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E-voting allows us to build a democratic business in most Internet of things (IoT) systems. For example, we may vote to choose a
proper energy broker in a smart grid system. In this study, we focus on e-voting services in an Internet of energy (IoE) system,
which is a new-style smart grid. A practical e-voting in IoE may focus on the properties of fairness, decentralization, eligibility,
anonymity, compatibility, verifiability, and coercion resistance. It is difficult to fulfil all these properties simultaneously. Tra-
ditional voting schemes often use a public bulletin board or administrator in the voting process, which makes them become
centralized. Services that offer e-voting via blockchain can make the voting schemes decentralized. However, many of them ignore
the complexity of organizing the data of the transactions, which should be confirmed by the miners. Moreover, to the best of the
authors’ knowledge, no works have tested the performance in the blockchain while considering practical use cases and constraints.
Concerning all the challenges, we propose a practical anonymous voting scheme for IoE called IoEPAV. )e proposed scheme
fulfils all the mentioned design goals simultaneously. We tested IoEPAV both in different test networks of the Ethereum
blockchain to give an overall evaluation.)e practical evaluation can show that the proposed scheme is easy to be integrated into a
real system like IoE. We also gave a comparison analysis with the state-of-the-art blockchain-based e-voting. All the results show
that IoEPAV is decentralized, verifiable, anonymous, and highly efficient.

1. Introduction

)e rapid development of the Internet of things (IoT)[1]
promotes the development of various new intelligent net-
work systems, i.e., smart power grid system [2]. Smart grid
systems have led to a modern power network called the
Internet of energy (IoE), which has drawn great interest from
many countries [3]. As a kind of IoT, IoE is reshaping the
energy industry into a smart industry with features of data-
driven decision-making. However, the intrinsic features of
IoE raise a number of challenges, such as autonomy, privacy,
and decentralization [4–6]. One of the most common ac-
tivities/applications in IoE is voting to make a decision.

In this study, we focus on the problem of designing a
voting scheme fit for an IoE system. For instance, we may
vote to choose a proper energy broker in IoE system.
Recently, e-voting has become attractive [7] for its

convenience in building a democratic activity/business.
Voting schemes in an online way called e-voting have been
studied by both academic world and industry world [7, 8].
Here, we formally state the design goals, which a deemed
secure e-voting scheme must hold [9]. Moreover, we extend
the design goals, which particularly are required in IoE [4].
All of them are as follows:

(i) Fairness. Fair voting should assure that no one can
obtain the ballot results of others before he/she has
submitted his/her ballot. It means the choice of a
voter cannot be influenced by those who have voted
ahead.

(ii) Decentralization. Any kind of trusted third party
(TTP) such as election administrators and (inde-
pendent) observers should be eliminated from the
voting scheme.
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(iii) Eligibility. )e right of a voter should be checked
before he/she begins to vote. To address this, most
voting schemes will verify the identities of the
voters at the beginning. Moreover, every voter can
cast their vote only once.

(iv) Anonymity. )e privacy of voters should be pro-
tected tomake sure that no one can know the owner
of a ballot from the voting result at the end.

(v) Compatibility. )e voting scheme should be as
simple as possible to be integrated into an IoE
system.

(vi) Verifiability. Contrasted with the “Anonymity”
property, verifiability guarantees that all the stages
of the voting can be audited by the voters. For
instance, a voter should be able to check whether
his/her vote has been tallied or not. Moreover, the
validity of each vote should be able to be verified by
anyone. It seems to be a contradiction of the
“Anonymity” property, and it is difficult for a
voting scheme to acquire the two properties at the
same time. We will show how to address this in our
scheme later.

(vii) Coercion Resistance. To avoid anyone trying to
coerce the voters to vote by following their in-
structions, a voting scheme should be coercion-
resistant.

Fairness and eligibility are essential properties, which
any voting scheme should fulfil. Besides, it is important to
handle voting without any kind of trusted third party (TTP)
in IoE due to its open and distributed features. )is is a
challenge for traditional e-voting schemes [10–12]. Most of
them assumed that there are administrators or authorities
implemented by aWeb server to provide a consistent view of
the results. As a result, a trusted third party is involved.
Unfortunately, with a trusted third party, the protocols will
be subjected to the single point of failure and are not
available for a trustless environment.

Fortunately, blockchain technology offers a novel way
to address the challenges of IoE [13]. )ere are already
voting schemes built based on a blockchain network
[14–16]. However, new challenges are raised to design a
decentralized voting protocol via blockchain in IoE
[13, 17, 18]. Firstly, it is difficult to provide verifiability
along with anonymity, which seems two contradictory
design goals for blockchain. Secondly, the voting scheme as
a basic service in IoE should be compatible with the system.
Some of the proposals assume that a voter can organize the
data structure of a transaction unboundedly and it seems
impossible for the existed blockchain networks. We say
they are not practical. )irdly, most works use theoretical
analysis without real-world generalizable experiments, and
to the best of our knowledge, no works have tested the
performance while considering practical use cases and
constraints.

Briefly, it is hard to find a solution that fulfils all the
design goals mentioned above. To address this, our con-
tributions are summarized as follows:

(i) We propose a blockchain-based decentralized
anonymous voting scheme for the Internet of en-
ergy. To the best of our knowledge, our voting
scheme called IoEPAV is the first work to take the
key features of the IoE into account. )eoretical
analysis is given to show that our proposed scheme
fulfils the seven formally stated design goals and
approaches to resist all the attacks in the threat
models.

(ii) To make the proposed scheme practical, we use
smart contracts to automate the voting process of
the Internet of energy. With smart contracts, the
voting scheme can be easy to integrate into the IoE
system. A voter can follow the voting protocol by
invoking the interfaces of the smart contracts. Any
blockchain system including Ethereum 2.0, which
supports smart contracts, is feasible for the pro-
posed scheme, and we do not need to construct a
whole new blockchain platform.

(iii) Compared with Yang’s state-of-the-art blockchain-
based scheme, our scheme enjoys both decentral-
ization and fewer cryptographic operations; there-
after, we conduct experiments both in the
development network and two live testnet of the
Ethereum blockchain and the experiment shows
that we have implemented a simple, effective, ac-
curate, and low-cost decentralized trusted anony-
mous voting scheme.

)e rest of this study is arranged as follows. In Section 2,
we give the related work of the e-voting service. In Section 3,
we introduce the necessary preliminary knowledge. In
Section 4, we give our systemmodel and security analysis. In
Section 6, we provide an evaluation of the development
network and testnet of the Ethereum blockchain. Finally, in
Section 7 we draw a brief conclusion.

