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Recent studies have demonstrated that neural networks exhibit excellent performance in information hiding and image domain
transfer. Considering the tremendous progress that deep learning has made in image recognition, we explore whether neural
networks can recognize the imperceptible image in the transferred domain. Our target is to transfer natural images into images that
belong to a different domain, while at the same time, the attribute of natural images can be recognized on domain transferred images
directly. To address this issue, we proposed domain transferred image recognition to achieve image recognition directly on the
transferred images without the original images. In our proposed system, a generator is designed for the domain transfer and a
recognizer is responsible for image recognition. To be flexible for the natural image restoration in some cases, we also incorporate an
additional generator in our method. In addition, a discriminator will play an indispensable role in the image domain transfer. Finally,
we demonstrate that our method can successfully identify the natural images on transferred images without access to original images.

1. Introduction

Recently, there have emerged numerous methods for privacy
protection-awareness [1–3]. At the same time, deep learning
has made great breakthroughs in speech, image, and text
recognition [4–6]. However, training these networks requires
a large amount of data, which makes some giant companies
such as Google, Microsoft, and Amazon or personalized
customization organizations which try every means to collect
personal data of their users for training deep models [7].
Despite of great performance of these well-trained deep
networks, they bring huge privacy risks [8, 9].

Most of small businesses or individuals use the cloud
services provided by giant companies for deep learning tasks
since they are limited to the local storage capacity and GPU
resources. However, the data collected by these organiza-
tions can be reused repeatedly, making users difficult to
delete. Besides, these sensitive data may contain unique
personal identical information such as faces and voices,
which inevitably bring risks when stolen by malicious at-
tackers and used for illegal benefits [10, 11].

To securely perform image recognition, information
hiding, which conceals important secret information in the

carrier (image, video, audio, etc.), can solve the issue of
privacy leakage elegantly and flexibly [12, 13]. However,
information hiding mainly focuses on protecting secret
information from being leaked during transmission. As
shown in Figure 1, when image recognition is required, it has
to restore the secret images, which increases the risk of
information leakage. Moreover, to hide abundant secret
information, it is necessary to select an appropriate carrier
with large redundant room, which is time-consuming and
will inevitably increase the risk of information leakage once
the carrier is intercepted. To this end, we propose a method
that can achieve image recognition in the transferred do-
main directly, which can recognize the attributes of secret
images on transferred images.

Specially, our detailed application scenario for real world is
shown in Figure 2; a giant company deploys an image rec-
ognition service in the cloud for profits. To avoid data leakage
of users, we train a series of models ahead to reach this goal. In
the real service deployment, the service provider owns/deploys
only the well-trained recognizer in its cloud, and the domain
transfer generator is deployed in a trustworthy party.

+erefore, a user uploads a secret image to the trust-
worthy party to transfer his/her image into another image
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which has different content/style and then delivers the
transferred image to the cloud for image recognition.

To perform image recognition in the transferred domain,
we designed a transfer generator to accomplish the process
of domain transfer. Same as the classic generative adversarial

networks, an indispensable discriminator aids the generator
to generate a high-quality image. Besides, a classifier is
responsible for the image recognition task. Although our
system is able to recognize the attributes of the original
images through the transferred images directly, to facilitate
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Figure 1: +e comparison of application processes. For a system that requires image recognition in the cloud server, to protect the image
content privacy, other methods based on information hiding will first select a textured carrier/cover image and then apply a special
embedding algorithm to hide the secret image in a carrier image and send it to the cloud end. +e receiver will apply the corresponding
extracting method to obtain the secret image for recognition. Differently, our method is free from carrier image by transferring the secret
image to another domain and the recognition process can be performed on the transferred domain directly.
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Figure 2: +e conception of our system. +e models are trained under supervision, where the domain transfer generator is used to protect
the content privacy of the user’s secret images and a recognizer network which is used to classify secret images in the transferred domain. In
the cloud recognition application scenario, the domain transfer generator is handed over to a trusted party, and the recognizer is controlled
by an organization which is deployed on a cloud service.
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the original image restoration in some cases, we also in-
corporate an additional restore generator to recover the
secret image in our method. In summary, our contributions
are three-fold:

(i) To achieve image recognition as well as avoid pri-
vate information leakage issue, we proposed a
framework to perform image recognition directly
on domain transferred images

(ii) Our image recognition method is performed on the
transferred domain, which decreases the exposure
risk of the source image and omits the process of
carrier selection

(iii) Experiments demonstrate the availability of our
method in terms of classification accuracy and vi-
sual effect of the transferred images

2. Related Work

In this section, we will first review some secure inference and
visual information protection strategies.

