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Deep learningmodels are vulnerable to attacks by adversarial examples. However, current studies are mainly limited to generating
adversarial examples for specific models, and the migration of adversarial examples between different models is rarely studied. At
the same time, in only studies, it is not considered that adding disturbance to the position of the image can improve the migration
of adversarial examples better. As the main part of the picture, the model should give more weight to the foreground information
in the recognition. Will adding more perturbations to the foreground information of the image result in a higher transfer attack
rate?,is paper focuses on the above problems, and proposes the FAPA algorithm, which first selects the foreground information
of the image through the DINO framework, then uses the foreground information to generate M, and then uses PNA to generate
the perturbation required for the whole picture. In order to show that our method attaches importance to the foreground
information, we give a greater weight to the perturbation corresponding to the foreground information, and a smaller weight to
the rest of the image. Finally, we optimize the generated perturbation through the gradient generated by the dual attack
framework. In order to demonstrate the effectiveness of our method, we have conducted relevant comparative experiments.
During the experiment, we used the three white-box ViTs models to attack the six black-box ViTs models and the three black-box
CNNs models. In the transferable attack of ViTs models, the average attack success rate of our algorithm reaches 64.19%, which is
much higher than 21.12% of the FGSM algorithm. In the transferable attack of CNNmodels, the average attack success rate of our
algorithm reaches 48.07%, which is also higher than 18.65% of the FGSM algorithm. By integrating ViTs and CNNs models, the
attack success rate of transfer of our algorithm reaches 56.13%, which is higher than 1.18% of the dual attack framework we
refer to.

1. Introduction

With the development of the transformer [1], it has more
and more applications in natural language processing, such
as BERT [2] and GPT [3], and more and more scholars are
interested in whether it can replace CNNs as the backbone
network in deep learning. Recently, the vision transformer
(ViT) [4] only uses the transformer as the skeleton of the
model to encode the remote dependence of image blocks
through the multihead self-attention mechanism and has
achieved a better classification effect than CNNs on the
premise of requiring less training time. Based on this pio-
neering work, many variations were proposed to improve
the performance of the ViTs. It includes improving the

efficiency of training data [5] and introducing convolution
[6–8] or a pooling layer [9, 10]. However, the ViTs models
themselves are very vulnerable to attack from adversarial
examples, which are indistinguishable from the original
images under human observation but contain slight per-
turbations that can lead to misidentification by the model.

According to the master of the model structure, the
attack can be divided into a white-box attack and a black-box
attack. A white-box attack is an attack carried out by an
attacker when the model, network structure, and weight
parameters of the attacked are fully known. Black-box at-
tacks, in contrast to white-box attacks, have no knowledge of
the structure and parameters of the model. It is well known
that the surrogate model can be used to generate adversarial
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examples and then use them to attack the black-box model
without knowing the structure, which is also known as cross-
model transferability [11], which is possible to study the
transferability of adversarial examples.

High-performance transferable attacks usually apply
data enhancement or advanced gradient calculations to
prevent the overfitting of the perturbations and improve the
transferability of the adversarial examples, but these are
mostly used to attack CNNs. In contrast, less is known about
the transferability of adversarial examples between ViT
models. Due to the significant difference in the structure of
the CNNs and ViTs, few scholars have transferred the
methods applied to the CNNs to the ViTs. One related work
[12] proposed a dual attack architecture: PNA and PatchOut,
attacking both the attention mechanism and the patch si-
multaneously. ,e PNA attack mainly improves the success
rate of adversarial example transfer attack by setting the
attention weight calculated in the forward propagation
process as a constant. Furthermore, the PatchOut attack is to
randomly select a certain number of patches to generate
perturbation. But in the article [12], there is no specific study
on how to increase perturbation to improve the success rate
of transfer attack and which part the model pays more at-
tention to when identifying. BiCM was proposed in [13] to
improve the coverage of the network. A new multilevel
network structure was proposed by Wang et al. [14], which
uses the pyramid features of different levels to extract the
general and transferable features of the perturbation. Let us
take inspiration from this, not all pixels are equally im-
portant for visual tasks. Does the model pay more attention
to certain features in recognition? As the main part of the
image, will the model pay more attention to the foreground
information in the classification or recognition? In the
process of adversarial example generation, whether adding
more perturbations to the foreground part of the image will
improve the attack success rate (ASR) of the model and the
transferability of adversarial examples?