2. Related Work

To address the problem of large-scale elections, Fujioka et al.
[12] presented a classic voting protocol in 1992. )eir voting
scheme is thought to be practical and solves the privacy and
fairness problems. )ereafter, Ohkubo et al. [19] tried to
decrease the voting round complexity to get a more con-
venient voting scheme for the voters than that presented by
Fujioka. )ey introduced a kind of distributed talliers in
their scheme. As an extension of the voting scheme proposed
by Fujioka, a new coercion-resistant voting scheme offered
by [20] in 2017 is provided and is an efficient scheme.

Since a kind of trusted third party (TTP) such as election
administrators and (independent) observers was introduced
in these practical voting schemes, solutions using blockchain
technology have become a refreshed framework for voters to
address the issues of fraud and corruption. In 2018, Sri-
vastava et al. [21] proposed a voting model via blockchain to
alleviate known problems in voting systems. FollowMyVote
[14] provides a secure online voting platform based on
blockchain. Follow My Vote has the capacity to audit the
ballot box and watch the real-time voting progress. Another
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organization Agora [15] proposed a digital voting system
using blockchain, where votes will be recorded to various
layers, assuring that the voting result could not have been
tampered with. Braghin et al. [22] studied various consensus
algorithms and cryptographic primitives such as homo-
morphic encryption and one-time ring signature, which
solved the cryptographic problem of security conflicts, thus
improving the security of voting system and making voting
system more secure in a wider range.

To ensure security, privacy, and public verifiability of the
whole progress, [16, 23] presented a new voting protocol that
does not rely on any TTP. In [16], the authors employ a novel
encryption mechanism to encrypt each vote. Proofs are
generated for each encrypted vote as well. All the proofs will
be stored in a blockchain, and everyone can check the
validity of these proofs. )ey provided a performance and
security analysis, which is claimed to show that the voting
protocol is feasible for real-life elections. However, the
implementation does not include the part interacting with
the blockchain, and we cannot see the results in a real system.
Table 1 gives an overall comparison of similar systems.

3. Preliminaries

3.1. Commitments and Voting. Commitment also called
cryptographic commitment [24] is an important crypto-
graphic primitive that has many applications. Here is an
example to show the relationship between commitments and
votes. )ink about a situation that Voter 1 and Voter 2
decide to participate in a voting behavior along with others.
In this scenario, the voting institution responsible for
counting the votes uses a sealed vote, which generally works
as follows: each voter submits a secret sealed vote for the
candidate. Once all the votes have been cast, they can be
counted. )e voting mechanism has good game-theoretic
properties, provided that voters do not collude and do not
know each other’s votes until the voting close. )erefore, a
sealed vote is required.

Next, we consider how to do sealed voting when some
voters are of outfield and communicate with the voting
institution throughout the Internet. Here, a cryptographic
commitment helps. To make it simple, we assume that there
are two parties in a commitment scheme Commit. Let Alice
be one party, who can firstly publish a string c as a com-
mitment for a message m ∈M. )en, with the property of
cryptographic commitment, Alice can make other party, i.e.,
Bob, believe that the committed message was m, by opening
the commitment. Generally speaking, a cryptographic
commitment Commit consists of algorithms (C, V) that

(i) On input m ∈M, the message to be committed,
Algorithm C(m) outputs two strings (c, o), and we
call c the commitment string and o the opening
string.

(ii) On input m ∈M and (c, o), Algorithm V outputs
accept or reject indicating whether the committed
message was m.

Alice firstly inputs a message m ∈ m and calls Algorithm
C to calculate (c, o). She sends the commitment string c to

Bob and keeps the opening string o secret. Later, when Alice
wants to open the commitment, she sends Bob m and o.
Finally, Bob can verify whether the committed message was
m by running Algorithm V.

A secure cryptographic commitment scheme Commit is
required to satisfy the following two properties:

(i) Binding. Binding requires that a commitment does
not disclose any additional information about the
message. In particular, assume the adversary A

outputs a 5-tuple (c, m1, o1, m2, o2), and we require
the advantage that (BINDadv[A, C]: � Pr[m1 ≠m2)

and V(m1, c, o1) � V(m2, c, o2) � accept] is
negligible.

(ii) Hiding. Hiding requires that different messages do
not produce the same commitment.

We use semantic security definition to formalize this. In
particular, two games are performed between an adversary
A and a challenger, denoted as Game 0 and Game 1. Let
b � 0, 1, in the Game b, and the adversary A first outputs
m0, m1 ∈M, inputs a message mb ∈M, calls Algorithm C to
calculate (c, o), and passes c toA. Finally,A outputs a guess
􏽢b∈ 0, 1. For b � 0, 1, Wb is defined as the case, where A

outputs 1 in Game b. We require that the advantage that

BINDadv[A, C]: � Pr W0􏼂 􏼃 − Pr W1􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (1)

is negligible.

3.2. Blind Signature. According to the description in
[25, 26], a cryptography blind signature is a kind of digital
signature where the original message should be blinded
(disguised) before being signed.)en, the signer will sign on
the blinded message in a way like a conventional digital
signature and output a blind signature. )en, the requester
can generate a corresponding signature for the original
message. In the end, the signature can be verified by ev-
eryone in a way like a conventional digital signature. )e
technique is usually used to provide a kind of privacy
protection when the message requester and signer are not
the same. For example, blind signatures can be used in an
election system.

In a general signature scheme illustrated in Figure 1, the
signer produces a digital signature on known message
content. Compared with the general signature scheme, the
process of blind signature [27] is as illustrated in Figure 2.
)e requester performs a blinding shift on the message
before sending it to the signer. )e signer who then signs on
the blinded message will generate a blind signature and send
it to the requester.

A general signature scheme is shown in Figure 1, in
which a signer can generate a digital signature on a known
message. Unlike a signature scheme, the process of blind
signature is shown in Figure 2, in which the requester first
blinds the message before it is sent to the signer, and then,
the signer signs the blind message and sends a blind sig-
nature to the requester. With the blind signature, the re-
quester can generate an unblinded signature for the original
message.

Security and Communication Networks 3



In our voting scheme, we use the blind signature scheme
of elliptic curve cryptography (ECC) and adopt the
secp256k1 [28] elliptic curve. Elliptic curve domain pa-
rameters over Fp are a sextuple: T(p, a, b, G, n, h) consisting
of an integer p specifying the finite field Fp and two elements
a, b ∈ Fp specifying an elliptic curve E(Fp) defined by the
following equation:

E: y
2 ≡ x

3
+ ax + b(modp). (2)

G is a base point on E(Fp), n is the order of G, h is the
cofactor where h � #E(Fp)/n, and Zn represents the integer
not more than n. Suppose that (d, P) is an asymmetric key
pair of the signer, the message is m, and all else is as has been
defined.

