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Due to steady improvements in defensive systems, malware developers are turning their attention to mechanisms for cloaking
attacks as long as possible. A recent trend exploits techniques like Invoke-PSImage, which allows embedding a malicious script
within an innocent-looking image, for example, to smuggle data into compromised devices. To address such a class of emerging
threats, new mechanisms are needed, since standard tools fail in their detection or offer poor performance. To this aim, this work
introduces Mavis, an efficient and highly accurate method for detecting hidden payloads, retrieving the embedded information,
and estimating its size. Experimental results collected by considering real-world malicious PowerShell scripts showcase that Mavis
can detect attacks with a high accuracy (100%) while keeping the rate of false positives and false negatives very low (0.01% and 0%,
respectively). The proposed approach outperforms other solutions available in the literature or commercially through “as a

service” model.

1. Introduction

According to a recent report by McAfee [1], the number of
new malware samples grew by 11.5% in Q2 2020, partially
fueled by the current COVID-19 pandemic. Among the
various offensive mechanisms employed by attackers,
PowerShell-based malware sharply increased by 117% from
Q1 to Q2, mainly due to its cloaking abilities. For instance,
commands can be generated dynamically, launched from
memory, and easily obfuscated or injected, making both
forensic analysis and detection significantly more arduous
[2]. PowerShell scripts can also take advantage of the recent
trend of exploiting information hiding techniques for em-
bedding malicious commands or exfiltrating sensitive data
within innocent-looking contents, such as digital images [3].
To this aim, one of the most recent and popular tools
employed by criminals is Invoke-PSImage [4] which allows

embedding malicious PowerShell scripts into digital images.
The Invoke-PSImage technique has been already used to
enhance several existing malware functionalities and to
deploy multiple attacks, such as in the campaign against the
Pyeongchang Olympic Games [5], in the diffusion of the
Greystars ransomware [6], or in new variants of Ursnif [7]. It
has also been deployed in the malicious [AmTheKing toolset
[8] and used for the creation of a backdoor in the Bandook
malware [9].

Since the adoption of steganography to conceal infor-
mation in digital images is becoming increasingly popular
among cybercriminals [10], being able to detect its usage is of
paramount importance. However, this could be very chal-
lenging, as recognizing the existence of embedded data
heavily depends on the adopted algorithm and the image
format [3, 10, 11]. Moreover, in many real-world scenarios,
the volume of images that has to be inspected could lead to
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scalability issues [3]. Concerning threats leveraging Invoke-
PSImage, the lack of efficient detection techniques makes the
development of new methodologies an essential research
topic [2]. Therefore, this work introduces Mavis (https://en.
Wikipedia.org/wiki/Mavis_Batey), a tool for discovering
malicious PowerShell scripts embedded in digital images via
the Invoke-PSImage method. To this aim, we developed
different detection algorithms leveraging the characteristics
of the injection process (e.g., how colour channels are al-
tered) as well as features of the scripts (e.g., recurrent
patterns disclosing a textual content). Compared to similar
approaches, our tool offers the additional advantage that it
can also estimate the size of the malicious script embedded
in the image and retrieve the payload. To test the effec-
tiveness of Mavis, we created an ad hoc dataset composed of
45,000 images containing various malicious PowerShell
scripts. Collected results indicate that Mavis has a detection
rate close to 100%, with a very low false positive rate and a
reduced computational footprint.

Summing up, the contributions of this work are as
follows: (i) a set of detection, estimation, and recovery al-
gorithms for efficiently thwarting Invoke-PSImage-based
attacks, (ii) a vis-a-vis comparison with state-of-the-art
techniques and commercial services, and (iii) a full public
release of Mavis and the dataset used for the experiments
(https://github.com/s3venup/Mavis).

The rest of the paper is structured as follows. Section 2
reviews past works on detecting steganographic threats,
while Section 3 introduces the considered attack model and
background information. Section 4 showcases details on
Mavis, and Section 5 presents the experimental methodol-
ogy. Section 6 discusses the obtained results, whereas Section
7 compares Mavis with similar tools. Finally, Section 8
concludes the paper and proposes future research directions.

2. Related Work

Images and videos have been extensively used to conceal
secret information. Specifically, they have been the target of
techniques for appending arbitrary contents in metadata or
at the end of a file, as well as proper steganographic algo-
rithms for injecting information in the Least Significant Bit
(LSB) or in the coefficients of the discrete cosine transfor-
mation on the basis of many compression algorithms
[10, 12-14]. Moreover, sophisticated approaches using
adaptive mechanisms have also been proposed to reduce the
visible artifacts caused by the hiding processes (e.g., algo-
rithms exploiting dependencies among adjacent pixels) [15].

Even if the literature abounds in ideas or frameworks for
image steganalysis (see, e.g., [12, 13] and the references
therein), there has always been a historical shortage of tools
specifically tailored for revealing attacks or performing
threat detection. To this extent, a popular tool is Stegdetect
introduced in 2001 [16], unfortunately no longer updated. A
similar case is represented by Stegsecret (https://stegsecret.
sourceforge.net/), which had a great potential but has not
been updated since 2007. In addition, tools do not typically
provide a very general-purpose solution, and many are
mostly aimed at visual attacks or techniques that can be
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detected with a simple fingerprint-based approach. Other
detection tools exist, but they generally lack in reliability
since they have not been extensively tested. There are also
solutions that are based on commercial or proprietary code,
which is against best practices; see, for example, the case of
StegoHunt (https://www.wetstonetech.com/products/
stegohunt-steganography-detection/) by WetStone
Technologies.