2.1. Encryption. Encryption technique is used for data
privacy protection. Its basic target is to hide the content of
the data, which encrypts the raw data into the ciphertext data
and decrypts it back to the original version with the cor-
responding decryption algorithm.

Homomorphic encryption proposed by Craig [14] can
support arbitrary computations on the encrypted data and
the final calculation result can be obtained after decryption.
However, this technique, which is calculated in the
encrypted domain, is computationally expensive compared
to plaintext calculation. For example, recently, Sanyal [15]
proposed a homomorphic encryption-based image classi-
fication algorithm to protect image privacy. However, it
takes nearly 2 hours to classify encrypted MNIST images on
a 16-core workstation, which is impractical in reality.
Moreover, the encrypted images can raise the awareness of
attackers due to its unreasonable ciphertext.

Secure multiparty computation is an important branch
of cryptography, which aims to solve the problem of col-
laborative computing that protects privacy among a group of
untrusted parties. Implementations of predicting encrypted
data based on secure multiparty computing have flourished
[16, 17]. However, these methods require the data owner to
encrypt the inputs and constantly interact and communicate
with each other. Besides, as mentioned in [18], most of the
existing multiparty computation-based secure inferences
rely on customized protocols that are highly optimized for
particular activation functions. For example, XONN [19] is
currently the most efficient solution for 2-party protocol, but
XONN only works with Sign as the activation function.
Implementing exponential function (Sigmoid) or max
function (ReLU) requires heavy computations and com-
munications in SMPC-based solutions.

2.2. Information Hiding. Information hiding is one of the
most important ways to protect secret data, which has been

well researched in the past decades [20–22]. +is technique
can be roughly classified into two categories: digital
watermarking and steganography. Recently, many deep
learning algorithms related to information hiding have been
developed. Usually, digital watermarking technology hides a
particular bit string in inconspicuous places to protect the
copyright of images, models, etc. Uchida et al. [23] embed a
watermark in model parameters using a regularizer to
protect the intellectual property of trained models, with the
performance of trained model hardly affected. Rouhani et al.
[24] embed watermarking in the weight distribution of
convolutional layers in trained models to protect deep
learning models. Baluja [25] successfully hides a full-size
color image into another image of the same size based on a
deep image encoder and decoder network to realize image
steganography. However, these methods focus on protecting
the security of hidden information during transmission.
+ese methods have to go through the process of extracting
hidden secret information when using these information,
which may lead to hidden secret information leakage after
restoration.

2.3. ImageDomainTransfer. Image domain transfer refers to
the process of generating another image according to one
image, that is, transfer one image from one domain to
another. Pix2pix proposed by Isola et al. [26] provides a
concise and elegant general framework for solving a series of
image domain transfer tasks, and the author proves that the
method has good performance in tasks such as segmentation
map to street view map, grayscale map to color map, and
clothing outline sketch to color map. In addition to su-
pervised image domain tasks (with paired training samples),
for unsupervised image domain transfer tasks without
paired images as training samples, Zhu et al. [27] designed
CycleGAN to complete the image domain transfer process
from one dataset to another dataset. Moreover, StarGAN
[28] proposed by Choi et al. can complete various attribute
conversions of face images, such as gender, age, skin color,
and emotions, and Tang et al. [29] proposed a method that
can transfer an image from a source to a target domain
guided by controllable structures. However, these GAN-
based image domain transfer methods simply focus on
approximating the distribution of generated images with the
distribution of the target domain. Inspired by the success of
deep learning in multitasking [30, 31], we turn our attention
to the image recognition task in the transferred domain that
is free from image content exposure.