In particular, we consider the blind signature algorithm
provided by Zhang et al. [27] as follows:

(i) (1) Let k ∈ Zn be an integer randomly selected by
the signer, which calculates R � kG. )en, the signer
sends R to the requester.

(ii) (2) Firstly, the requester selects two integers c and
δ ∈ Zn randomly and computes A � kG+

cG + δP � (x, y), t � xmodn. It checks whether t

equals zero. If so, the requester reselects c and δ .
)en, it computes c � SHA256(m‖t) and 􏽢c � c − δ;
here, SHA256 [29] is a cryptography hash function.
Finally, the requester sends 􏽢c to the signer as the
blinded message.

(iii) (3) )e signer generates a blind signature 􏽢s � k − 􏽢cd

using the blindedmessage and sends to the requester.
(iv) (4) On receiving 􏽢s, the requester computes s � 􏽢s + c,

and along with the above c, the requester gets a
signature c, s for the original message m.

(v) (5) Anyone can verify the signature (c, s) by
checking the following equation:

c � SHA256 m Rx

���� (cP + sG)modn􏼐 􏼑. (3)

Note that here Rx(cP + sG)modn means we get the x

resolution values of point cP + sG, and || means we con-
catenate two strings.

3.3. Blockchain. Maintained by many mutual untrusted
parties, the leger of a blockchain generally captures the
characteristics of decentralization, tamper proof, and
traceability. Blockchain technology is an underlying tech-
nology of the famous cryptocurrency Bitcoin [30] and has
been a prominent development in the past decade. Con-
sequently, many applications are built based on blockchain
to acquire the characteristics, so as our proposed voting
protocol in this study. )e key notations of blockchain
technology are as follows:

(i) Ledger. As the name implies, the ledger is used to
manage data such as accounts and transaction flow
and supports functions such as classified book-
keeping, account reconciliation, and clearing and
settlement. In multiparty cooperation, multiple
participants hope to jointly maintain and share a
timely, correct, and secure distributed ledger to
eliminate information asymmetry, improve opera-
tional efficiency, and ensure capital and business
security.)e blockchain is usually regarded as a core
technology for building a “distributed shared led-
ger.” )rough the joint of a series of technologies
such as chained block data structures, multiparty
consensus mechanisms, smart contracts, and world
state storage, it can achieve a shared ledger that is
consistent, credible, transactionally secure, and
difficult to tamper with. )e basic contents con-
tained in the ledger include blocks, transactions,
accounts, and world states.

(ii) Block. Blocks are data structures constructed in
chronological order. )e new block will introduce
the hash information of the previous block and then
use the hash algorithm and the data of this block to
generate a unique data fingerprint. )e sophisti-
cated data structure design makes the data on chain
traceable and verifiable.

(iii) Transaction. A transaction can be regarded as a
piece of request data sent to the blockchain system,
which can be used to deploy contracts, call contract
interfaces, maintain the life cycle of contracts,
manage assets, and exchange value. )e basic data
structure of a transaction includes sender, receiver,
and transaction data.

(iv) Consensus Mechanism. )e consensus mechanism
is a core concept in the blockchain. As a distributed
system, the blockchain can be jointly calculated by
different nodes, which jointly witness the execution
process of transactions and confirm the final

Table 1: Property comparison.

Protocol Fairness Decentralization Eligibility Anonymity Compatibility Verifiability Coercion resistance
Fujioka et al. [12] ✓ ✓ ✓ ✓
Ohkubo et al. [19] ✓ ✓ ✓ ✓
Grontas et al. [20] ✓ ✓ ✓ ✓ ✓
Follow My Vote [14] ✓ ✓ ✓ ✓
Yang et al. [16] ✓ ✓ ✓ ✓ ✓ ✓
IoEPAV ✓ ✓ ✓ ✓ ✓ ✓ ✓

Requester Signer
Message m

Digital Signature S (m)

Figure 1: A general signature scheme.
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calculation results. )ere is a process of cooperating
in the blockchain that it can make mutually
untrusted participants to reach an agreement and
ensure consistency. Continuous cooperation can be
abstracted as a “consensus” process. )e algorithms
and strategies involved are collectively referred to as
a consensus mechanism.

(v) Smart Contract. A smart contract refers to a con-
tract defined in digital form that can automatically
execute terms. )e digital form means that the
contract must be implemented in computer code.
As long as the parties reach an agreement, the rights
and obligations established by the smart contract
will be automatically executed. )us, the result
cannot be denied. To run digital smart contracts, the
blockchain system must have compilers and exec-
utors that can compile, parse, and execute computer
code, collectively referred to as a virtual machine
system. After the contract is written, it is compiled
with a compiler, and a deployment transaction is
sent to deploy the contract on the blockchain sys-
tem. After the deployment transaction consensus is
passed, the system assigns a unique address to the
contract and saves the binary code of the contract.
After the transaction is called, the virtual machine
executor loads the code from the contract storage,
executes it, and outputs the execution result.

4. Proposed Protocol

In this subsection, we will describe a practical anonymous
voting protocol via blockchain. Our scheme has all the
aforementioned properties in Section 1.

4.1. System Overview. As shown in Figure 3, the voting
protocol consists of four stages: initialization, voting,
opening, and verifying/tally. We adopt the ECC system in
our scheme, and the elliptic curve is secp256k1. )is curve
can be described as T � (p, G, n, a, b, h), where a and b are
constants, p is the p value of the finite field F(p) of
secp256k1, G is the base point, n is the order of G, and h is a
cofactor. All these parameters are public.

4.1.1. Initialization. Anyone in the IoE system can launch
voting by the proposed IoEPAV. All voters who want to join

the voting should provide their public keys and identifica-
tion. In the initialization stage, all the public information of
the voters will be broadcasted to the blockchain through the
smart contract in IoEPAV. We assume that there are nv

different voters v1, v2, . . . , vnv
. Each voter vi generates two

pairs of ECC keys (skvi
, pkvi

) and ( 􏽢skvi
, 􏽣pkvi

). Let addrvi
be

the public address of the voter vi in the Ethereum network,
and IDvi

represents the voter’s identification. )en, the
public information for each voter vi is a tuple
(IDvi

, pkvi
, 􏽣pkvi

, addrvi
). Everyone can get this information

from the blockchain to verify its validity.