In this paper, based on [12], we mainly study whether
adding more perturbations to the foreground information of
the image will affect the success rate of the transfer attack.
We propose the FAPA algorithm, which makes the model
pay more attention to the foreground information of the
image and adds more perturbations to the foreground of the
image. We carried out relevant experiments in the ImageNet
dataset with ASR as the index.

We briefly summarize the main contributions as follows:

(1) We find that adding more perturbations to the
foreground information of the image can improve
the success rate of the transfer attack when gener-
ating adversarial examples. Because not every pixel is
equally important to the model, the model may pay
more attention to the foreground part of the image
when recognizing it.

(2) We propose the FAPA algorithm, compared with
other methods, which increases the perturbations in
foreground information with a greater probability on
the basis of the overall perturbations being basically
unchanged and the adversarial examples not

producing local color blocks. Our algorithm takes
the dual attack framework as its infrastructure and
uses the DINO algorithm to select the patch cor-
responding to the foreground in the picture. In the
perturbation increasing stage, we select the fore-
ground information with a 40% probability and
assign more weight to it. Similarly, we also chose
background information with a 40% probability but
assigned less weight to it. In addition, in order to
make the generated adversarial examples not pro-
duce local color patches, we randomly select patches
with a probability of 20%.

(3) We find that foreground information has different
effects on CNNs and ViT models. Compared with
CNNs, foreground information has less influence on
ViT model, which may be due to the attention
mechanism used in ViT model.

(4) We studied three different white-box ViTs to attack
six black-box ViTs and three CNNs. ,e results show
that the average success rate of the transfer attack of
our algorithm in these nine models reaches 56.13%,
which is better than [12]. Meanwhile, the average ASR
of our method in the ViTmodels is as high as 64.19%,
which is higher than 2.27% of the method [12].

2. Related Works

2.1. Vision Transformer. ,e transformer [1] uses a self-at-
tention mechanism to achieve excellent performance in
machine translation. ,erefore, it has been further applied in
many fields of natural language processing. Transformer
mainly consists of two parts: the encoder and the decoder,
each of which contains several blocks. Each block contains
multihead self-attention layers and MLP layers. ViT uses the
same structure as transformers, and their main difference is
the image preprocessing layer. ,is layer in ViT splits the
image into a series of nonoverlapping patches and then learns
a linear projection. ,e ViTmodel requires a large amount of
data for pretraining to achieve high accuracy. To address this
issue, DeiT [5] added the teacher-student strategy in the
transformer, which mainly uses a distillation token to make
them acquire relevant knowledge from CNNs. TNT [15] uses
an outer transformer block and an inner transformer block to
learn the correlation between patches. Swin transformer [16]
mainly applies a hierarchical structure similar to CNN to
process pictures so that the model can flexibly process pic-
tures of different scales. At the same time, the sliding window
operation is introduced to reduce the computational com-
plexity. Other ViTmodels include CaiT [17], LeViT [18], PiT
[10], ConViT [19], and so on.