3. Domain Transferred Image Recognition

In order to transfer the secret image from the source domain
to a target domain, an image generator is indispensable.
Besides, a necessary classifier/recognizer will be responsible
for image recognition in the transferred domain. As men-
tioned before, the domain transfer will alter the distribution
of source images, in which way the privacy of images can be
protected. However, changes in the distribution of data will
hamper the image recognition task. +erefore, the generator
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and classifier modules will be trained in turn, just as the way
of training a generative adversarial network. Besides, an
alternative restore generator can also be incorporated to
restore the secret image in some cases. +erefore, as shown
in Figure 3, our whole framework mainly contains four
modules: two generators, one discriminator, and one
recognizer.

In order to describe the proposed method more clearly,
we define the relevant concepts and variables as follows. +e
secret image dataset/domain is denoted asXnatural, where the
image in it is represented by Ise. Similarly, the target dataset/
domain is defined asXtarget, where the image in it is denoted
as Ita. Itr and Ire respectively indicate the transferred images
output by the domain transfer generator and the restored
images output by the restore generator. Gt and Gr represent
the generator for the domain transfer and the generator for
original secret image restoration, respectively. +e dis-
criminator is denoted by D, and the recognizer R can
identify secret image attributes on the transferred domain
images Itr.

3.1. Domain Transfer Generator. Given a secret image Ise

from the datasetXnatural to be identified, the domain transfer
generator (corresponding to Gt in Figure 3) aims to transfer
the secret image into an image in the target domain with a
different style such as a cartoon face style and an animal face
style. In other words, the transfer generatorGt should extract
the feature of the secret image as much as possible and
transform this feature into an image that conforms to the
distribution of the target domain. Besides, the transferred
image must fool the discriminator to make it fail to tell
whether this image is generated by Gt or comes fromXtarget.
When the whole system is fully trained, the generator Gt can

be used as an independent module to perform image transfer
from Xnatural domain to Xtarget domain.

+e domain transfer process can be written as

Itr � Gt Ise( 􏼁. (1)

As for the design of our domain transfer generator, given
that the convolutional neural network is experimentally
proven to have excellent feature learning and extraction
abilities for images and that a large amount of autoencoders
have shown extraordinary performance in image generation,
we adopt the combination of convolutional neural network
and autoencoder and design the generator Gt with a ResNet
[32] structure. Specifically, as shown in Figure 4, we first
stack 3 sets of convolutional layers, instance normalization
layers, and ReLU activation, followed by 9 residual blocks,
with each residual block containing two convolutional
layers, two instance normalization layers, and one ReLU
activation.+e input of each residual block and the output of
the latter instance normalization will be added as the output
of each residual block. Finally, 2 sets of deconvolution layers,
ReLU activation layers, and instance normalization layers
are followed to make the size of the final generated image
consistent with that of the original image. By the way, the last
activation layer will be tanh to cover the full pixel range.

3.2. Discriminator. For deep models based on generative
adversarial networks, the discriminator D is indispensable
in ensuring the quality of the generated images. +e dis-
criminator is expected to learn features that can distinguish
the image Ita in the target domain from the generated image
Itr in the transferred domain. When the input image is from
the target domainXtarget, the discriminator should identify it
as a “real” image, and when the input image is generated by

Fake

Real

Secret images: Ise

Restored
images : Ire

Target domain
images : Ita

Transferred images : Itr 

Generators Classifiers

Gt: Domaintransfer 
generator

Gr: Restore generator

Real
Fake

D: Discriminator

R: Recognizer

Attribute 
Label

Lres

Ldis

Lcls

Figure 3: +e schematic structure of our proposed system. For a secret image, it is firstly transferred to another image with a different style
using the domain transfer generator. +e transferred image serves as the input of the discriminator, recognizer, and restore generator. +e
recognizer can identify the attributes of the secret images on the transferred images. +e restore generator is responsible for reconstructing
the secret images based on transferred images. +e discriminator aims to distinguish images in the target domain from images generated by
the transfer generator.
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the generator Gt, the discriminator should identify it as a
“fake” image, which can be mathematically expressed as

t � D Iin( 􏼁, (2)

where t represents the output of discriminatorD, t ∈ {“real”:
image from target domain, “fake”: image generated by Gt},
and Iin represents the input image of D.