4.1.2. Voting. As soon as voting is launched, each voter vi

can start to submit their ballot. Firstly, a cryptography
commitment protocol is invoked Commit � (C, V). Here,
we use the algorithmC and the algorithm V will be used later
in the final stage. C as (cvi

, ovi
)←R C(mvi

) is invoked for the
ballot message mvi

of voter vi.
)en, voter vi generates a 􏽥c � (􏽢c1, 􏽢c2, . . . , 􏽢cnv

) and
􏽥x � (􏽢x1, 􏽢x2, . . . , 􏽢xnv

) for different voters v1, v2, . . . , vnv
, where

vnv
≠ vi. Voter vi completes this by a blind commitment algo-

rithm (􏽥x, 􏽥c)←BlindX(cvi
, 􏽧pknv

,
􏽧􏽤pknv

) in the blind signature
protocol.

Let Hnv
be the hash of the tuple (addri, IDi, 􏽢cnv

) for
different voters v1, v2, . . . , vnv

, where vnv
≠ vi. )en, voter vi

uses the ECDSA signature algorithm snv
� Sign(ski, Hnv

) for
other different voters nv and gets a tuple of signatures
􏽥s � (s1, s2, . . . , snv

).
)en, a group information of (IDi, addri, 􏽥c,􏽥s) is recorded

into the blockchain through the smart contract. Note that 􏽥x has
been saved in secret by voter vi himself in this stage.)e detailed
design of the algorithm C and BlindX is given in Section 4.2.

Once (IDi, addri, 􏽥c,􏽥s) generated by voter vi is recorded, the
other voters can generate a blind signature for it. Firstly, every
other voter verifies the validity of the signature snv

by the ECDSA
verification algorithm Verify(snv

, pki). If snv
is valid, then every

other voter generates a blind signature dnv
by a blind signature

algorithmdnv
←BlindS( 􏽢sknv

, sknv
) in the blind signature protocol

and sends dnv
into the blockchain. Let 􏽥d � (d1, d2, . . . , dnv

) for
different voters v1, v2, . . . , vnv

where vnv
≠ vi.

At the end of this stage, we have (􏽥c,􏽥s, 􏽥d) for a ballotmvi
of

voter vi. )e detailed design of the algorithm BlindS will be
given in Section 4.2.

Requester Signer S (T(m))
Blinded Message T (m)

Signature S (m)

Blind Shift T
Message m

Unblind T-1

Blind Signature S’ (m)

Figure 2: Blind signature scheme.
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4.1.3. Opening. In this stage, voter vi will open his/her voting
commitment. Firstly, he/she gets the 􏽥d from the blockchain
and calculates the corresponding tuple 􏽥y � (y1, y2, . . . , ynv

)

for different voters v1, v2, . . . , vnv
where vnv

≠ vi. Here, ynv
is a

signature for the original commitment cvi
. Voter vi generates

􏽥y by calculating

ynv
� dnv

+ c, (4)

where c is a random key saved in BlindX.
Given (xnv

, cvi
, ynv

), voter vi can verify the validity of ynv

by an algorithmVerifyS(xnv
, cvi

, ynv
, pknv

), where xnv
is saved

in BlindX. Note that ynv
is a signature of the commitment cvi

from voter vnv
. If the signature ynv

is valid, then voter vi sends
the open commitment string ovi

and xnv
to the blockchain.

Note that voter vi chooses a random address in the Ethereum
network to send this transaction. Anyone cannot find out
who has sent this transaction. )e detailed design of the
algorithm VerifyS will be given in Section 4.2. Finally, we
have (cvi

, ovi
, 􏽥x, 􏽥y) for an original ballot mvi

of voter vi in the
blockchain.

4.1.4. Verifying/Tally. Now, we have a voting list of
(cvi

, ovi
, 􏽥x, 􏽥y) for each voter vi. Everyone can use VerifyS

again to verify the voting. Note that we do not have to verify
all the 􏽥y values for a ballot mvi

of voter vi. If more than half of
􏽥y are valid, we think (cvi

, ovi
) is valid. Finally, we can use the

V(cvi
, ovi

) algorithm in cryptography commitment to open
the original ballot mvi

and tally the result of the voting.

4.2. Algorithm Design. In this subsection, we will describe
the design of the algorithms mentioned in A in detail. To
make the voting service as simple as possible to be integrated
into an IoE system, we assume that anyone who tries to use

the voting service can ignore the underlying design of smart
contracts of the blockchain. )e details are as follows:

(i) Cryptography Commitment Algorithms. To con-
struct a cryptography commitment protocol, we
should build a pair of efficient algorithms (C, V). We
can do this by using a collision-resistant hash
function. As shown in Algorithm 1, the algorithm C

generates a 32 byte random string as the open string
o in the commitment protocol. )e commit string c

is the hash of the original ballot m and o. Algorithm 2
is a invert process to verify whether (m, o) is cor-
responded to c. )e algorithm C is used at the be-
ginning of the “Voting” stage, while the algorithm V

is used at the end of the “Verifying/Tally” stage. We
will give the security analysis for this commitment
protocol in Section 5.

(ii) Blind Algorithms. We divide the blind signature
protocol into three algorithms. )ey are BlindX,
BlindS, and VerifyS. As shown in Algorithm 3,
BlindX is used for blinding the commit string cvi

for
the ballot. c and δ are two random secret keys. G and
n are the public parameters in the ECC and the
commit string; the input also includes the public
keys of each voter. Following the blind signature
protocol mentioned in Section 3, BlindX is used to
generate the blinded message (􏽥s, 􏽥c). At the end of
BlindX, each voter keeps the secret data (xj, 􏽢cj, c, δ)

and sends (addrvi
, 􏽧addrnv

,􏽥s, 􏽥c) to the blockchain.

)en, in Algorithm 4, BlindS is used for the other
voters to sign on 􏽢cnv

submitted by voter vi in Algorithm 3.
With the corresponding secret keys (s

⌢
knv

, sknv
), each signer

can generate a blind signature dnv
as Line 8 in Algorithm 4.

)en, voter vi can easily calculate the explicit signature
ynv

� dnv
+ c for cvi

. Finally, we have VerifyS as shown in

Ethereum
Blockchain

Block t

Smart Contract

Block t+1

Smart Contract

Block t

Smart Contract
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Signature

Blind Signature
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2
3

4

Figure 3: Proposed IoEPAV.
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Algorithm 5 to verify the validity of the signature ynv
. Ev-

eryone who gets the public key of the signers from the
blockchain can calculate the hash. Here, the blind signature
protocol mentioned in Section III is divided into Algorithms
3 to 5.

