training (smoothed)
Training
Validation

Figure 19: Accuracy and loss for GoogleNet-22.

Security and Communication Networks 13

authentication in network security and it is a hardware
implementation in hight-performance computing field. A
free database biometric authentication system is presented,
with a tamper-resistant smartcard serving as the storage
device. Furthermore, fingerprint processing units have been
incorporated in hardware, resulting in embedded access
points capable of hiding various biometric authentication
system attack points. Its access point prototype, which was
created with FPGA technology, a smartcard read/write
device, and the AES algorithm to encrypt the biometric
template, yielded intriguing results in terms of recognition
rates. 'is interesting related work could be integrated with
this proposed method as future work and other many
network [59, 60] problems to produce a new efficient
method.

In CNNs, adding more layers leads to extracting more
features that indicate that highly accurate results could be
achieved with more computation time. 'e main goal of the
GoogleNet architecture was to get high accuracy so that the
motivation for the GoogleNet is creating Inception CNN
module to make a deeper CNN by adding 22 layers and
almost 12 times fewer parameters than AlexNet. 'us, the
highly accurate results could be achieved with more com-
putation time. Second, the ResNet in this research had 18
layers, so it is between AlexNet and GoogleNet in the ac-
curacy and time computation. Finally, AlexNet had 8 layers,
so it is faster with less accurate.

6. Conclusion

In this paper, we have proposed a fingerprint classification
and matching model based on a mathematical model using
different CNN architectures. To the best of our knowledge,

this is the first such attempt to tackle complex fingerprint
classification issues using CNN. In our proposed model, the
fingerprint image is classified into three main categories
arch, loop, and whorl, and matching is performed based on
bifurcation minutiae extraction. Binarization and thinning
model has been used in order to improve image quality. In
this paper, we have implemented and tested the proposed
model with three CNN architectures, namely, GoogleNet,
AlexNet, and ResNet. From the obtained results, GoogleNet
provides better results in terms of accuracy. Moreover,
AlexNet provides better results in terms of time training. On
the other hand, the usage of reconfigurable hardware devices
is a viable solution to some of the issues that plague software-
based solutions. Indeed, they enable the creation of em-
bedded and tamper-resistant devices, which are particularly
helpful in contexts where security is critical. Novel hardware
implementation in the field of high-performance computing
is presented in [58] that could be integrated with the pro-
posed method to produce a more effective and efficient
algorithm.

Data Availability

'e data used to support the findings of this paper are
available online and FVC2004 free Database fingerprint
dataset. 'ey are at “http://bias.csr.unibo.it/fvc2004/” web-
site [6].

Conflicts of Interest

'e authors declare that they have no conflicts of interest.

References

[1] C. O. Folorunso, O. S. Asaolu, and O. P. Popoola, “A review of
voice-base person identification:state-of-the-art,” Covenant
Journal of Engineering Technology (CJET), vol. 3, no. 1, 2019.

[2] C. Lin and A. Kumar, “A CNN-based framework for com-
parison of contactless to contact-based fingerprints,” IEEE
Transactions on Information Forensics and Security, vol. 14,
no. 3, pp. 662–676, 2019.

[3] F. Galton, Finger Prints, McMillan & Co., London, UK, 1892.
[4] I. Jawarneh and N. Alsharman, “'e mathematical model and

deep learning features selection for whorl fingerprint classi-
fications,” InterNational Journal of Computational Intelligence
Systems, vol. 14, pp. 1208–1216, 2021.

[5] E. R. Henry, Classification and Uses of finger Prints, HM
Stationery Office, Richmond, UK, 1905.

[6] K. Anil, “Jain, salil prabhakar, student member, and lin Hong.
A multichannel approach to fingerprint classification,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 21, pp. 348–359, 1999.

[7] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook
of Fingerprint Recognition, Springer Science & Business
Media, Berlin, Germany, 2009.

[8] A. K. Jain, H. Lin Hong, S. Pankanti, and R. Bolle, “An
identity-authentication system using fingerprints,” Proceed-
ings of the IEEE, vol. 85, no. 9, pp. 1365–1388, 1997.