As an auxiliary module of the generator Gt, for each
input image, the discriminatorD needs to judge whether it
is “true” or “false.” But, unlike generators which have to
perform complex image generation tasks, the discriminator
only makes a binary decision. +erefore, our framework
only contains one discriminator, a very “shallow” network.
+e specific structure is shown in Figure 5(a). First, we
stack a convolutional layer and a ReLU activation layer and
then go through 3 convolutional blocks, each of which
contains one convolutional layer, one instance normali-
zation layer, and one ReLU activation layer, finally
appending one convolutional layer as the end of the
discriminator.

3.3. Recognizer. For the recognition network R, its main
task is to be able to identify the attribute information of the
original secret image Ise from the image Itr generated by the
domain transfer generator Gt, that is,

l � R Itr( 􏼁, (3)

where l is the predicted result.
+rough the combination of several proposed modules,

for a secret image Ise, the generator Gt firstly transforms the
secret image to the target domainXtarget and retains features
that can characterize its attributes. +en, the recognizerR is
able to extract this feature from the generated image and
maps it to the attribute label representing the secret image.
+is process can be expressed as

R: Gt: Ise⟶ Xtarget􏽮 􏽯⟶ l. (4)

+ere are currently some popular network structures that
perform very well in image recognition tasks, such as VGG
[33] and ResNet [32].+erefore, without loss of generality, we
adopt ResNet structure as backbone for the recognizer in our
framework and design different model heads according to the
specific recognition task. Specifically, we take ResNet50 [32]
as the backbone of our recognizer and replace the fully
connected layer at the end of the model. +e final number of
output logits of the recognizer equals to the number of
categories. +e specific structure of the network is shown in
Figure 5(b). After the input image passes through the
backbone of ResNet50, the obtained features are flattened,
passed through a fully connected layer, and activated by the
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“softmax” function. Finally, the predicted label corresponds to
the category label with the highest confidence.

3.4.RestoreGenerator. +e recognizer designed in this paper
can already recognize images, but in some scenarios that
require more flexible authority certification or image pro-
cessing operation, it may be necessary to recover the original
secret image. +erefore, in addition to the recognizer for
image recognition/authority certification, we also provide an
additional restore generator Gt for image restoration. +e
restore generator receives the image generated by the do-
main transfer generator Gt as input and outputs an image as
identical to the original secret image as possible. Since the
task of the restore generator Gr is also to generate images, in
order to reduce the complexity of the whole system, we set
the structure of the restore generator Gr the same as the
domain transfer generator Gt, which is shown in Figure 4.

3.5. Objective Loss Function. For a given secret image
Ise ∈ Xnatural and its label and an image in the target domain
Ist ∈ Xtarget, the designed network will be trained using the
following adversarial loss.

For the discriminatorD, its input is the image Itr generated
by the generator or the image Ita in the target domain Xtarget,
and its task is to be able to distinguish between these two kinds
of images, which is a binary classification problem. In our
framework, the images generated by the domain transfer
generator are regarded as negative samples, and the images
from the target domain are regarded as positive samples.
+erefore, the discriminator will generate the following loss:

Ldis � EIst
logD Ist( 􏼁􏼂 􏼃 + EIse

log 1 − D G Ise( 􏼁( 􏼁( 􏼁􏼂 􏼃 . (5)

For the recognizerR, its purpose is to predict the attribute
label of the secret image. +erefore, the cross-entropy loss
function, most frequently used in image recognition, urges the
recognizer to make correct prediction to the target label:

Lcls � − 􏽘
K

i�1
yilog R Itr( 􏼁( 􏼁, (6)

where K is the number of image categories, y is the image
label, and R(Itr) is the predicted probability of the rec-
ognition model on the domain transferred image Itr.

At the same time, the proposed framework also provides
the function of restoring the original secret image. +at is to
say, the output of the restore generator Gr should be as same
as possible to the secret image. To this end, the following loss
function controls the similarity between Ise and Ire:

Lres � Ise − Ire

����
����2. (7)

Finally, we will obtain a total loss as follows:

L Gr, Gt, G,R( 􏼁 � Ldis + Lcls + Lres. (8)

4. Experiments

In this section, we will first introduce our datasets and
evaluation metrics and experimental details. +en, we will

demonstrate the effectiveness of our method on varied
datasets.