4.3. Smart Contract Design. In this part, we present the
design of the smart contract, which provides interfaces to
record the voting data into the blockchain. )us, the smart
contract should involve the necessary data structure refer-
ring to the voting scheme. Firstly, we need a data structure to
record the information binding with the voter. As shown in
Table 2, “address, PK, PKs, and ID” are the basic public
information, while the other three mapping data are cor-
responding to process data generated in the blind signature
protocol. Table 3 is designed for storing the results in the

“opening” stage. Besides, there are some other variables such
as an “unit” for the number of voters. To be succinct, we do
not list all of them.

Recall that there are four stages in the whole voting
scheme, namely, initialization, voting, opening, and veri-
fying/tally. )en, the smart contract should afford the
necessary interfaces for them to interact with the blockchain.
)e interfaces can be classified into two types: “Write” for
recording information into the blockchain and “Query” for
querying information from the blockchain. We have 11
interfaces in our smart contract. Considering the space of the
paper, only those critical functions are given in detail.
However, it is enough for the readers to understand the
whole protocol. In the stage “Initialization,” a kind of
“Write” function is used to record the public identity in-
formation of a voter. )en, in the stage “Voting,” a “Write”
interface named “setAnmVote” is used to record the blind
commitment generated in Algorithm 3. As shown in
Algorithm 6, iV and iS are the accounts in the Ethereum
blockchain that represents a voter’s address and a potential
signer’s address separately. isi and ici pi are data generated
in “BlindX.” voters is an array corresponding to the data
structure in Table 2. )e requirement in Line 1 makes sure
that only the voter himself can set the data. Once the data
have been recorded, no one can reset it including the voter
himself.

As soon as the data are confirmed by the blockchain, the
other voters acting as a signer will try to generate a blind
signature for the commitment. )e algorithm for a signer to
generate a blind signature is described in Algorithm 4.
Firstly, a signer will use “getAnmVote” in Algorithm 7 to
query the commitment data generated for him. Anyone can
query the commitment according to the public Ethereum
account address. In the end, the signer will submit his blind
signature idsig through “signAnmVote” in Algorithm 8.
Similarly, the requirement in Line 1 makes sure that only the
signer himself can set the corresponding data. Once the
signature has been recorded, no one can reset it including
the signer himself.

)e design ideas of the other interfaces are similar to
these algorithms given above. When “Write” information to
the blockchain, necessary conditions are set. )en, anyone
can check the data from the blockchain by the kind of
“Query” interface.

5. Security Analysis

In this section, we will discuss why our protocol can resist
the potential attacks in the threat models and fulfil all the
design goals in Section 3.

5.1. 1reat Models. In our scheme, we suppose a voter is a
rational one, which means he/she would not let their right to
vote become invalid by doing something obviously break the
protocol. For instance, a voter should submit his/her blind
signature for other voters’ ballots correctly; otherwise, his/
her right to vote will be thought invalid. Here, we present the
threat model specially for a voting service.

Input (m)

Output (c,o)
(1) o� crypto.randomBytes(32)
(2) c� SHA256(m + serialize(o))
(3) return (c, o)

ALGORITHM 1: Generate commitment.

Input (m, c, o)

Output True or False
(1) 􏽢c � SHA256(m + serialize(o));
(2) if c≠􏽢c then
(3) return False
(4) else
(5) return True
(6) end if

ALGORITHM 2: Open commitment.

Input (cvi
,
􏽧􏽤pknv

, 􏽧pknv
)

(1) c � crypto.randomBytes(32);
(2) δ � crypto.randomBytes(32);
(3) for j� 0 to nv do
(4) Aj � 􏽣pkj + c ∗ G+pkj ∗ δ
(5) tj � getXpointFromPubkey (Aj)mod n
(6) xj � SHA256(cvi

+ tj)
(7) 􏽢cj � xj − δ
(8) 􏽥c.push(􏽢cj)

(9) Hi � SHA256 (IDi + addri + 􏽢cj))
(10) sj � secp256k1.ecdsaSign(Hi, ski)
(11) 􏽥s.push(sj)

(12) save(xj, 􏽢cj, c, δ)
(13) end for
(14) await Contract.setAnmVote(addrvi

, 􏽧addrnv, 􏽥s, 􏽥c);

ALGORITHM 3: BlindX.

Security and Communication Networks 7



(1) Voter Model. Although a voter is a rational one, he/
she may try to lead the voting result in his/her favour
without breaking the rule of the protocol. First, since
the voting is anonymous, a voter may attempt to
submit a duplicate ballot to increase his/her chance
to vote. Second, because each voter will blindly sign
on the blinded ballots, it is possible for a voter to

attempt to change the original ballot after the cor-
responding blind ballot has been blindly signed by
others. It means any vulnerability of the blind sig-
nature protocol will defeat the whole voting scheme.
)ird, knowing other voters’ public identities, a voter
may look for ways to let others’ legal ballots become
invalid by forging others’ ballots.

(2) Adversary Model. An adversary can be anyone who
is a user of the IoE system. First, an adversary may
attempt to affect other voters’ choices through vote
buying, voter coercion, and so on. Second, there is a
possibility for an adversary to stop an eligible voter
from performing the process of the voting protocol.
For example, voters can be subjected to DDoS at-
tacks, causing them to malfunction. )ird, an ad-
versary may attempt to tamper with the result of the
voting.

(3) Blockchain System Model. Attacks against the
blockchain system may also cause the failure of the
voting scheme, since it is based on the blockchain.

5.2. Cryptography Commitment. A cryptographic commit-
ment scheme Commit � (C, V) is secure when it is both
hiding and binding. In our scheme, we constructed the
cryptographic commitment using a collision-resistant hash
function H (in out construction, we use SHA256).

Input (xnv
, cvi

, ynv
, pknv

)

Output True or False
(1) B� xnv

∗ pknv
+ynv
∗ G

(2) bx� getXpointFromPubkey(B) mod n
(3) H� SHA256(cvi

+ bx)
(4) if H �� xnv

then
(5) Return True
(6) else
(7) Return False
(8) end if

ALGORITHM 5: VerifyS.

Table 2: Structure of a voter.

Data type Description
address voter
string PK
string PKs
string ID
mapping(address ⇒ string) si
mapping(address ⇒ string) ci_pi
mapping(address ⇒ string) dsigs

Table 3: Structure of an open result.