2.2. Transfer-Based Attacks on ViTs. Compared with CNN-
based transferability attacks, the transferability of adversarial
examples between different ViT models is relatively less
studied. A study on the robustness of the ViT models [20]
shows that ViTs not only exhibit good performance in
multitask but also exhibit strong adversarial robustness.
Spoofing ViTs in white-box scenarios require a larger noise
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magnitude [21], and existing shift-based black-box attacks
also have difficulty in transferring adversarial examples from
CNNs to ViTs. A study [22] found that the good perfor-
mance of transformers on occlusion is not due to the de-
pendence on local texture information; compared with
CNNs, ViTs have much less dependence on texture. When
properly trained to encode shape-based features, ViTs can
show shape recognition capabilities comparable to those of
the human visual system. However, existing ViTs focus on
standard accuracy and computational cost, and there is a
lack of research on the intrinsic impact of model robustness
and generalization. In [22], the authors conducted a sys-
tematic study of the robustness of ViT’s components to
adversarial examples, common corruptions, and distribu-
tion changes, and they found that some components may be
detrimental to the robustness of the model. By using and
combining powerful components as building blocks of ViTs,
[22] the robust vision transformer (RVT) is proposed. Re-
garding the transferability of ViTs, a self-ensemble (SE)
method was proposed in [23], which optimizes perturbations
on the ensemble model to improve the mobility of adversarial
examples, but they ignored the effect of increased location of
perturbations on the success rate. Aiming at the patch input
and multi-headed self-attention (MSA) module in the ViT
structure, the authors in [12] proposed a dual attack frame-
work, which includes a pay no attention (PNA) attack and a
PatchOut attack, to improve the transferability of adversarial
examples between different ViTs and even between ViTs and
CNNs. ,e PNA attack has a wide range of applications and
can be used for any gradient-based attack method. ,e
PatchOut attack uses a different patch as input to generate
adversarial examples in each iteration. However, for [12], there
is no relevant research on whether to pay more attention to
which specific part in model recognition. Our proposed FAPA
algorithm mainly studies the influence of the position with
increased pertubation on the success rate of transfer attack and
explores whether the model recognition will pay more atten-
tion to the foreground information of the picture.

2.3. DINO. ,e framework DINO [24] simplifies the self-
supervised training process to predict the output of a teacher
network through cross-entropy loss, which can be interpreted
as a label-free knowledge distillation. In addition to the good
performance of self-supervised learning in this framework, it
is also observed that self-supervised ViT features contained
clear image semantic segmentation information, especially
the object boundary, which could be directly accessed in the
self-attention module of the last block so as to further use it to
locate foreground pixels. ,is is not seen in the supervised
ViTs and CNN models. ,erefore, this can be used to
complete the image foreground extraction.

3. Method

In this section, we will detail the general framework of the
model and our proposed FAPA algorithm. Meanwhile, our
framework is based on the dual attack architecture proposed in
[12]. Suppose we have a training set X � xi 

N
i�1, which

contains N images with N corresponding labels Y � yi 
N

i�1.
,e general idea of the model is to input the sample xi into the
FAPA algorithm to generate the required perturbation δ, add it
to xi to generate an adversarial example xadv, and input xadv

into the white-box model with PNA to calculate loss thereby
updating δ. After F iterations, xadv will be input as the final
adversarial example into the black-box model to be attacked,
and the model will produce the predicted result y. We want to
make y as different from the real tag yi as possible.

3.1. Overall Framework. Compared with [12], the FAPA
algorithm proposed in this paper is applied before the image
is input into the white-box model, which can add more
perturbations to the foreground of the image. An overview
of our architecture is illustrated in Figure 1. Suppose we
input a labeled image x ∈ X ⊂ RH×W×C, its ground-truth
label y ∈ Y � 1, . . . , K{ }, where H, W, and C, respectively,
represent the width, height, and number of channels of the
image, and K represents the number of classified categories.
We divide x into N patches, x � x1, x2, . . . , xN ,
xp ∈ RP×P×C, where (P, P) represents the size of each patch,
N � H · W/P2. We can see these operations clearly in the
bottom part of Figure 1. Assuming that the ith iteration is now
being performed. We input the segmented x into the FAPA
algorithm module, which includes two parts: selecting patches
to generate M and generating perturbations. In the first part,
the DINO algorithm is applied to select the required fore-
ground or background patches, and then the corresponding
patches are set with corresponding weights to obtain M. ,e
second part is to generate the perturbation δi based on M and
the perturbation δi−1 generated in the last iteration.We add the
perturbation δi to the image x to generate the corresponding
adversarial example xadv at the ith iteration. Next, we input
xadv into the patch encoder module for encoding and then into
a white-box model with PNA [12] to compute the loss. Next,
the gradient of the perturbation is calculated according to the
loss, and then the gradient descent algorithm is used to update
the generated perturbation δi. ,e whole process requires F