[9] A. Lindoso, L. Entrena, J. Liu-Jimenez, and E. San Millan,
“Correlation- based fingerprint matching with orientation
field alignmen,” Lecture Notes in Computer Science, vol. 4642,
2007.

100

Accuracy (%)

80
60
40
20

0
ResnetAlexNetGoogleNet

%

Figure 20: Validation accuracy of three CNN architecture
classifiers.

Time to Bulide Model

ResNet AlexNet GoogleNet

Ti
m

e i
n

Se
co

nd

55 28 262

300
250
200
150
100
50
0

Time to Bulide Model

Figure 21: Model building time for three CNN architecture
classifiers.

14 Security and Communication Networks

http://bias.csr.unibo.it/fvc2004/

[10] N. K. Ratha, K. Karu, S. Chen, and A. K. Jain, “A real-time
matching system for large fingerprint databases,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 18, no. 8, pp. 799–813, 1996.

[11] S. M. Mohamed and H. Nyongesa, “Automatic fingerprint
classification system using fuzzy neural techniques,” in Pro-
ceedings of the 2002 IEEE International Conference on Fuzzy
Systems. FUZZ-IEEE’02. Proceedings (Cat. No. 02CH37291),
Honolulu, USA, May 2002.

[12] Q. Zhang and H. Yan, “Fingerprint classification based on
extraction and analysis of singularities and pseudo ridges,”
Pattern Recognition, vol. 37, no. 11, pp. 2233–2243, 2004.

[13] J.-H. Hong, J.-K. Min, U.-K. Cho, and S.-B. Cho, “Fingerprint
classification using one-vs-all support vector machines dy-
namically ordered with naı¨ve Bayes classifiers,” Pattern
Recognition, vol. 41, no. 2, pp. 662–671, 2008.

[14] R. Wang, C. Han, Y. Wu, and T. Guo, “Fingerprint classifi-
cation based on depth neural network,” 2014, https://arxiv.
org/abs/1409.5188.

[15] S. Kouamo and C. Tangha, “Fingerprint recognition with
artificial neural networks: application to e-learning,” Journal
of Intelligent Learning Systems and Applications, vol. 08,
no. 02, pp. 39–49, 2016.

[16] C. Militello, L. Rundo, S. Vitabile, and V. Conti, “Fingerprint
classification based on deep learning approaches: experi-
mental findings and comparisons,” Symmetry Plus, vol. 13,
no. 5, 2021.

[17] D. Peralta, S. Garc´ıa, J. M. Benitez, and F. Herrera, “Mi-
nutiae-based fingerprint matching decomposition: method-
ology for big data frameworks,” Information Sciences, vol. 408,
pp. 198–212, 2017.

[18] W. Lee, S. Cho, H. Choi, and J. Kim, “Partial fingerprint
matching using minutiae and ridge shape features for small
fingerprint scanners,” Expert Systems with Applications,
vol. 87, pp. 183–198, 2017.

[19] G. T. Candela, P. Grother, C. Watson, R. A. Wilkinson, and
C. Wilson, Pcasys- a Pattern-Level Classification Automation
System for Fingerprints — Nist, NIST, Maryland, USA, 1995.

[20] R. Cappelli, A. Lumini, D. Maio, and D. Maltoni, “Fingerprint
classification by directional image partitioning,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on,
vol. 21, pp. 402–421, 1999.

[21] J. Li, Y. Wei-Yun, and H. Wang, “Combining singular points
and orientation image information for fingerprint classifi-
cation,” Pattern Recognition, vol. 41, pp. 353–366, 2008.

[22] K. Karu and A. K. Jain, “Fingerprint classification,” Pattern
Recognition, vol. 29, no. 3, pp. 389–404, 1996.

[23] H. O. Nyongesa, S. Al-Khayatt, S. M. Mohamed, and
M. Mahmoud, “Fast robust fingerprint feature extraction and
classification,” Journal of Intelligent and Robotic Systems,
vol. 40, no. 1, pp. 103–112, 2004.