Data type Description
string m
string bm
string oi
mapping(address ⇒ string) ci
mapping(address ⇒ string) yis
bool isFinished

Input (iV, 􏽧addr,􏽥s, 􏽥c)

(1) require(msg.sender� � iV);
(2) for i� 0 to nv do
(3) iS � 􏽧addr [i];
(4) isi �􏽥s [i];
(5) ici pi � 􏽥c [i];
(6) require(voters [iV].si [iS])� � 0);
(7) voters [iV].si [iS] � isi;
(8) voters [iV].ci_pi [iS] � ici pi;
(9) end for

ALGORITHM 6: setAnmVote.

Input ( 􏽢sknv
, sknv

)

(1) (v, snv
, 􏽢cnv

)� await Contract.getAnmtVote (addri, addrnv
)

(2) if v≠ addri then
(3) Return
(4) end if
(5) H� SHA256 (IDi + addri + 􏽢cnv

)

(6) S� secp256k1.ecdsaVerify(snv
, H, pki)

(7) if S �� True then
(8) dnv

� 􏽢sknv
− 􏽢cnv
∗ sknv

(9) else
(10) Return
(11) end if
(12) await Contract.signAnmVote(addri, dnv

)

ALGORITHM 4: BlindS.
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We now prove that the binding commitment CH satisfies
two properties based on the assumption that H is collision-
resistant.

(i) Binding Proof. )e binding commitment CH is a
binding commitment if H is collision-resistant. )is
can be shown immediately as follows: if there exists an
adversary A that breaks the binding property, it will
immediately give a collision for H. More precisely, for
some commitment string c, assume A outputs two
pairs (m1, o1) and (m2, o2), where m1 ≠m2, but
V(m1, c, o1) � v(m2, c, o2) � accept. )ereafter, we
have a collision for H that H(h1, o1) � c � H(m2, o2).
So, we can say that CH is computationally binding
since it depends on a computational assumption for
solving this collision for H.

(ii) Hiding Proof. We first consider input hiding re-
quired that the distribution H(m1, o)􏼈 􏼉 is statistically
indistinguishable from the distribution H(m2, o)􏼈 􏼉

for all m1, m2 ∈M, where o←r R. In our construction,
once H is collision-resistant and if the set R is large
enough, it is considered input hiding. For example,
R � 0, 1{ }512 should be sufficient for SHA256. )is
provides a way to build a secure and practical
commitment scheme from SHA256. )en, if H is
input hiding, no adversary even an unbounded
adversary A can break the security of its derived
commitment scheme CH. So, we can say that CH is
unconditionally hiding.

5.3. Blind Signature. )e blind signature protocol we used in
our scheme is recalled as follows:

(i) (1) )e signer nv randomly generates two pair keys
(sknv

, pknv
) and ( 􏽢sknv

, 􏽣pknv
) and pknv

, 􏽣pknv
are public

to the requester vi.
(ii) (2) )e requester selects two integers c and δ ∈ Zn

randomly and computes A � 􏽣pknv
+ c∗G + δ ∗p

knv
� (xp, yp), t � xpmodn. It checks whether t

equals zero. If so, the requester reselects c and δ.
)en, it computes x � SHA256(cvi

‖t) and 􏽢c � x − δ,
where SHA256 is a hash function with 32 bit words
and cvi

is the commitment generated by voter vi.
Finally, the requester sends 􏽢c to the signer as the
blinded message.

(iii) (3) )e signer generates a blind signature d � 􏽢sknv
−

􏽢c∗ sknv
using the blinded message and sends to the

requester.
(iv) (4) On receiving d, the requester computes

y � d + c, and with its above x, the requester gets a
signature x, y for the original message cvi

.
(v) (5) Anyone can verify the signature (x, y) by

checking the following equation:
x � SHA256(cvi

����Rx(x∗pknv
+ yG)modn).

Correctness Proof. Firstly, we prove the signature (x, y)

to be valid as follows:
Rx x∗pknv

+ yG􏼐 􏼑modn,

� Rx x∗pknv
+ d∗G + c∗G􏼐 􏼑modn,

� Rx x∗pknv
+ 􏽢sknv
∗G − 􏽢c∗ sknv

∗G + c∗G􏼐 􏼑modn,

� Rx x∗pknv
+ 􏽢sknv
∗G − (x − δ)∗ sknv

∗G + c∗G􏼐 􏼑modn,

� Rx
􏽣pknv

+ c∗G + δ ∗pknv
􏼐 􏼑modn,

� Rx(xp, yp)modn,

� t.

(5)

It follows that x � SHA256(cvi

����Rx(x∗pknv
+ yG)

modn), which means that (x, y) is a valid signature of cvi
.

Blindness Proof. Secondly, we show the blindness of
the protocol. We define view V for a signer during the
process of the protocol. For example, let (x, y) be the
signature of cvi

that has been generated in the protocol.
)en, view V consists of sknv

, pknv
� sknv
∗G, 􏽢sknv

,
􏽣pknv

� 􏽢sknv
∗G, 􏽢c, and d � 􏽢sknv

− 􏽢c∗ sknv
. We then show

that for any given view V and valid message signature pair
(cvi

, (x, y)), blinding factors c and δ exist and are unique.
)en, for c and δ, we have

Input (iV, iS)

Output (V, S, isi, ici pi)

(1) return (voters [iV].voter, voters [iV].si [iS], users [iV].ci_pi [iS]);

ALGORITHM 7: getAnmVote.

Input (iV, idsig)

(1) require(voters [iV].voter.isvaild() and users [iV].dsigs[msg.sender]).length� � 0);
(2) voters [iV].dsigs[msg.sender]� idsig;

ALGORITHM 8: signAnmVote.
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􏽢c � (x − δ)modn,

c � y − 􏽢sknv
+ 􏽢c∗ sknv

􏼐 􏼑modn,

x � SHA256 cvi
Rx

���� 􏽣pknv
+ c∗G + δ ∗pknv

􏼐 􏼑modn􏼐 􏼑.

(6)

)en, Rx(􏽣pknv
+ c∗G + δ ∗pknv

)modn is uniquely de-
termined by x and cvi

. To make it succinct, we note
􏽣sknv

+ c + δ ∗ sknv
� R− 1

x (cvi
°x), which means 􏽢sknv

+ c∗G +

δ ∗ sknv
is uniquely determined by x and cvi

.
)en, δ ∗ sknv

� (R− 1
x (cvi

°x) − 􏽣sknv
− c)modn � (R− 1

x (cvi

°x) − 􏽣sknv − y + 􏽣sknv − 􏽢c∗ sknv)modn � (R− 1
x (cvi°x) − y − 􏽢c ∗

sknv
)modn.
Finally, we have

c � y − 􏽣sknv
+ 􏽢c∗ sknv

􏼐 􏼑modn,

δ ∗ sknv
� R

− 1
x cvi

°x􏼐 􏼑 − y − 􏽢c∗ sknv
􏼐 􏼑modn.