As a consequence, the number of tools that can reliably
detect Invoke-PSImage-based threats “out of the box” is very
limited. To the best of our knowledge, only two tools can be
considered suitable for handling this task. The first is
StegExpose (https://github.com/b3dk7/StegExpose), which
is a general-purpose LSB steganalysis tool orchestrating the
results provided via four different detection methods, that is,
Sample Pairs [17], RS Analysis by [18], Chi-Square Attack
[19], and Primary Sets [20]. Each algorithm returns a score
reflecting the likelihood of an image being malicious: such
values are then combined and compared with an empirically
set threshold. StegExpose implements two execution modes:
default and fast. In the default mode, all algorithms are used
in sequence and the outputs are combined. In the fast mode,
the tool tries to speed up the analysis by skipping the images
considered clean. To this aim, if the value returned by a
single algorithm is very far from the decision threshold, the
image is considered clean without further processing. The
second tool is McAfee Steganography Analysis Tool (https://
www.mcafee.com/enterprise/en-us/downloads/free-tools/
steganography.html) (SAT), which is an online general
steganalysis tool. In essence, it provides a report including
whether a content can be considered suspicious, along with a
statistical assessment in terms of a confidence metric, a
score, and the time spent to analyze the image. Unfortu-
nately, McAfee SAT has some limitations: it cannot process
images larger than 1 Mbyte and the implemented algorithms
are not publicly available, thus making it a black box.

3. Attack Model

As previously hinted, the Invoke-PSImage tool manipulates
the colour values of digital images (e.g., PNG files) with the
aim of embedding PowerShell scripts. Figure 1 depicts the
reference attack model and the related scenarios observed in
an extensive array of threats [10].

As a first step, the user is tricked, for instance, by opening
an infected attachment or by visiting a compromised
website. When successfully infected, the host of the victim
tries to reach a remote server controlled by the attacker to
register itself. Upon completing this stage, the attacker
usually needs to transmit further malicious code without
being spotted by a network intrusion detection system or
blocked by a firewall. To this aim, the attacker can use
Invoke-PSImage to embed a malicious PowerShell script
into an innocent-looking digital image and transmit it to the
infected host (see “step 1”7 and “step 2” in Figure 1). In
general, standard security tools do not consider this class of
threats or do not have enough computing/storage resources
to deeply inspect all multimedia data exchanged through the
network. Moreover, eliminating hidden contents could
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FiGure 1: The Invoke-PSImage-based attack scenario.

require manipulating the original file, thus raising privacy
and integrity concerns. As the last step of the attack, when
the modified image reaches the infected device, the malware
extracts the hidden script and executes it (see “step 3” in
Figure 1).

To implement the covert communication, Invoke-
PSImage subtly modifies digital images by embedding
PowerShell scripts into pixels via altering their colour values.
This can be done in two different modes. In Mode-1, the tool
generates a synthetic image for containing the script. In this
case, all 8 bits of the three-colour channels (i.e., red, green,
and blue) are used to embed the malicious script. Thus, the
resulting PNG file has approximately 50% of the size of the
malicious original script. Instead, in Mode-2, the user needs
to provide the cover image with a suitable size for injecting
the PowerShell script. In this case, only the 4 least significant
bits of the green and blue colour channels are used. Re-
gardless of the selected mode, randomly generated values are
used to pad the information injected into the colour
channels. This happens, for instance, when the malicious
script is smaller than the cover image or in Mode-2, which
does not use the red colour channel. For performance
reasons, such random values are generated only once, when
the Invoke-PSImage tool is first launched. This behaviour
leads to a recurring “pattern” within the resulting images.
Additionally, no nonalphanumeric characters are added to
the random values.

4. Detection Methodology

In this section, we describe the approach used by Mavis to
detect the hidden payload, estimate its size, and perform the
extraction. Specifically, Section 4.1 deals with attacks
leveraging Mode-1 of Invoke-PSImage, whereas Section 4.2
focuses on Mode-2. Sections 4.3 and 4.4 provide details on
the algorithms for size estimation and extraction of mali-
cious payloads, while Section 4.5 discusses how the distinct
functionalities of the embedded scripts can be classified.

4.1. Detection of Mode-1. To detect scripts embedded with
Mode-1, the specific distribution of the RGB values can be
used as a sort of “signature.” In fact, as a first step, Invoke-

PSImage calculates the size of the image required for the
embedding process and initially sets all RGB values to zero.
Next, it generates an alphanumeric, 128-character long,
random string. For each character, the value is in the range
[0; 127]. Due to such an embedding process, the resulting
PNG file with hidden data has a very characteristic distri-
bution of the RGB values. Figure 2 showcases the distri-
bution of 5 million RGB values collected in 5,333 images. In
this dataset, 99.51% of images have been processed using
Invoke-PSImage in Mode-1 to inject malicious scripts in
either an obfuscated or deobfuscated form. Images created
automatically via Mode-1 have a resolution typically ranging
from 8x 8 to 64 x 64 pixels, depending on the size of the
script. The benign images used were all 256 x 256 pixels. In
order to compare the same number of pixels in malicious
and benign images, the number of benign images must be
quite small (i.e., only 0.49%).

