
Research Article
LogKernel: A Threat Hunting Approach Based on Behaviour
Provenance Graph and Graph Kernel Clustering

Jiawei Li ,1 Ru Zhang ,1 Jianyi Liu ,1 and Gongshen Liu 2

1Beijing University of Posts and Telecommunications, Beijing 100876, China
2Shanghai Jiao Tong University, Shanghai 200240, China

Correspondence should be addressed to Ru Zhang; zhangru@bupt.edu.cn

Received 12 May 2022; Accepted 31 August 2022; Published 27 September 2022

Academic Editor: Ch. Aswani Kumar

Copyright © 2022 Jiawei Li et al.(is is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cyber threat hunting is a proactive search process for hidden threats in an organization’s information system. It is a crucial
component of active defense against advanced persistent threats (APTs). However, most of the current threat hunting methods
rely on Cyber (reat Intelligence (CTI), which can find known attacks but cannot find unknown attacks that have not been
disclosed by CTI. In this paper, we propose LogKernel, a threat hunting method based on graph kernel clustering which can
effectively separate attack behaviour from benign activities. LogKernel first abstracts system audit logs into behaviour provenance
graphs (BPGs) and then clusters graphs by embedding them into a continuous space using a graph kernel. In particular, we
designed a new graph kernel clustering method based on the characteristics of BPGs, which can capture both structure in-
formation and rich label information of the BPGs. To reduce false positives, LogKernel further quantifies the threat of abnormal
behaviour. We evaluate LogKernel on the malicious dataset, which includes seven simulated attack scenarios, and the DAPRA
CADETS dataset, which includes four attack scenarios.(e result shows that LogKernel can hunt all attack scenarios among them,
and compared to the state-of-the-art methods, it can find unknown attacks.

1. Introduction

Advanced Persistent (reats (APTs) have the characteristics
of persistence and concealment.(ese threats can bypass the
threat detection software (TDS) and lurk, so the enterprises’
information systems may contain attacks that have already
occurred but have not been detected. To better prevent and
respond to such attacks, endpoint detection and response
(EDR) tools are widely deployed for enterprise security.
However, these tools rely on matching low-level indicators
of compromises (IOCs), which leads to “alarm fatigue”
problems and a failure to reveal the complete attack scenario.
To overcome this challenge, recent research solutions hunt
for cyber threats by performing a causality analysis on audit
logs [1–4]. In fact, causality and contextual information in
audit logs imply high-level behaviours and goals of attackers
that are difficult to hide.

(reat hunting is a proactive search process for latent
attacks, which has become a key component of mitigating

APT attacks. Existing work extracts attack behaviors from
threat intelligence and designs matching algorithms to
search for these known attacks from audit logs. To achieve
this, some work [1, 5] constructed audit logs as provenance
graphs that contain rich contextual information and mod-
elled threat hunting as a graph matching problem. Besides,
THREATRAPTOR [4] designs (reat Behavior Query
Language (TBQL) to query audit logs stored in the database.
However, both graph matching and querying with TBQL
need to extract attack behaviors from threat intelligence.
(ese extracted attack behaviors are structured as attack
graphs, in which nodes represent IOCs and edges represent
IOC relations. (ese methods rely heavily on threat intel-
ligence, which leads to some limitations. On the one hand,
when there are deviations between threat intelligence and
facts, attack activities may be missed. On the other hand, the
description of the same APT attack event may come from
different reports, so the information in these reports may be
different or contradictory. Furthermore, attacks in threat

Hindawi
Security and Communication Networks
Volume 2022, Article ID 4577141, 16 pages
https://doi.org/10.1155/2022/4577141

mailto:zhangru@bupt.edu.cn
https://orcid.org/0000-0003-2611-1852
https://orcid.org/0000-0001-6641-3236
https://orcid.org/0000-0003-3133-4452
https://orcid.org/0000-0001-5194-1570
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4577141

intelligence are not comprehensive. Many APT attacks have
not been disclosed by threat intelligence, and APT groups
will upgrade cyber weapons or change intrusion strategies
when attacking new targets. We refer to the above two cases
as unknown attacks, and existing methods cannot detect
these attacks.

Some solutions for investigating attacks, such as
matching rule knowledge bases [2, 6] or employing tag
strategy [7, 8], require the manual participation of domain
experts. (e completeness and accuracy of the expert
knowledge will affect the analysis result. To overcome the
above problem, Nodoze [9] builds an Event Frequency
Database to replace the rule knowledge base, which con-
siders that audit events related to attacks occur infrequently.
However, to avoid detection, attackers will disguise them-
selves as normal behaviors or use some normal processes,
such as svchost.exe, which affects the accuracy of methods for
calculating threat scores based on matching or single event
frequency.

To solve these problems in threat hunting, this paper
proposes LogKernel, a threat hunting approach based on
graph kernel clustering. It does not require additional expert
knowledge to evaluate the threat in provenance graphs, nor
does it require knowledge of threat intelligence to search for
threat behaviors. Our first key insight is that there is a con-
siderable discrepancy between the behavior of attackers and
normal users, which is intuitively reflected by the disparity in
the topological structure of provenance graphs. (erefore,
LogKernel first abstracts the audit log into behavior prove-
nance graphs (BPGs), which can represent different behaviors.
(en, it uses a graph kernel method to calculate the similarity
between BPGs. However, the off-the-shelf graph kernel
methods cannot be used directly since the BPG is a kind of
labeled directed graph with multiple types of directed edges.
(erefore, we propose the BPG kernel, which is improved by
the Weisfeiler-Lehman kernel and can capture the graph
topology and rich label information. Based on the calculated
kernel values, which indicate the degree of similarity, we
cluster the BPGs using a clustering algorithm. Our second key
insight is that the frequency of benign behaviors is much
higher than that of threat behaviors, providing a basis for
determining. which clusters represent threats. (erefore,
LogKernel determines, which clusters represent threats based
on the number of similar behaviors. Finally, considering false
positives caused by low-frequency normal behaviors, a threat
quantification method is proposed to estimate the degree of
BPGs.