(7)

)en, c and δ can be uniquely determined by
(x, y, cvi

, 􏽢sknv
, sknv

, 􏽢c). All (x, y, cvi
, 􏽢sknv

, sknv
, 􏽢c) are in the

view V .

5.4. Security Properties. First, we will show how the protocol
fulfils the seven design goals.

Fairness. )e proposed voting scheme is a fair voting by
succeeding the hiding property of the cryptography com-
mitment protocol. Since we have proven the security of the
cryptography commitment protocol used in our scheme, no
one can obtain the ballot results of others before he/she has
submitted his/her ballot.

Decentralization. Directly, the protocol is decentralized
as it is built without any TTP. We use smart contracts to
automate the voting process of the Internet of energy. Eli-
gibility. In the initialization stage, we check all the voters’
identities and public information to make sure the eligibility.

Anonymity. )e correctness and blindness of the blind
signature protocol make sure that no one can know the
owner of a ballot from the voting result at the end. Since we
have proven the security of the blind signature protocol used
in our scheme, the privacy of voters can be protected.

Compatibility. As the protocol is realized by smart
contract and Web3 [31], it can be integrated into an IoE
system easily. Any blockchain system including Ethereum
2.0, which supports smart contracts, is feasible for the
proposed scheme and we do not need to construct a whole
new blockchain platform.

Verifiability. )e data generated in each stage of the
voting can be checked from the blockchain. )erefore, the
voting is verifiable.

Coercion Resistance. Even though one tries to compel a
voter to vote by his/her instruction, he/she cannot find out
whether the coerced voter has done as he/she wishes.

5.5. Resistance against the 1reat Model. Finally, we will
show how the protocol resists the potential attacks in the
threat models. (1) Resistance against Voter: first, a voter
cannot submit a duplicate ballot because the design of the
smart contract will reject a piece of duplicate information.

Second, a voter cannot change the original ballot for the
security of the blind signature protocol. )ird, to forge
others’ ballots, a voter should get their secret keys or break
the ECC asymmetric cryptography. (2) Resistance against
Adversary: first, since the voting is anonymous, an adversary
cannot affect other voters’ choices. Second, to stop an eligible
voter from voting, an adversary should break the security of
the blockchain. )e blockchain makes sure that the result of
the voting cannot be tampered with.

(3) Resistance against Blockchain: because our protocol
is designed via the Ethereum blockchain, which is proven
secure in practice, and thousands of applications have been
built on it. A 51% attack is still hypothetical by a group of
miners controlling more than 50% of the network’s mining
hash rate or computing power. For voting, if more than 50%
of voters collude, it is not necessary to launch voting. Be-
sides, the fully decentralized architecture of blockchains
makes them robust against DoS/DDoS attacks.

6. Implementation and Performance

6.1. Implementation Description. We use a PC with an OS
version of Ubuntu 18.04 64x as a user client. )e CPU and
memory are Intel(R) Core(TM) i7-10510U CPU@ 1.80GHz
2.30GHz and 8G separately. We implemented our protocol
in two parts, namely, Web3 programs and smart contracts.
We write the smart contract in Solidity. We use JavaScript to
finish the Web3 programs along with several libraries.
“Ethers.js” is an Ethereum library to interact with the
Ethereum blockchain. “Crypto.js” is a JavaScript library to
realize the cryptography protocol adopted in our voting
protocol. )e experiment code is available at https://github.
com/researchSec/IoEPAV. As shown in Figure 4, each user
plays as a voter and a blind signer simultaneously. )ey
interact with the blockchain network through the Web3
application. Indeed, the Web3 application will invoke the
smart contract to read or write voting data on the blockchain
network. Note that the users do not need to involve in the
mining or consensus progress of the blockchain network.
For simplicity, we use multiple Ethereum accounts to rep-
resent different voters in the Web3 application to invoke the
smart contract. To evaluate the performance in a more
reliable and practical manner, we deploy the smart contract
on two popular test networks of Ethereum and have strong
links to the main network. Besides, we build an Ethereum
development with a professional tool called Hardhat. )us,
in the connectivity model, we run our test cases in three
blockchain networks separately. )ey are Hardhat local
network, Rinkeby test network, and Ropsten test network.

)e Ethereum network that deals with real money is
called “mainnet,” and then, other live networks named
“testnets” (multiple ones) are also provided by Ethereum. In
testnets, the network does not deal with real money but does
mimic the real-world scenario well. Ropsten and Rinkeby are
the testnets we choose. Ropsten is a proof of work (PoW)
testnet. )is means it is the best like-for-like representation
of Ethereum. Rinkeby is proof of authority (PoA) [32]
testnet. In Table 4, we give the state of the two blockchain
networks when we performed the experiment. In the testnet
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Ropsten, the coin is mined following the same scheme as the
mainnet. Rinkeby uses PoA consensus schemes, which are a
potential direction of Ethereum evolutions.

6.2. Performance in Local Environment. Firstly, we test the
key steps in the local development environment to see the
performance without considering the latency and
throughput according to the network condition. As shown
in Table 5, the time for each stage of the voting is pro-
portionate to the increased number of voters. )e result is
quite straightforward to understand since more voters mean
more commitments to be generated. However, even if the
number of voters is up to 50, the time is not more than
2 seconds. )e time for verifying does not exceed one sec-
ond. )us, one can launch voting efficiently.

6.3. Performance in Live Networks. )e performance of the
voting scheme is relative to the network condition of the live
networks. To give an overall evaluation of the system, we give
the average response time, transaction cost, throughput, and
latency for the execution of the smart contract. To make it
clear, we give the description of evaluation properties as
follows.

Average Response Time. )is metric indicates the time
taken to send a transaction to the blockchain and get a
response. Note that when a user gets a response, it does not
mean that the sent transaction has been confirmed by the
nodes/miners of the blockchain.

Transaction Cost. Gas cost is the transaction cost. Gas
refers to the fee that is required to successfully execute a

contract on the Ethereum blockchain platform. We use the
base unit “Gas.” 4 × 10− 9 Ether ≈ 1 Gas.