[24] N. K. Ratha, K. Karu, S. Shaoyun Chen, and A. K. Jain, “A real-
time matching system for large fingerprint databases,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 18, no. 8, pp. 799–813, 1996.

[25] S. Shah and P. Sastry, “Fingerprint classification using a
feedback-based line detector,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B, vol. 34, no. 85–94, 2004.

[26] Y. Yao, G. Marcialis, M. Pontil, P. Frasconi, and F. Roli,
“Combining flat and structured representations for finger-
print classification with recursive neural networks and sup-
port vector machines,” Pattern Recognition, vol. 36,
pp. 397–406, 2002.

[27] V. Conti, C. Militello, F. Sorbello, and S. Vitabile, “Intro-
ducing pseudo- singularity points for efficient fingerprints
classification and recognition,” in Proceedings of the �e 4th
International Conference on Complex, Intelligent and Software
Intensive Systems (CISIS-2010), Krakow, Poland, February
2010.

[28] S Dass and A Jain, “Fingerprint classification using orienta-
tion field flow curves,” in Proceedings of the ICVGIP 2004,
Proceedings of the Fourth Indian Conference on Computer
Vision, Graphics & Image Processing, Kolkata, India, De-
cember 2004.

[29] R. Doroz, K. Wrobel, and P. Porwik, “An accurate fingerprint
reference point determination method based on curvature
estimation of separated ridges,” International Journal of
Applied Mathematics and Computer Science, vol. 28, no. 1,
pp. 209–225, 2018.

[30] K. Castillo-Rosado and J. Hernández-Palancar, “Latent fin-
gerprint matching using distinctive ridge points,” Informatica,
vol. 30, no. 3, pp. 431–454, 2019.

[31] W. Zhang, L. L. Tang, Q. Li, A. Liu, and M. L. T. Lee, “Order-
restricted inference for clustered ROC data with application to
fingerprint matching accuracy,” Biometrics, vol. 76, no. 3,
pp. 863–873, 2020.

[32] R. Gupta, M. Khari, D. Gupta, and R. Crespo, “Fingerprint
image enhancement and reconstruction using the orientation
and phase reconstruction,” Informing Science, vol. 530,
pp. 201–218, 2020.

[33] N. Kaushal and P. Kaushal, “Human identification and fin-
gerprints: a review,” Journal of Biometrics & Biostatistics,
vol. 2, no. 4, 2011.

[34] A. Saleh and A. Mahmood, “A framework for designing the
architectures of deep convolutional neural networks,” En-
tropy, vol. 19, no. 6, 2017.

[35] I. Jawarneh and N. Alsharman, “'e classification of arch
fingerprint using mathematical model and deep learning
features selection,” International Journal of Mathematics and
Computer Science, vol. 17, pp. 289–307, 2022.

[36] E. Erwin, N. N. B. Karo, A. Y. Sari, and N. Aziza, “'e en-
hancement of fingerprint images using gabor filter,” Journal of
Physics: Conference Series, vol. 1196, no. 1, 2019.

[37] Nobuyuki Otsu, vol. 9, 1979.
[38] T. H. Nguyen, Y. Wang, and R. Li, “An improved ridge

features extraction algorithm for distorted fingerprints
matching,” Journal of Information Security and Applications,
vol. 18, no. 4, pp. 206–214, 2013.

[39] N. Alsharman and I. Jawarneh, “Googlenet cnn neural net-
work towards chest CT-coronavirus medical image classifi-
cation,” Journal of Computer Science, vol. 16, no. 5,
pp. 620–625, 2020.

[40] M. Heikkil¨a, M. Pietik¨ainen, and C. Schmid, “Description of
interest regions with local binary patterns,” Pattern Recog-
nition, vol. 42, no. 3, pp. 425–436, 2009.

[41] S. Minaee, E. Azimi, and A. A Abdolrashidi, “Fingernet:
pushing the limits of fingerprint recognition using con-
volutional neural network,” CoRR, abs/, 2019.