Patch Encoder

White-Box ViT model with PNA LO
SS

F 
steps

Bl
ac

k-
Bo

x 
m

od
el

Add

FAPA

Select Patch & Generate M 

Generate perturbation 

Figure 1: ,e framework of the proposed method. It mainly in-
cludes the FAPA algorithm, patch encoder, white-box model, and
black-box model.
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iterations, which are represented by the largest gray-box in
Figure 1.,exa dv that is finally input into the black-boxmodel
is produced after F iterations. We use f(x): X⟶ Y to
represent the whole process of the white-box model. During
the whole attack process, we use the method of untargeted
attack and enforce an L∞-norm constraint on perturbations to
make it within [−ε, ε]. We use δ for the final added pertur-
bation, and J is the cross-entropy loss. ,e formula for the
entire model can be expressed as follows:

argδmaxJ(f(x + δ), y), s.t.‖δ‖∞ < ε. (1)

3.2. FAPAAlgorithm. In order to better select the patch related
to the foreground of the image so that the model can add more
perturbations to the foreground information of the image and
improve the accuracy of the model transfer attack, we propose
the FAPA algorithm, which uses the DINO as the foreground
patch selectionmodel because [24] found that the self-supervised
ViT features contain clear image semantic segmentation in-
formation and can be used to extract foreground pixels.

We summarize the proposed FAPA in Algorithm 1. For an
input image x, we divide it into N patches, then
x � x1, x2, . . . , xN ,xi represents a patch in the image, and the
total perturbation is divided into F times. ,e M is an attack
mask, M ∈ 0, 1, u, v{ }H×W×C, where u< v and u + v � 2. We
utilize the self-supervised ViT model DINO to efficiently seg-
ment foreground information in images. In the iterative process
from 0 to 2/5 · F, we use the DINO algorithm to select the
foreground information of T patches in the picture, use A to
represent it, set the M value of the corresponding patch position
to v, and the rest of the position is set to 0. Here, more per-
turbation can be added to the foreground information of the
picture. ,en, in the 2/5 · F to 4/5 · F iteration process, we also
use theDINO algorithm to select the background information of
the T patches in the figure, use C to represent it, and put the M

of the corresponding patch position to u, and the rest of the
positions are 0. ,e operation here is to make fewer pertur-
bations added to the background information, and u + v � 2 is
tomake the perturbations added in the whole process tending to
remain unchanged as a whole. In the last 1/5 · F iterations, we
randomly select T patches to attack and denote the selected
patch set by B, and inspired by the authors in [25], diverse input
modes can improve the transferability of adversarial examples
and alleviate model overfitting. At the same time, this can avoid
local color blocks in the generated adversarial examples, making
it more difficult for humans to detect. For patches that are not
selected during each iteration, we use the D set to represent
them; the value in D set is set to 0. ,erefore, the value of the
entire M can be expressed by the following formula:

M
i

�

v, xiinA,

1, xiinB,

u, xiinC,

0, xiinD.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

So, the function in equation (1) can be expressed as
follows, where ⊙ denotes element-wise multiplication, and
L2 norm can better prevent δ overfitting.

argδmaxJ(f(x + M⊙ δ), y) + λ‖δ‖2, s.t.‖δ‖∞ < ε. (3)

Assuming that this is the kth iteration, after generating
M, we use the PNA module as shown in equation (3), and
the gradient descent algorithm is used to optimize the
generated perturbation so as to obtain g. Finally, wemultiply
g by the increasing perturbation size α at each iteration to
obtain δk. After F iterations, our final δF is our required
perturbation, which we add to image x to generate the final
adversarial example xadv.