Transaction Acceptance Latency (TAL). Firstly, a signed
transaction is created.)e user sends the created transaction
to an Ethereum network and captures the current time point
Ts. When the transaction is confirmed, the user captures the
current timeTe.)is metric indicates the time of t � Te − Ts.

)roughput. We consider two metrics, namely, (a) read
throughput called QPS (query rate per second) and (2)
transaction throughput called TPS (transactions per sec-
ond). QPS indicates the total number of reading transactions
performed within a defined period of time. TPS indicates the
ratio of valid transactions that are initiated within a defined
period of time.

Firstly, we give the response time of each stage in the
voting scheme on different test networks. As shown in
Figures 5–9, the performances are quite stable in all live
networks. )e response time for each stage of the voting is
proportionate to the increased number of voters. )e result
is quite straightforward to understand since more voters
mean more commitments to be generated. )e perfor-
mances in the two test networks are quite similar.

To evaluate how the network conditions affect the
performance of the voting scheme, we give the transaction
acceptance latency (TAL) and throughput in Figures 10 and
11. )e TPS and QPS are quite similar between Rinkeby and
Ropsten. )is can be an explanation for the result of the
response time above. Since the throughput in the mainnet of
the Ethereum blockchain is about 85 times the size of that in
the test networks, we can infer that the performance of the
voting scheme will act more efficiently in the mainnet. Note
that the TAL varies significantly with different loads (dif-
ferent numbers of concurrent transactions). In the experi-
ment, we give the number of concurrent transactions
according to the number of voters.

In Table 6, we also give the average transaction fee for the
smart contract deployment and each stage of the voting
scheme. As we can see, the gas cost in the two test networks
has little difference since the size of the smart contract and
transactions are identical.

6.4. Cost Comparison. In Yang’s blockchain-based scheme
[16], basic cryptographic operations are also introduced.)e
difference is we use scalar multiplication on an elliptic curve,
while Yang uses exponentiation in a multiplicative group.
However, if we only care about computational complexity, it
is similar.

(i) In ECC, given an elliptic curve of size n, the number
of double-and-add steps is proportional to O(k) for
k∗G. Each double/add is a sequence of a constant
number of field multiplications, squares, additions,
and subtractions. Multiplication and squares are the
expensive ones, and using the Karatsuba algorithm
as mentioned in [33], they are O(n1.58). )erefore,
the result is O(kn1.58).

(ii) In comparison, the computational complexity of a
modular exponentiation of form gamodb is similar.

Smart Contract

Ethereum
Test Network

Web3 Application

Voters

Figure 4: Connectivity model.

Table 4: State of the blockchain Network.

Test
network Consensus

Average
block time

(S)

Active
nodes/
miners

Latest block
number

Rinkeby PoW 47.18 42 10027471
Ropsten PoA 15.03 44 11869370

Security and Communication Networks 11



Table 5: Average response time.

Number of voters Initialization (MS) Blind messages (MS) Blind signature (MS) Opening (MS) Verifying (MS)
5 374.0 323.43 212.0 282.43 109.43
10 635.85 499.14 436.43 561.43 149.43
30 1314.14 1298.71 1234.71 1129.29 228.14
50 2162.28 2314.43 2271.14 1897.43 383.86
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Figure 5: Initialization.
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Figure 6: Blind messages.

THE NUMBER OF VOTERS
3 5 10 15 20

0
20
40
60
80

100
120
140
160
180
200

A
V

ER
A

G
E 

TI
M

E 
(S

)

Rinkeby network (s)
Ropsten network (s)

Figure 7: Blind signature.
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Figure 8: Opening.
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Figure 9: Verifying.
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Square-and-multiply is O(a). Each square/multiply
is O(b1.58). )erefore, the result is O(ab1.58).

According to Yang’s performance analysis, only themost
time-consuming operations are taken into account. t is
denoted as the time of one exponentiation calculation such
as a gamodb. Correspondingly, we use t to denote the time of
one multiplication calculation in ECC such as k∗G. Let tE

and tD be the time of encryption and decryption separately.
)en, we let tS and tV be the time of executing ECDSA
signature and verification, respectively. Approximately,
tE � 2t, tD � t, tS � t, and tV � t. nv is used to denote the
number of voters. In Yang’s scheme, nc is the number of
candidates, respectively. Note that we can take over the blind
signer to candidates in our protocol. To be succinct for
comparison, we let p � nc � nv. )e cost of these operations

in Yang’s and our scheme for comparison is given in Table 7.
As shown in Table 7, our scheme IoEPAV is at a lower cost.

7. Conclusion and Future Work

We present a novel blockchain-based voting scheme for IoE
system. By getting rid of a trusted third party, the proposed
scheme can avoid the single point of failure and is available
for a trustless environment. In the past proposals, it is
difficult to capture all the required features for a voting
scheme. To the best of our knowledge, our scheme is the first
one to fulfil all the design goals simultaneously. To achieve
this, we combine the cryptography commitment and blind
signature protocol. We also use smart contracts to automate
the voting process of the Internet of energy. With smart
contracts, the voting scheme can be easy to integrate into the
IoE system. A voter can follow the voting protocol by in-
voking the interfaces of the smart contracts. Although we do
not use any high-performance cryptography library, the
performance in a real environment demonstrates the fea-
sibility of our protocol.

In the future, we can try to use parallel computation in
the voting stage to improve efficiency as well. Another

number of concurrent transactions
3 5 10 15 20

17.13

6.25

A
ve

ra
ge

 C
on

fir
m

at
io

n 
La

te
nc

y 
(s

)

7.928.25

15.96

11.39

7.96

10.13
9.42

7.63

rinkeby
ropsten

Figure 11: Transaction acceptance latency.

Table 6: Average transaction cost.

Test network Deployment (Gas) Initialization (Gas) Blind messages (Gas) Blind signature (Gas) Opening (Gas)
Rinkeby 2,353,838 251,023 204,768 92,811 289,189
Ropsten 2,353,838 251,035 204,780 92,823 284,258

Table 7: Count of the cryptographic operations.

Protocol Voting Verifying/tally
IoEPAV 6 ∗ t ∗ nv 2 ∗ t ∗ nv

Yang
[16] (5 ∗ nv ∗ t+ 3 ∗ t) ∗ nv (5 ∗ nv ∗ t+ 5 ∗ t) ∗ nv ∗ nv
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interesting open problem is to create a version of the voting
scheme that reduces the number of blind signatures. Making
the number of blind signatures irrelative to the number of
voters will be a great improvement. )is would give a so-
lution that is more efficient with large-scale voters.
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