Moreover, Figure 2 shows that the RGB values in images
with embedded scripts contain no values in the range
[0;8] U [11;31]U [127;255]. Images containing deobfus-
cated scripts have a remarkable peak at RGB value of 48
(total number of occurrences: 548,490), which corresponds
to the ASCII character “0.” Conversely, images generated
using obfuscated scripts have their global maximum at RGB
value of 65, that is, “A” in ASCII, with a total number of
occurrences of 1,618,144. This is caused by the utilization of
Base-64 encoding for the scripts. Base-64-encoded scripts
use the character “A” in 32.36% of all cases. In contrast to
these observations, benign images display a more or less
equal distribution, with frequent maxima in white and black
colour values. The experimental results obtained by applying
this observation for spotting hidden data will be presented in
Section 6.

4.2. Detection of Mode-2. Mode-2 of the tool generates
images by exploiting the green and blue channels as hidden
carrier, whereas it uses the 4 LSBs of the red channel to store
pseudorandom values generated at the beginning and re-
peated every 109 pixels. This can be used as a signature to
spot the presence of a hidden script; that is, the detection can
be carried out by searching for identical values over the red
channel every 109 pixels.
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During our extensive experimental evaluation, only a
completely black image triggered a false positive alarm using
the aforementioned detection rule. However, such a case is
highly unlikely in realistic, real-world images.

4.3. Size Estimation of the Embedded PowerShell Scripts.
Apart from identifying if a digital image contains hidden
data, it would be also beneficial evaluating the nature of the
cloaked content. Alas, this is not always possible since the
attacker could adopt obfuscation or antiforensics tech-
niques, such as scrambling or encrypting the script. As an
alternative, we can estimate the size of the PowerShell script
and use such information to infer its complexity and the
range of its offensive capabilities.

4.3.1. Mavis Size Estimation for Mode-1. In Mode-1, after
the injection of the malicious script in the three-colour
channels of the cover image, the rest of the RGB values are
set to pseudorandom bytes. Since the random selection of
the pseudorandom bytes is done via a modulo 113 oper-
ation, and the repetition of the pattern can be found after
113 values, the implemented algorithm compares the RGB
value at index i with the RGB value at index i + 113. If these
two byte values are equal, and this equality holds for all
consecutive bytes until the end of the image, we assume that
this is the start of the pattern used for detection. The size of
the repeating pattern is then subtracted from the total file
size to obtain the estimated size of the injected script. In
cases where less than 114 random bytes have been injected
after the malicious payload, we cannot determine the be-
ginning of the repetition. Therefore, in these infrequent
cases, the size of the script cannot be estimated in an ac-
curate manner.
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4.3.2. Mavis Size Estimation for Mode-2. The size estimation
of the injected scripts using Mode-2 is based on the com-
parison of two consecutive lists containing 113 blue channel
nibbles (i.e., 4 LSBs). The green and the blue channel hold
always the same amount of nibbles, so only one of these two
channels needs to be investigated to estimate the size of the
hidden content. The first list contains 113 values from index
i-113 to ((i+1)-113) — 1. The second list contains 113
values from ((i+1)-113 to ((i+2)-113) - 1. As long as
both lists are not equal, the first list gets the values from the
second, the second list gets the next 113 values of the blue
channel, and the size of the estimated script is incremented
by 113. If the equality is found for the first time, we search for
the beginning of the repetition in the two lists from the
previous round by reducing these two lists. In the result, the
sizes of the two lists and the size of the estimated script are
reduced by 1 as long as no equality is found. If the equality is
spotted, the correct size of the injected script has been
determined.

Due to the fact that only nibbles are compared, there is a
possibility that the script nibble and the randomly injected
byte nibble are coincidentally equal (i.e., a collision hap-
pens). In this case, the size of the script is underestimated
and the length of the repeating pattern is overestimated.
Because of the 16 possible states of the nibble, the scripts are
most often underestimated by 8 bytes.

4.4. Recovering Embedded Scripts with Mode-1 or Mode-2.
Apart from detecting malicious images, an important goal
for Mavis is the extraction of embedded PowerShell scripts,
for instance, to support forensics investigations. Since the
creator of the Invoke-PSImage tool has not considered any
cryptographic or scrambling mechanisms to secure the
embedded information, the malicious content is always
located at the beginning of the file, thus making it easily
recoverable. This, jointly with the ability of Mavis of esti-
mating the size of the payload, guarantees the recovery of the
hidden contents.

Since in Mode-1 a whole byte is injected into the red,
green, and blue channels, its ASCII value can be directly
extracted from the image, from the start to the length of the
estimated embedded data. For Mode-2, the algorithm needs
to be slightly modified: in this case, only the 4 LSBs of the
green and blue channels are used for data hiding purposes.
The blue channel contains the 4 most significant bits of the
script byte, while the green channel contains its 4 least
significant bits. For recovering the specific ASCII value in
Mode-2 images, we have to shift the 4 LSBs of the blue
channel by 4 and add them to the 4 LSBs of the green
channel.

4.5. Classifying the Functionality of a Script. Another im-
portant aspect of Mavis concerns the ability of determining
the functionality of the hidden script, based only on its size.
To design such a feature, we used the recent dataset of
malicious scripts from [21], which contains real-life mali-
cious scripts in both obfuscated and deobfuscated forms.
Obtained numerical results will be presented in Section 6.3.
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TaBLE 1: Groups of obfuscation techniques as introduced in [22].