4. Experiment

4.1. Datasets. We selected 1000 images from the ImageNet
validation set as our laboratory data, and any one of them
could be correctly classified when fed into the model used in
this experiment. Each image is a 224× 224 three-channel
color map with a size of around 100 kB. A sample image is
shown in the “Clean” column in Figure 2.

4.2. Models. In order to evaluate the quality of our method,
we take the migration ASR of adversarial examples gener-
ated on the white-box model as the index when they are
migrated to the black-box model. ,e ViT-related models
were selected as PiT-B [10], CaiT-S-24 [17], Visformer-S
[26], TNT-S [15], LeViT-256 [18], and ConViT-B [19].
CNN-related models are Inception v3 [27], Inception v4,
and Inception ResNet v2 [28]. We randomly select one
model among PiT-B, CaiT-S-24, and Visformer-S as the
white-box model to generate adversarial examples, and the
other models are used as black-box models to accept the
attack. We choose these models as the usage models for our
experiments because they are exposed in the timm [29]
module and can be easily invoked. When using the DINO
model for foreground selection of pictures, both the teacher
and student network in the model use the DeiT-S/16 [5].

4.3. Parameter. We set ε � 16, and the number of iterative
attacks F � 10. ,e input size of the image is 224 × 224, and
then it is divided into N � 196 patches with P � 16 in each
patch. We select T � 130 patches as the target patch for
attack. When using the FAPA algorithm, M is processed as
shown in equation (2), where u � 0.7 and v � 1.3. In the
whole experiment, we use the cross-entropy loss function,
and the evaluation indicator adopts the attack success rate
(ASR), that is, the probability that the model will misclassify
the image by inputting the data into the black-box model.
Higher ASR means higher migration of adversarial samples.

4.4. Baselines. We will compare our method with typical
algorithms, such as FGSM [30], MI [31], SIM [32], SGM
[33], TAP [34], and so on. ,ese traditional algorithms
have been tested on ViTs and CNN models, respectively,
and the experimental environment is the same as the
FAPA algorithm. ,e specific settings are shown in 4.3.
,e experiment’s specific data are shown in Tables 1 and
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2, and the data are obtained from [12]. ,e vertical axis in
the table represents the white-box model, and the hor-
izontal axis represents the black-box model. ,e num-
bers in it, respectively, represent the ASR when the
adversarial examples are generated by the white-box

model to attack the black-box model. Each number in the
rightmost column of the table represents the average
ASR for that row. ,e horizontal and vertical axes of each
subsequent table and the meaning of the figures in the
table have been described previously. Meanwhile, in

(a) (b)

Figure 2: Visualization of randomly selected clean images and corresponding adversarial images produced by our FAPA on Visformer-S
model. (a) Clean. (b) Adversarial.

Input:,e loss function J of equation (2), a white-box model f, a clean image x with its ground-truth class y, DINOmodel, u, v,
the perturbation budget ε, iteration number F, used patch number T.
Output: ,e adversarial example xadv.

(1) δ0←0
(2) α←ε/F
(3) fork � 0: F − 1do
(4) if0≤ k< 2/5 · Fthen
(5) xi←DINO(x, T), xi is foreground patch
(6) M←equation (2), (xiuse v, other use 0)

(7) if2/5 · F≤ k< 4/5 · Fthen
(8) xi←DINO(x, T), xi is background patch
(9) M← equation (2), (xiuse u, other use0)

(10) if4/5 · F≤ k<Fthen
(11) xi←PatchOut(x, T), xi is randompatch
(12) M← equation (2), (xiuse 1, other use 0)

(13) g←PNA(▽δJwith theL2norm)

(14) δk←clipε(δk−1 + α · g)

(15) xadv � x + δF

(16) returnxadv

ALGORITHM 1: FAPAbased on the dual attack onViTs.

Table 1: Attack success rate of the typical algorithm in the ViT model (%).