4.1. Dataset. Since the proposed method is to transform
images in one dataset/domain to another dataset/domain,
for a complete domain transfer, two datasets are required,
namely, the secret image dataset/domain Xnatural and the
target dataset/domain Xtarget. We select face images in-
dicating strong privacy as our source dataset/domain, and
we adopt CelebA [34] and Pubfig [35] dataset in the
experiment.

CelebA [34] is a large-scale face image database con-
taining 202,599 images with 40 categories collected from the
Internet by the Chinese University of Hong Kong. Each of
these images has 40 binary attributes, such as gender, at-
tractive or not, and young or not. Without loss of generality,
we use the attribute “gender” as our prediction attribute, and
all the images will be resized to resolution of 256 × 256. +e
first 10K images and the subsequent 2K images are re-
spectively used as the training dataset and the test dataset in
the experiment.

Pubfig [35] is a face image dataset with 58,797 images of
200 categories collected from the Internet. Each category has
an average of 300 face images of one person. However, due to
the copyright and privacy issue, most of the image links
provided by the paper [35] are invalid now. As an alternative,
we use the version published by other user on the Kaggle
platform [36] including only 11,640 images with 150 cate-
gories. Specifically, we randomly choose 80% images as
training dataset and the remain 20% images as testing
dataset.

For the target dataset/domain Xtarget, we mainly use
Bitmoji-style cartoon face images.+e Bitmoji [37] dataset is
a cartoon style face downloaded directly from the mobile
app. +e Bitmoji [37] dataset contains 4085 faces with the
resolution of 384 × 384. In the experiments, all the Bitmoji
images are resized to the same size as the source domain
Xnatural, with the resolution of 256 × 256. Figure 6 illustrates
some examples of the Bitmoji dataset.

4.2. Evaluation. Since our framework is to perform image
recognition in the transferred domain, the accuracy of image
recognition is one of our goals. At the same time, we also
provide a restore generator Gr to recover the original secret
image. +erefore, the PSNR and SSIM metrics, which are
most commonly used in digital image processing, are used to
measure the quality of the recovered image. Given a ref-
erence image I and a test image K, both with size m × n, the
PSNR between I and K is defined as

PSNR � 10 · log10
L
2

MSE
􏼠 􏼡, (9)

where L is the dynamic range of allowable image pixel
intensities (usually takes 255). For our 3-channel color
image, we first calculate the MSE value of each
channel and then calculate the average to get the MSE in
equation (9).
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MSE �
1

mn
􏽘

m−1

i�0
􏽘

n−1

j�0
[I(i, j) −K(i, j)}

2
. (10)

+e SSIM is given by

SSIM �
2μIμK + c1( 􏼁 2σΙΚ + c2( 􏼁

μ2Ι + μ2Κ + c1􏼐 􏼑 σ2Ι + σ2Κ + c1􏼐 􏼑
, (11)

where μI and μK are the local means, σΙ and σΚ are the
standard deviations and σΙΚ is the cross-covariance for
images I and K sequentially, and c1 and c2 are 6.50 and 58.5,
respectively, by default.

4.3. Implementation Details. +e implementation is based
on Keras with TensorFlow as the backend. In our experi-
ments, we use Adam [38] optimizer with a learning rate of
0.001 and linearly decay it to 0 after 50 training epochs. Our
training batch size is set 4 and it takes our 4 days for training
about 200 epochs on one single NVIDIA RTX 1080 Ti GPU.

4.4.ExperimentalResults. We first take the CelebA dataset as
the domain Xnatural, the Bitmoji dataset as the domain
Xtarget, and the “gender” attribute in the CelebA dataset as
the recognized attribute. After sufficient training, the ob-
tained domain transferred images and the restored images
are shown in Figure 7, where images in the first row belong
to the CelebA dataset, images in the second row are
transferred by the domain transfer generator Gt, and images
in the last row are the recovered images. Visually, the
transferred face image is similar to the cartoon face image in
the Bitmoji dataset, which are all centered, frontal, and
surrounded by white space. It is difficult to distinguish
between these two kinds of images visually.

In order to verify the generalization of our method, we
also use Pubfig dataset and the Bitmoji dataset asXnatural and
Xtarget respectively for training, where the identity of Pubfig
images is used as the prediction label. +e results are shown
in Figure 8.