Obfuscation techniques

Description

group

. These techniques rely on different encodings to obfuscate the code. In our experiments, we chose ASCII
Encoding . -

encoding-based obfuscation.
Within this group, it is possible to obfuscate different tokens. Each token has different available obfuscation
Token levels (e.g., ‘argument’ 1-4, ‘command’ 1-3, ‘comment’ 1, ‘member’ 1-4, ‘string’ 1-2, etc.). For our purposes,
we selected all token obfuscation functions in random order at the highest obfuscation level.
Strin Such methods perform obfuscation via string concatenation or reordering. For our evaluation purposes, we
8 chose the string delimited and concatenated technique.

AbstractSyntaxTree In this class, the obfuscation process uses AbstractSyntaxTree-based rules.

In more detail, we sorted the scripts based on their size
and tried to determine whether there are some common
keywords that can characterize their functionality. The ra-
tionale behind this is that, in general, the larger the size, the
more complex the actions they perform. After this analysis,
we were able to distinguish the three following categories:

(i) Memory execution: considers malicious scripts
containing the memset keyword, which typically
injects a shell script in binary form into the memory
and executes it.

(ii) Shell execution: groups scripts that execute an ap-
plication via a shellexecute command.

(iii) Malware download/rest: over 95% of the scripts in
this group are related to the functionalities used to
download the malware. In general, scripts belonging
to this category are very simple, mainly aiming at
establishing a communication path with a remote
C&C server, downloading the malware, and exe-
cuting it locally. However, this category also in-
cludes scripts that cannot be easily classified, for
example, those that modify registry keys.

Then, for each class, we calculated the mean script size
and the related standard deviation. Moreover, we used the
Invoke-Obfuscation [22] tool to obfuscate the scripts and
extend the remit of our experiments. The tool offers different
obfuscation techniques, grouped into four main classes, as
presented in Table 1.

Next, the sizes of the deobfuscated scripts were com-
pared to their obfuscated counterparts. Note that the size of
the obfuscated script is generally larger than the deobfus-
cated one. Moreover, we mapped the relationship (in terms
of size and functionality) between deobfuscated and ob-
fuscated scripts. For this reason, for each of the obfuscation
classes mentioned above, we calculated the average multi-
plication factor f,, which is defined as f, =Y x,/x,/n,
where x,, is the size of the obfuscated scripts, x, is the size of
the deobfuscated scripts, and # denotes the total number of
scripts. Note that such an approach requires that the ob-
fuscation method used on the malicious script must be
known in advance, so the correct multiplication factor is
applied. Currently, several existing methods are able to infer
the used obfuscation technique; see, for instance, the par-
adigmatic examples reported in [23-25]. Besides, one may
convert an obfuscated script to its deobfuscated version by

using tools like Revoke-Obfuscation [26] or via an approach
based on the work presented in [27].

During our experiments, to infer the functionality of a
script from its size, the following steps were carried out.
First, we only examined whether the deobfuscated scripts
can be correctly assigned to the correct keyword class based
on their size using the closest mean size of the respective
category. Then, we repeated this step for the obfuscated
scripts; however, we accredited a script to the respective
category if its size was closest to the mean size of the cor-
responding category multiplied by factor f,.

5. Datasets and Experimental Methodology

In this section, we first showcase the datasets that we utilized
during our experimental evaluation. Then, we outline the
methodology we followed during our study.

5.1. Preparation of the Datasets. To perform a thorough
experimental evaluation of Mavis, we prepared a novel
dataset by combining two different sources. The first is
iStego100K  (https://github.com/YangzITHU/IStego100K),
which originally contains 100,000 pairs of clean-stego im-
ages. This dataset is denoted in the following as the digital
images dataset. Then, we considered malicious PowerShell
scripts from [21], which contain 4,641 scripts in deobfus-
cated and 4,018 in obfuscated form. In the following, we
refer to such a collection as the malicious PowerShell scripts
dataset. The latter has been directly used to generate the
dataset to test Mode-1. Specifically, it is composed of 4, 641
and 4, 018 images, generated starting from the deobfuscated
and the obfuscated script of the malicious PowerShell scripts
dataset.

Instead, to evaluate Mode-2, we created three datasets by
considering images with different resolutions, that is,
1024 x 1024, 512 x 512, and 256 x 256:

(i) clean dataset: 15,000 images (5,000 images for each
resolution),

(ii) stego-obfuscated dataset: 15,000 images (5,000
images for each resolution) containing obfuscated
PowerShell scripts,

(iii) stego-deobfuscated dataset: 15,000 images (5,000
images for each resolution) containing deobfuscated
PowerShell scripts.
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TaBLE 2: Defined performance metrics.

Performance metric

Description

Correct detection rate
False positives (FP) and False
negatives (FN)

ty

~

MAPE (mean absolute percentage

The number of correctly identified cases for a given detection scenario.

FP occurs when a clean image is identified as steganographically modified, while FN is when an image

with an embedded malicious PowerShell script is classified as benign.

The average time needed to perform the detection process, which is measured from the moment when
the red channel is ready to be investigated, until the specific pattern indicating steganography usage is

(or is not) identified.

The average time needed to perform the size estimation of the embedded malicious script in the digital
image. It is measured from the moment when the green and blue channels are prepared to be

investigated until a prediction of the size is completed.