Method PiT-B CaiT-S-24 Visformer-S TNT-S LeViT-256 ConViT-B Mean
FGSM 19.80 20.43 19.37 22.78 18.80 25.58 21.12
BIM 22.17 22.63 22.70 32.13 20.45 35.30 25.89
MI 45.23 47.13 45.97 55.23 43.75 58.25 49.26
DI 45.13 43.07 47.77 55.18 43.25 49.35 47.29
TI 17.67 16.50 19.00 28.18 13.70 27.53 20.43
SIM 32.73 35.17 31.13 46.73 36.43 45.68 37.98
SGM 41.60 52.30 48.80 64.33 51.13 60.68 53.14
IR 22.70 24.00 23.43 33.43 21.30 36.38 26.87
TAP 24.73 33.40 32.20 39.78 30.03 42.20 33.72
ATA 1.13 0.97 2.67 3.37 2.02 3.72 2.31
SE 21.25 31.40 24.90 37.87 21.73 46.03 30.53
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order to illustrate the effectiveness of our algorithm, we
also compare it with the most advanced algorithms, as
shown in Table 3.

4.5. Performance on ViTs and CNNs. We evaluate the
transferability of adversarial examples generated by our
method in ViTs and CNNmodels. Tables 4 and 5 summarize
the results of our three white-box ViT models attacking
various black-box ViTs and CNN models. In Tables 4 and 5,
the vertical axis represents the white-box model, and the
horizontal axis represents the black-box model. ,e null
value in the table indicates that the case where the white-box
model and the black-box model are identical is not counted.
As can be seen from the table, our method has high
transferability in the ViTmodels and CNN models, and the
overall average ASR reaches 64.19% and 48.07%.

4.6. Comparison with Typical Algorithm in the ViT Models.
It can be seen from Tables 1 and 4 that adversarial examples
generated by ourmethod have high transferability in the ViT
models, with an overall average ASR of 64.19%, far higher
than the highest average ASR of 53.14% generated by the
SGM algorithm in Table 1. In addition, when the CaiT-S-24
model is used as a proxy to attack the ConViT-B model, our
method achieves 76.50%, which is far higher than the 25.58%
accuracy achieved by the FGSM algorithm on the ConViT-B

model. Meanwhile, the average ASR of our three models on
TNT-S reaches 71.67%, which is also higher than the 64.33%
average ASR generated by the SGM algorithm.

4.7. Comparison with the Typical Algorithm in the CNN
Models. As can be seen from Table 5, when adversarial
examples generated on the ViT models are migrated to
the CNNs models, the success rate of the attack decreases,
which further indicates that there are essential differences
in architecture between ViTs and CNN models. However,
compared with the algorithms in Table 2, our method still
achieves good results, with an average ASR of 48.07%,
which exceeds the highest average ASR of 36.42%
achieved by using the MI algorithm in Table 2. When the
Visformer-S model is used to attack the Inc-v4 model, our
method even achieves a 58.30% ASR, which is far higher
than the 20% ASR of any model in Table 2. Meanwhile,
when our method attacks the Inc-v4 model, the average

Table 2: Attack success rate of the typical algorithm in the CNN model (%).

Method Inc-v3 Inc-v4 IncRes-v2 Mean
FGSM 20.78 18.80 16.38 18.65
BIM 17.88 14.77 12.40 15.02
MI 39.65 37.43 32.17 36.42
DI 32.78 31.75 26.40 30.31
TI 23.27 23.60 15.28 20.72
SIM 30.55 27.63 24.17 27.45
SGM 38.42 34.00 27.25 33.22
IR 17.65 15.83 12.08 15.19
TAP 29.58 26.10 20.67 25.45
ATA 3.25 2.53 2.03 2.60
SE 18.40 16.47 12.33 15.73

Table 3: Comparison with state-of-the-art methods (%).

Method ViTs CNNs Mean
[12] 61.92 47.98 54.95
Ours 64.19 48.07 56.13

Table 4: Attack success rate of our method in the ViT model (%).