[42] B. Herbert, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-
up robust features (surf),” Computer Vision and Image Un-
derstanding, vol. 110, no. 3, pp. 346–359, 2008.

[43] D. G. Lowe, “Object recognition from local scale-invariant
features,” Proceedings of the Seventh IEEE International
Conference on Computer Vision, vol. 2, pp. 1150–1157, 1999.

[44] M. Tzelepi and A. Tefas, “Deep convolutional learning for
content based image retrieval,” Neurocomputing, vol. 275,
pp. 2467–2478, 2018.

Security and Communication Networks 15

https://arxiv.org/abs/1409.5188
https://arxiv.org/abs/1409.5188

[45] L. Deng and Yu Dong, “Deep learning: methods and appli-
cations,” Foundations and Trends in Signal Processing, vol. 7,
no. 3-4, pp. 197–387, 2014.

[46] W. Wang, Y. Yang, X. Wang, W. Wang, and J. Li, “Devel-
opment of convolutional neural network and its application in
image classification: a survey,” Optical Engineering, vol. 58,
2019.

[47] A. Khan, A. Sohail, U. Zahoora, and A. S. Saeed, “A survey of
the recent architectures of deep convolutional neural net-
works,” Artificial Intelligence Review, vol. 53, no. 8,
pp. 5455–5516, Apr 2020.

[48] Y. Lecun, L. D. Jackel, B. Leon, C. Cartes, J. S. Denker, and
H. Drucker, “Learning algorithms for classification: a com-
parison on handwritten digit recognition,” in Neural Net-
works: the Statistical Mechanics Perspective, pp. 261–276,
World Scientific, Singapore, 1995.

[49] A. Krizhevsky, I. Sutskever, and E. Hinton Geoffrey,
“Imagenet classification with deep convolutional neural
networks,” Advances in Neural Information Processing Sys-
tems, vol. 60, no. 6, pp. 1097–1105, 2017.

[50] S. Christian, W. Liu, Y. Jia et al., “Going deeper with con-
volutions,” in Proceedings of the 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Boston,
MA, June 2015, https://doi.org/10.1109/CVPR.2015.7298594.

[51] M. Lin, Q. Chen, and S. Yan, Network in Network, 2014.
[52] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning

for image recognition,” in Proceedings of the 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, USA, June 2016.

[53] A. L. Caterini and D. E. Chang, Recurrent Neural Networks,
2018.

[54] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” International
Conference on Learning Representations, San Diego, CA,
USA, 2015, https://arxiv.org/abs/1409.1556.

[55] I. Jawarneh and N. Alsharman, “A mathematical model for
arch fingerprint,” 2020, https://arxiv.org/abs/2003.00308.

[56] R. Cappelli, D. Maio, D. Maltoni, J. L. Wayman, and
A. K. Jain, “Performance evaluation of fingerprint verification
systems,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 28, no. 1, pp. 3–18, 2006.

[57] R. Cappelli, D. Maio, and D. Maltoni, “Synthetic fingerprint-
database generation,” International Conference on Pattern
Recognition, vol. 3, pp. 744–747, 2002.

[58] C. Militello, V. Conti, S. Vitabile, and F. Sorbello, “Embedded
access points for trusted data and resources access in hpc
systems,” �e Journal of Supercomputing, Springer Nether-
lands, vol. 55, no. 1, pp. 4–27, 2011.

[59] A. Nagar, K. Nandakumar, and A. K. Jain, “Securing fin-
gerprint template: fuzzy vault with minutiae descriptors,” in
Proceedings of the 2008 International Conference for Pattern
Recognition, Tampa, USA, December 2008.

[60] A. Saaidah, A. Omar, L. Al-Qaisi, and M. Mohammed Kamel,
“An efficient design of rpl objective function for routing in
internet of things using fuzzy logic,” International Journal of
Advanced Computer Science and Applications, vol. 10, no. 8,
2019.

16 Security and Communication Networks

https://doi.org/10.1109/CVPR.2015.7298594
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/2003.00308