Specifies, on average, to what extent the estimated size of the injected script is correct. It is calculated as
follows: MAPE = 1/n )" | | As; — Es;/ As;|, where n denotes the number of steganographically modified

error) files used for size estimation, As; is the actual size of the script, and Es; is its estimated size.
TaBLE 3: Detection and performance results for Mavis.
Invoke-PSImage Mode-1
Scripts Correct detec. FN rate t, (ms) t, (ms) MAPE (%)
Deobfuscated 4641/4641 (100%) 0/4641 (0%) 7.75 1.65 10.03
Obfuscated 4018/4018 (100%) 0/4018 (0%) 19.18 5.23 0.12
Overall 100% 0% 13.05 3.31 5.43
Invoke-PSImage Mode-2

Scripts Correct detec. FN rate t,; (ms) t, (ms) MAPE (%)
Deobfuscated (256 x 256) 5000/5000 (100%) 0/5000 (0%) 1.1 3.94 0.0009
Deobfuscated (512 x 512) 5000/5000 (100%) 0/5000 (0%) 411 3.83 0.0017
Deobfuscated (1024 x 1024) 5000/5000 (100%) 0/5000 (0%) 16.89 4.03 0.0022
Obfuscated (256 x 256) 5000/5000 (100%) 0/5000 (0%) 0.99 9.24 0.0006
Obfuscated (512 x 512) 5000/5000 (100%) 0/5000 (0%) 4.06 9.71 0.0005
Obfuscated (1024 x 1024) 5000/5000 (100%) 0/5000 (0%) 16.29 9.57 0.0006
Overall 100% 0% 7.24 6.72 0.0011
Scripts Correct detec. FP rate t,; (ms) t, (ms) MAPE (%)
Clean (256 x 256) 5000/5000 (100%) 0/5000 (0%) 1.15 N/A N/A
Clean (512 x512) 4999/5000 (99.98%) 1/5000 (0.02%) 4.44 N/A N/A
Clean (1024 x 1024) 5000/5000 (100%) 0/5000 (0%) 16.21 N/A N/A
Overall 99.99% 0.01% 7.27 N/A N/A

To summarize, the total number of steganographically
modified images for evaluating Invoke-PSImage Mode-1 is
8,659, whereas for Mode-2 it is 30,000. Moreover, for the
sake of completeness, for both modes, we utilized 15,000
digital images from the clean images dataset.

5.2. Methodology. To evaluate the performance of Mavis and
to have a comparison with other detection tools used as a
benchmark, we assessed separately the two working modes
implemented by the Invoke-PSImage tool.

The discussed datasets discussed in Section 5.1 have been
processed by using the detection methodology introduced in
Sections 4.1 and 4.2. We have analyzed two aspects: (i)
whether the detection tool is able to correctly spot the
presence of the hidden data within the inspected image and
(ii) whether it is possible to estimate the size of the hidden
data and to roughly infer its functionality.

To evaluate Mavis, we use the metrics defined in Table 2.
To obtain numerical results, we conducted experiments by
using ad hoc Python scripts running on a machine equipped
with an Intel(R) Core(TM) i5-9400H CPU @2.5 GHz with
8 GB RAM.

6. Numerical Results

In this section, we present experimental results proving the
effectiveness of Mavis. First, we showcase the performance in
terms of detection, and then we discuss the ability of the tool
to estimate the size of the script and infer its functionality.

6.1. Hidden Payload Detection. Concerning the detection of
hidden malicious payloads, Table 3 reports results obtained
by Mavis. As shown, for PowerShell scripts, hidden via
Mode-1, Mavis was able to achieve 100% in detection ac-
curacy with 0% false negatives. The time needed to perform
the detection of deobfuscated scripts was ~2.5 times shorter
than that in the case of obfuscated contents. This could be
ascribed to the smaller nature of the deobfuscated contents
compared to the obfuscated counterparts.

Similar considerations on the accuracy of the detection
can be done when Invoke-PSImage is used in Mode-2. In
this case, a detection delay of 7.24 ms is observed, but this
does not prevent deploying Mavis in many realistic sce-
narios. Additionally, there is a linear relationship between
the detection time and the size of the image. In this case,
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FIGURE 3: Analysis of the distribution of overestimations and underestimations on estimation errors.

obfuscation does not have a visible impact on the achieved
performance.

For the sake of completeness, we also tested Mavis over
the clean dataset. Results indicate that false positives are only
~0.01%.

6.2. Size Estimation of PowerShell Scripts. As shown in Table 3,
Mavis was able to estimate the size of malicious scripts injected
via Mode-1 with a MAPE of 5.43% in a time of ~ 3 ms, on
average. The table also reports that obfuscated scripts are es-
timated with a higher accuracy. Yet, the time needed for size
estimation is three times shorter for deobfuscated scripts than
that for their obfuscated counterparts. In the case of Mode-2,
Mavis achieved high values for the MAPE (i.e., 0.0011%, on
average) at the price of a limited time for performing the es-
timation (i.e., 6.72ms, on average). Additionally, the MAPE
results are stable across groups and do not depend on the size of
the image. Finally, the time needed to perform size estimation
for obfuscated scripts is two times higher than that for their
deobfuscated counterparts. Therefore, Mavis can be considered

an efficient tool for estimating the size of malicious PowerShell
scripts hidden via the Invoke-PSImage technique.

However, as mentioned in Section 4.3, the algorithm
introduced for size estimation purposes could exhibit some
limitations, which may lead to both under-/overestimations.