Method PiT-B CaiT-S-24 Visformer-S TNT-S LeViT-256 ConViT-B Mean
PiT-B Null 59.30 72.60 70.00 64.00 57.30 64.64
CaiT-S-24 52.50 Null 57.90 71.60 58.30 76.50 63.36
Visformer-S 68.10 58.70 Null 73.40 71.20 51.50 64.58
Mean 60.30 59.00 65.25 71.67 64.50 61.77 64.19

Table 5: Attack success rate of our method in the CNNmodel (%).

Method Inc-v3 Inc-v4 IncRes-v2 Mean
PiT-B 51.80 50.40 38.40 46.87
CaiT-S-24 50.90 48.80 41.30 47.00
Visformer-S 51.70 58.30 41.00 50.33
Mean 51.47 52.50 40.23 48.07
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success rate of the attack also reaches 52.50%, which is a
good result. Compared with each algorithm in Table 2,
our method has made great progress, and the ASR is
higher than any algorithm in Table 2. ,is shows that
compared with the traditional algorithm, our algorithm is
effective and feasible.

4.8. Comparison with State-of-the-Art Methods. In this
section, we compare the results of our proposed FAPA and
the state-of-the-art [12] methods in Table 3. Our average
ASR exceeded it by 1.18% and was superior to it in both ViTs
and CNNs, particularly evident in ViTs. Focusing on the ViT
model, the average ASR of our method reaches 64.19%,
which is higher than [12] 2.27%, which further demonstrates
the effectiveness of our algorithm.

4.9. Ablation Study. To illustrate the effectiveness of our
method, we performed ablation experiments, and the re-
sults are shown in Table 6. Table 6 shows the influence of
different values of u and v in the FAPA algorithm on the
success rate of the model attack. ,e horizontal axis shows
two different models. ,e value in the table represents the
average ASR of the algorithm on the model, and the larger
the value, the stronger the migration attack ability. ,e
larger the value of v is, the algorithm pays more attention to
the foreground information in the picture, which leads to
larger perturbations. When u and v are both 1, it is
equivalent to not using our method, and the accuracy is low
at this time. As can be seen from the table, as the per-
turbations are added to the foreground information of the
picture, the overall ASR of the model is constantly rising,
which shows that our method is effective and feasible. For
the ViT models, the values of u and v reached the highest
value of 64.19% when they were set to 0.7 and 1.3, re-
spectively. But for the CNN models, their ASR keeps in-
creasing with the increase of foreground attention. It can be
further seen from here that there are some differences
between the ViTs and CNNmodels in structure. Compared
with CNNs, the ViTmodels pay attention to the foreground
information while also taking into account the global in-
formation, which may be due to the use of the attention
mechanism in the ViT models.

4.10. Visualization. In Figure 2, we randomly select two
clean images and two images generated by our algorithm.
We can easily find that the adversarial samples generated by
our algorithm are imperceptible to the naked eye.

5. Conclusion

In order to study the influence of the position with increased
perturbation on the success rate of the transfer attack and
explore whether the model will pay more attention to the
foreground information of the picture in the recognition
process, we propose the FAPA algorithm. ,e FAPA al-
gorithm can achieve, add more perturbations to the fore-
ground information of the image. Experiments show that the
transfer attack success rate of our method in ViTs and CNNs
reaches 56.13%, which is 1.18% higher than that of the dual
attack framework. Meanwhile, the average attack success
rate of our algorithm on the ViT models reaches 64.19%,
which is 2.27% higher than that of the dual attack frame-
work. For foreground and background information, we
found that the best transfer attack success rate was achieved
with weights of 1.3 and 0.7, respectively. From these ex-
periments, it can be concluded that the model will pay more
attention to the foreground information of the picture in the
recognition process, and adding more disturbance to the
foreground information of the picture can improve the
success rate of the transfer attack. In addition, compared
with CNNs, the ViT models not only pay attention to the
foreground information of an image but also consider the
global information of the image to some extent, which may
come from the attention mechanism used in the ViTmodels.
,erefore, when attacking the ViT models, we should take
into account the global information while adding more
disturbance to the foreground information. How to better
take into account global and local information will be our
next main research direction.
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