4.4.1. Comparison of Other Methods. Table 1 shows the
comparison of our method with other related works from
various aspects. Tao et al. [39] and Baluja [25] focus on the
secure secret message communication but failed in image
recognition. +e domain transfer methods [40–42] are free
from carrier selection but none of them take secure image
recognition into consideration. Our method can not only
support secret image recovery and direct image recognition
but also is free from carrier selection. Besides, the difference

between our secret images and transferred images is enough
(middle degree) to prevent the adversary from inferring the
image content.

4.4.2. Visualization of Domain Transfer. Since the proposed
model needs to transfer the image from one domain to
another domain for “camouflage,” the features of images
obtained by domain transfer should be as close to the target
domain Xtarget as possible. In the field of machine learning,
there are some classic feature compression/dimension re-
duction methods, such as PCA [43], t-SNE [44], and LLE
[45]. In order to explicitly portray the domain transfer
process of our method, we visualize the feature distribution
of the dataset Xnatural before and after domain transfer and
the feature distribution of target datasetXtarget using t-SNE.
Specifically, we first flatten all the CelebA and Bitmoji images
from 256 × 256 to 1 × 256∗ 256∗ 3 and then directly apply
the t-SNE function in the Sklearn [46] library to compress
them into 1 × 2 and characterize these images on a 2D plane.
+e visualization of the dataset is shown in Figure 9. From
Figure 9(a), we can see that the boundary between CelebA
and Bitmoji is very obvious. But after transferring images in
CelebA, the distribution of transferred CelebA and Bitmoji
datasets is very similar, shown by the overlapping between
the red dots and blue dots in Figure 9(b).

4.4.3. Recognition of Domain Transferred Image. In our
proposed framework, after the original secret face image is
transformed by the domain transfer generator Gt, the corre-
sponding recognizer R should be able to directly identify the
original secret image according to the transferred image. To
examine the performance of the trained recognizerR, we also
train a recognition network directly on the original natural face
as the best recognizer for comparison. Experiments are shown
in Table 2. From the table, we can see that even if the image is
transferred into other domains, our image recognition accu-
racy hardly decreases compared to the highest untransferred
image recognition accuracy. For CelebA images, the recog-
nition accuracy drops from 92.4%⟶ 92.1% and Pubfig
images drop from 89.7%⟶ 88.4%.

4.4.4. Recognition of Reconstructed Images. As mentioned
before, in order to use our proposed method more flexibly in
some scenarios where the original secret image needs to be
recovered, we also include a restore generator Gr for re-
covering the original secret image, and the usage of the
restored image should not be affected. In order to test the
effect of domain transfer on secret images, we test the image
recognition performance of restored images. Specifically, we

Figure 6: Examples of Bitmoji images. +e Bitmoji images contain cartoon faces of different genders, different hair colors, etc., all of which
are centered and surrounded by white space.
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train several recognizers on natural face images with dif-
ferent kinds of attributes and use these trained recognizers to
test the image recognition accuracy on restored images.
Without loss of generality, we select four attributes of
“Male,” “Bald,” “Heavy_Makeup,” and “Attractive” on the
CelebA dataset to test the recognition performance of
reconstructed images.+e experimental results are shown in
Table 3.

As can be seen from Table 3, when the network is trained
directly with the original CelebA dataset, the recognition

accuracies of “Male,” “Bald,” “Heavy_Makeup,” and “At-
tractive” attributes are 92.4%, 98.2%, 90.0%, and 80.2%,
respectively. Even if the original image has gone through the
domain transfer, the recognition accuracy of the restored
image is hardly affected, with the accuracy of “Male,” “Bald,”
“Heavy_Makeup,” and “Attractive” attributes being 92.2%,
98.2%, 87.7.0%, and 79.7%, respectively. Compared with the
highest recognition accuracy of plaintext/baseline, the av-
erage value of the recognition accuracy has only dropped by
less than one point (90.2% ⟶ 89.5%), indicating that the

Source 
images

Transferred 
images

Restored 
images

Figure 7: Visualization of domain transferred CelebA images and the corresponding restored images. From top to last row are original
secret images Ise, domain transferred images Itr, and recovered secret images Ire, respectively.