For example, let us consider the results for the 5,000
digital images with 256 x 256 resolution, where deobfuscated
scripts have been embedded. Figure 3(a) illustrates the re-
sults of over-/underestimation. As shown, the real size of the
script has been, in some cases, underestimated mostly by 1 or
8 bytes, but there are also some underestimations by -2, ~10,
or —21 bytes. We point out that, even in the presence of
estimation errors, the size of ~ 97% scripts has been correctly
identified.

To further improve the accuracy of the estimation process,
we can explicitly consider the aforementioned biases. Spe-
cifically, if the initial estimation of the size is recognized as
incorrect (e.g., scripts can be extracted in a sandbox and
properly measured), we increase its size by 1 byte and check
the outcome. If the size is still erroneous, then we increment
the size by 7 bytes. From the computational perspective, this is
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a negligible additional burden but allows improving per-
formances to 99.8%. Moreover, reducing estimation errors
also accounts for extracting the hidden script in a correct and
complete manner. In Figure 3(a), it is visible that 96 scripts
were underestimated by 8 bytes and 27 scripts were under-
estimated by 1 byte. By the exploitation of the 8-byte bias, as
described above, we can decrease the number of inaccurate
estimations from 128 to 32 but with an increasing overes-
timation of 7 bytes in 27 scripts (Figure 3(b)). Using this
knowledge, we can further decrease the number of incorrectly
estimated scripts to just 5 (Figure 3(c)).

Finally, we point out that the time needed to determine
the size of the script can be reduced by using specific
characteristics of the Invoke-PSImage injection process.
Since the data is equally distributed over the targeted colour
channels (i.e., every channel carries the half of a byte), it is
only required to investigate one of the two channels to
determine the size of the script.

6.3. Inferring Script Functionality via Its Size. To answer this
research question, the first step was to remove the duplicated
deobfuscated scripts from the dataset available in [21],
leading to 2,355 unique scripts. Then, we determined the
mean size of the previously defined three categories of
scripts’ functionality, that is, Memory Execution, Shell Ex-
ecution, and Malware Download/Rest.

Figure 4 illustrates the obtained results. It is visible that the
size of the scripts in the Memory Execution category is ~ 4.5
times larger than the Shell Execution group. The main reason
behind this is that the scripts belonging to the Memory Exe-
cution class contain malicious code in a binary form, which is
injected directly into memory. This is a crucial characteristic
that contributes to the resulting size. Since the category
Malware Download/Rest mainly includes scripts used only to
download further malicious components from the C&C server
and execute them, their average size is ~ 8.8 times smaller
than that of those belonging to the Memory Execution class. We
then evaluated whether we are able to assign the inspected
script into the correct category just by its size. First, we
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TaBLE 4: Inferred script functionality by size.

Multiplication factor

Obfuscation method Corr. predicted

(fo)

] 2,116/2,355

No obfuscation 1 (89.85%)
) 2,040/2,355

ASCII encoding 4.19445 (85.14%)
1,999/2,355

Token-based 2.02852 (84.88%)
. 1,939/2,355

String-based 1.79499 (82.34%)
2,005/2,355

AbstractSyntaxTree 1.09672 (85.14%)
Overall - 85.77%

experimented only with the deobfuscated scripts. Then, we also
tested how many of the obfuscated scripts can be linked to the
correct groups by using their mean sizes multiplied by the
factor f,, depending on which obfuscation method was ap-
plied. The results for the calculation of f, and the correctness of
the size prediction are presented in Table 4.

In the case when no obfuscation was used, ~90% of the
scripts were correctly classified. The ASCII encoding, token-
based, and string-based obfuscation techniques performed
similarly; that is, the functionality of ca. ~85% scripts was
correctly inferred. Finally, a slightly worse result was
achieved for the string obfuscation where ~82% of Pow-
erShell scripts were correctly assigned. Based on these
outcomes, it is evident that f is suitable for inferring the
functionality of obfuscated scripts. Moreover, f, varies
greatly depending on the type of the used obfuscation
technique. As an example, an obfuscated script using ASCII
encoding is, on average, 3.82 times larger than an obfuscated
script using AbstractSyntaxTree. As a consequence, the
suggested approach seems to be promising, as more than
85% of the scripts can be assigned to their correct functional
categories.

7. Comparison with Existing Tools

To prove the effectiveness of our approach, we compared
Mavis with McAfee SAT and StegExpose. To avoid bur-
dening the discussion, detailed results for these two tools are
presented in Appendix A.

Concerning the experimental methodology, in the case
of StegExpose, we used the complete datasets of stegano-
graphically modified and clean files of different resolutions
as described in Section 5.1 (in total 45, 000 files). However,
due to the file size limitation of McAfee SAT, we narrowed
the datasets to images of size 256 x 256 (stego and clean
files), which means that only 15,000 files were subjected to
evaluation.

Moreover, as the McAfee SAT tool is an online product,
it was necessary to automatize the experimental campaign by
developing a drag&drop control for the website. In this case,
we used WebDriver for Chrome and prepared a custom
Python script for sending the selected digital images to the
McAfee website and then capturing the generated report.
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FIGUure 5: Comparison among the three methods.

For the case of StegExpose, we needed to modify its source
code to have access to additional information, such as the
time needed to perform the detection process.

For both tools, all measurements were stored in CSV files
and then analyzed through ad hoc Python scripts to obtain
the final averaged values. The experimental evaluation of
McAfee SAT tool was performed on a machine equipped
with an Intel(R) Core(TM) i5-9400H CPU @ 2.5 GHz with
8 GB RAM, while for StegExpose it was a device running
Ubuntu 20.04 with an Intel(R) Core(TM) i9-9900KF CPU @
3.60 GHz and 32 GB RAM.

Figure 5(a) illustrates the detection rates for each tool. It
can be noted that Mavis outperforms the rest: the difference
is especially noticeable for Mode-1 detection, for which
McAfee SAT reached only ~ 45% and StegExpose ~ 70%,
while it is 100% for Mavis. For Mode-2, the difference is

smaller but still accounts for ~ 10%. The FP and FN
comparison is presented in Figure 5(b). It can be concluded
that, again, Mavis achieved significantly better results
(FN =0% for both modes and FP =0.01%) than the rest of
the tools. McAfee SAT yielded particularly poor results, with
FN rates as high as ~ 55%. StegExpose is in this aspect
much better with 11.53% for Mode-1 and 7.11% for Mode-2,
but again Mavis significantly outperformed it.

Regarding the computational performance of each
method, the experimental results are showcased in
Figure 5(c). As shown, the time needed to detect Mode-1 of
Invoke-PSImage is smaller for the case of StegExpose
(2.56ms), and it achieves the best performance compared
against the other tools (for McAfee SAT it was 11.47 ms,
while for Mavis it is 13.05 ms). However, for Mode-2, both
StegExpose and McAfee SAT experienced a significant
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TaBLE 5: Detection results for StegExpose in “default” mode.

Invoke-PSImage Mode-1
Scripts Correct detec. FN rate ty (ms) t, (ms) MAPE (%)
Deobfuscated 4429/4641 (95.43%) 212/4641 (4.57%) 1.56 1.56 56
Obfuscated 1649/4018 (41.04%) 2369/4018 (58.96%) 3.72 3.72 91
Overall 70.19% 29.81% 2.56 2.56 72

Invoke-PSImage Mode-2
Scripts Correct detec. FN rate t,; (ms) t, (ms) MAPE (%)
Deobfuscated (256 x 256) 4850/5000 (97%) 150/5000 (3%) 164.25 164.25 11614
Deobfuscated (512 x 512) 4579/5000 (91.58%) 421/5000 (8.42%) 824.05 824.05 31470
Deobfuscated (1024 x 1024) 4600/5000 (92%) 400/5000 (8%) 3308.11 3308.11 125795
Obfuscated (256 x 256) 4816/5000 (96.32%) 184/5000 (3.68%) 183.74 183.74 4380
Obfuscated (512 x 512) 4498/5000 (89.96%) 502/5000 (10.04%) 831.91 831.91 11848
Obfuscated (1024 x 1024) 4525/5000 (90.05%) 475/5000 (9.5%) 3199.81 3199.81 48231
Overall 92.89% 7.11% 1418.65 1418.65 38890
Scripts Correct detec. FP rate t,; (ms) t, (ms) MAPE
Clean (256 x 256) 4885/5000 (97.7%) 115/5000 (2.3%) 166.4 N/A N/A
Clean (512 x 512) 4897/5000 (97.94%) 103/5000 (2.06%) 831.82 N/A N/A
Clean (1024 x1024) 4831/5000 (96.62%) 169/5000 (3.38%) 3261.14 N/A N/A
Overall 97.42% 2.58% 1419.79 N/A N/A

TaBLE 6: Detection results for StegExpose in “fast” mode.

Invoke-PSImage Mode-1
Scripts Correct detec. FN rate t,; (ms) t, (ms) MAPE (%)
Deobfuscated 3860/4641 (83.17%) 781/4641 (16.83%) 1.37 1.37 59
Obfuscated 1017/4018 (25.31%) 3001/4018 (74.69%) 0.44 0.44 93
Overall 56.32% 43.68% 0.94 0.94 75

Invoke-PSImage Mode-2
Scripts Correct detec. FN rate t,; (ms) t, (ms) MAPE (%)
Deobfuscated (256 x 256) 3649/5000 (72.98%) 1351/5000 (27.02%) 122 122 10163
Deobfuscated (512 x 512) 2852/5000 (57.04%) 2148/5000 (42.96%) 480.27 480.27 25965
Deobfuscated (1024 x 1024) 2902/5000 (58.04%) 2098/5000 (41.96%) 1606.09 1606.09 104000
Obfuscated (256 x 256) 3694/5000 (73.88%) 1306/5000 (26.12%) 118.33 118.33 3841
Obfuscated (512 x 512) 2859/5000 (57.18%) 2141/5000 (42.82%) 364.44 364.44 9719
Obfuscated (1024 x 1024) 2792/5000 (55.84%) 2208/5000 (44.16%) 1694.7 1694.7 39816
Overall 62.49% 37.51% 730.97 730.97 32251
Scripts Correct detec. FP rate t,; (ms) f, (ms) MAPE (%)
Clean (256 x 256) 4905/5000 (98.1%) 95/5000 (1.9%) 6.32 N/A N/A
Clean (512 x512) 4966/5000 (99.32%) 34/5000 (0.68%) 16.44 N/A N/A
Clean (1024 x 1024) 4912/5000 (98.24%) 88/5000 (1.76%) 140.67 N/A N/A
Overall 98.55% 1.45% 54.48 N/A N/A

TaBLE 7: Detection results for McAfee SAT (only files of size 256 X 256 can be tested).