Source 
images

Transferred 
images

Restored 
images

Figure 8: Visualization of domain transferred Pubfig images and the corresponding restored images. From top to last row are original secret
images Ise, domain transferred images Itr, and recovered secret images Ire, respectively.

Table 1: Comparison of relevant studies from different aspects. Difference means the difference between the secret image and the stego/
generated/transferred image. STC means syndrome trellis coding; CNN and GAN mean convolutional neural network and generative
adversarial networks, respectively.

Ref. Carrier required Difference Technology adopted Support secret images recovery Support direct image recognition
Tao et al. [39] Yes Large STC Yes No
Baluja [25] Yes Large CNN Yes No
Kim et al. [40] No Middle GAN Yes No
Chen et al. [41] No Middle GAN Yes No
Liu et al. [42] No Small GAN No No
Ours No Middle GAN Yes Yes
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image reconstructed in our method can still be used with
little performance penalty.

4.4.5. Visual Quality of Reconstructed Images. From the
perspective of secret information transfer, the process of
recovering the original secret image in our method can also
be used for secret communication. +e method of hiding
images within images mentioned in [25] is an advanced
method based on neural networks for large capacity in-
formation hiding, where the author pointed out that if the
natural image is directly fed into the proposed neural net-
work, the hidden image will be exposed in the residual
image. To eliminate the traces of hidden image content in
residual images between cover images and stego images, a
simple way is to permute the pixels of hidden images before

they are passed to the preparation network. Following [25],
we retrained our whole network to hide images without the
spatial coherence of natural images. As shown in Table 4,
although the average values of PSNR and SSIM of the re-
stored images are slightly inferior to the shuffled version, the
recognition of restored images will be little affected. One
thing that needs to noted is that we are only sacrificing a little
bit of image quality to enable image recognition while
preserving privacy. Besides, our method is free from cover
image selection hence decreasing the complexity of the
system during the usage/inference phase.

5. Conclusion

In this paper, we proposed a technique for image recognition
while protecting the privacy of image content. First, we point
out that our method is free from not only complex com-
putation such as encryption algorithms but also carrier
selection like information hiding-based method. Second, we
designed and trained a combined network containing two
generators, one recognizer, and one discriminator, where
these two generators are responsible for domain transfer and
image reconstruction, respectively, and the recognizer for
image recognition on domain transferred images. Experi-
ments are conducted on several standard datasets and the
results have validated the effectiveness of our proposed
method.

celebA & Bitmoji distribution visualization celebATransferred & Bitmoji distribution visualization

Figure 9: Visualization of the dataset after reducing the images to 2 dimensions using the t-SNE [44] algorithm. (a) +e distribution of the
CelebA dataset and Bitmoji dataset. +e red dot means images in the CelebA dataset, and the blue dot means images in the Bitmoji dataset.
(b) +e distribution of the domain transferred CelebA dataset and Bitmoji dataset.

Table 2: Recognition accuracy comparison. +e ACC in the
“CelebA” column and “Pubfig” column means the top accuracy
obtained by recognizers trained by natural, unaltered face images.
+e ACC in the “CelebA-T” column and “Pubfig-T” columnmeans
recognition accuracy obtained on transferred images.

Dataset CelebA CelebA-T Pubfig Pubfig-T
ACC (%) 92.4 92.1 89.7 88.4

Table 3: +e recognition accuracy of CelebA and reconstructed
CelebA images. ACC(Base) means the best accuracy obtained by
the model trained on natural images. ACC(Res) means the rec-
ognition accuracy obtained on the restored images.

Attributes Male Bald Heavy_Makeup Attractive Average
ACC(Base) 92.4 98.2 90.0 80.2 90.2
ACC(Res) 92.2 98.2 87.7 79.7 89.5

Table 4: Quantitative visual quality of recovered images.

Method Baluja [25] Baluja (shuffled) [25] Ours
PSNR 34.2 31.6 26.4
SSIM 0.962 0.943 0.948

Security and Communication Networks 9



Data Availability

+e CelebA data used to support the findings of this study
are from previously reported studies and datasets, which
have been cited.+e Pubfig and Bitmoji data used to support
the findings of this study were supplied by Kaggle under
license, which can be downloaded by hyperlinks provided in
references [36] and [37], respectively.
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