Invoke-PSImage Mode-1
Scripts Correct detec. FN rate t,; (ms) Conf. level Score
Deobfuscated 3064/4641 (66.02%) 1577/4641 (33.98%) 5.59 Low: 0, medium: 2055, high: 2586 544.07
Obfuscated 822/4018 (20.46%) 3196/4018 (79.54%) 17.35 Low: 0, medium: 3892, high: 126 100.83
Overall 44.88% 55.12% 11.47 N/A 322.45

Invoke-PSImage Mode-2
Scripts Correct detec. FN rate t; (ms) Conf. level Score
Deobfuscated 4482/5000 (89.64%) 518/5000 (10.36%) 1343.29 Low: 0, medium: 2476, high: 2524 426.87
Obfuscated 4365/5000 (87.3%) 635/5000 (12.7%) 1337.54 Low: 0, medium: 2476, high: 2524 417.26
Overall 88.47% 11.53% 1340.41 N/A 422.06
Clean 4927/5000 (98.54%) 3/5000 (1.46%) 1097.37 Low: 0, medium: 4991, high: 9 32.03
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decrease in processing performance with ~ 1400 ms, while
Mavis was slightly faster on average than for Mode-1, that is,
7.24 ms on average. A similar effect becomes apparent on the
comparison of the time needed by the size estimation algo-
rithm (note: McAfee SAT has no such feature). For Mode-1,
both StegExpose and Mavis perform similarly; that is, they
need ~ 3ms to complete the process. However, in Mode-2,
the result yielded by StegExpose rapidly decays to ~ 1400 ms,
while it remains approximately stable for Mavis ( ~ 7 ms).
Finally, it must be noted that the malicious script size esti-
mation algorithm in Mavis is significantly more precise than
the one in StegExpose. For estimating the size of scripts
embedded using Mode-1 of Invoke-PSImage, the MAPE
value is 72% for StegExpose, while it is only 5.43% for Mavis.
In Mode-2, the difference is even more remarkable as the
MAPE for StegExpose skyrocketed to 38890%, and in the case
of Mavis it improved to 0.0011%.

8. Conclusion and Future Work

In this work, we investigated threats leveraging the Invoke-
PSImage tool to embed malicious PowerShell scripts into
innocent-looking digital images. To cope with such an
emerging class of attacks, we proposed a tool named Mavis.
Obtained experimental results indicated the effectiveness of
the proposed approach as well as its efficiency. Thus, Mavis
could be considered as a valid framework to protect realistic,
production-quality environments, especially if characterized
by nonnegligible volumes of traffic.

Future work will aim at carrying out large-scale ex-
periments by deploying Mavis in large-scale telecom/ISP
networks. Apart from further evaluating the behavior of the
tool, this will also allow us to quantify the real risk related to
threats exploiting the Invoke-PSImage technique in the wild.
Moreover, part of our ongoing research is devoted to further
analyzing the relationship between script size, functionality,
and different obfuscation techniques. In particular, we will
aim at investigating if our solution can be applied to combat
multilayered obfuscation approaches.

Appendix

Experimental Evaluation of the Existing Tools

In this appendix, we present the detailed detection results for
the steganalysis tools considered in this work, that is,
StegExpose and McAfee SAT, to show how they perform
when trying to detect images modified by Invoke-PSImage.

A. StegExpose Results. Tables 5 and 6 report the measure-
ments obtained by testing StegExpose against the complete
dataset in both “default” and “fast” modes with a
threshold = 0.2. The threshold value is set as suggested by
the authors of the StegExpose tool [28], as it generally allows
achieving the best trade-off between false positive and true
positive rates.

Based on these results, it is noticeable but unremarkable
that the “fast” mode performs better in terms of the time
needed for the detection phase and estimation phase, as
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expected (e.g., f; = 2.56 ms in the case of default mode and
t; = 0.94 ms in the case of fast mode). This is a consequence
of the fact that when using the “fast” mode, StegExpose tries
to skip several of the four algorithms. This leads to the lower
precision. In fact, the “default” mode performs better; for
example, it achieves 70.19% correct detection for images,
where Mode-1 was applied, while the “fast” mode reaches
only 56.32%. On the other hand, when dealing with clean
images, the “fast” mode can reach a higher percentage of
correctly classified images, that is, 98.55% versus 97.42% in
almost 1/26 of time.

The MAPE value is not significantly different for both
modes. This value declines with increasing image size. Fi-
nally, the results obtained for the obfuscated images are, in
general, better than those for the deobfuscated images, es-
pecially in the case of the MAPE values.

B. McAfee SAT Results. Table 7 presents the results collected
by testing the steganographic tool from McAfee. The tool is
not able to process images with a resolution larger than
1024 x 768 or with a size greater than 1MB; thus the table
contains the results obtained by testing only images of size
256 x 256. Moreover, the SAT tool does not provide any
information about the injected script (e.g., its size); thus £,
and MAPE columns are omitted, and, therefore, compari-
sons for these two aspects are not possible in this case.

Compared to StegExpose (in both modes), McAfee SAT
performs clearly worse for images generated with Mode-1.
In fact, the McAfee SAT tool achieves an overall rate of
correctly detected images of 44.88% (and a false negative rate
of 55.12%) versus better results from StegExpose (for both
modes). Concerning the results obtained by testing images
of size 256 x 256 generated by Invoke-PSImage, McAfee SAT
performs better than StegExpose in the fast mode (comp.
Table 6) but worse than when the default mode is used
(comp. Table 5).
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