We evaluate the effectiveness and accuracy of LogKernel
using three different datasets. In the first malicious dataset,
we simulate seven attack scenarios, three from open APT
reports and two complex attacks based on current attack
techniques and strategies. In addition, we also executed two
cyber weapons. (en, we use the DAPRA CADETS dataset
released by the Transparent Computing program to evaluate
the applicability of LogKernel. Finally, we evaluate the false
positives of our method on a benign dataset that does not
contain attacks and verify that the threat quantification
method has good performance in reducing false positives.
(e results show that LogKernel can hunt the attack

scenarios effectively, and compared to the state-of-the-art
methods relying on Cyber (reat Intelligence (CTI), it can
find unknown attacks.

In summary, this paper makes the following
contributions:

(1) LogKernel is proposed in this paper, which is an
approach that hunts for threats in an organization’s
information systems. (e proposed approach sepa-
rates threat behaviors from normal behaviors by
comparing the differences between behaviors with
graph kernel clustering. Most current threat hunting
methods extract attack behaviors from threat intel-
ligence and match similar attacks in logs. Compared
to these methods, which are limited by threat in-
telligence, our approach can hunt unknown attacks
without requiring threat intelligence and the manual
involvement of domain experts.

(2) A novel behavior provenance graph abstract algo-
rithm is designed to construct BPGs from audit logs.
At the OS level, BPGs can represent different be-
haviors and nodes and directed edges are assigned
labels to represent the characteristics of different
behaviors. Additionally, a novel density-based par-
titioning method is proposed to mitigate the impact
of dependency explosion, which can partition long-
running processes to separate different behaviors
from the provenance graph.

(3) (is is the first time a graph kernel clusteringmethod
has been proposed for threat hunting. In this paper, a
novel graph kernel clustering approach is presented
to cluster BPGs. Specifically, the improved graph
kernel method can capture the topology and prop-
erties of BPGs and can effectively and accurately
quantify the similarity between BPGs to generate a
similarity matrix that can be directly used for
clustering.

(4) We designed a process to evaluate the effectiveness
and accuracy of LogKernel. (e performance of each
step is analyzed on several datasets and compared
with other methods. (e results show that Logkernel
can hunt for threats like other work and can find
threats in less time in some datasets. Furthermore, it
can hunt unknown threats that are not disclosed by
threat intelligence.

2. Related Work

2.1. *reat Hunting

2.1.1. Provenance Analysis. Our work relies for some ideas
on provenance analysis, so we introduced previous work in
this area. (e idea of constructing a provenance graph from
kernel audit logs was introduced by King and Chen [10].
(en, the provenance graph is widely used for threat
hunting, attack detection [11, 12], attack investigation
[13–15], and scenario reconstruction [2, 16]. All these re-
search studies encountered a variety of challenges.

2 Security and Communication Networks

For attack detection, the main challenge is that the graph
size grows continuously as APTs slowly penetrate a system.
UNICORN [12] uses a graph sketching technique to sum-
marize long-running system execution to combat slow-
acting attacks. Attack investigation mainly traces the root
causes and ramifications of an attack through causal analysis.
OmegaLog [14] bridges the semantic gap between system
and application logging contexts and merges application
event logs with system logs to generate the universal
provenance graph (UPG). (e challenges of attack scenario
reconstruction are the semantic gap between the low-level
logs and the attack behavior. Holmes [2] maps low-level
audit logs to TTP and APT stages by matching the rules in
the knowledge base. WATSON [3] infers log semantics
through contextual information and combines event se-
mantics as the representation of behaviors. It can also reduce
the analysis workload by two orders of magnitude for attack
investigation. Nevertheless, the amount of audit logs gen-
erated by a typical system is nontrivial, limiting the efficiency
of log analysis and resulting in a dependency explosion [17].
To solve this problem, recent research studies have proposed
execution unit partition [18, 19], taint propagation [19, 20],
grammatical inference [21, 22], and universal provenance
[14] techniques. (ese research studies can perform more
accurate provenance tracking and reduce storage and time
overhead.(e scope of LogKernel differs from these research
studies since we intend to hunt unknown threats via the
comparison between the BPGs.

2.1.2. *reat Hunting. (reat hunting is becoming an es-
sential element of active defence against advanced persistent
threats. POIROT [1] constructs a query graph by extracting
IOCs together with the relationships among them from CTI
reports. (en, the query graph is used to match the most
similar subgraph in the provenance graph. Its core contri-
bution is the implementation of the above process via an in-
exact graph matching algorithm. However, the query graph
of POIROT requires time-consuming manual construction
by cyber analysts. THREATRAPTOR [4] provides an un-
supervised, light-weight, and accurate NLP pipeline that can
extract structured threat behaviors from unstructured OS-
CTI texts. It designs threat behavior query language (TBQL)
to facilitate threat hunting in system audit log data.

Extracting threat knowledge from CTI reports and
matching them in audit logs can facilitate threat hunting.
However, the above research studies can only hunt for
known attacks disclosed by CTI reports. In fact, there are still
some APT attacks that have not been discovered or dis-
closed. To hunt these unknown threats, a threat hunting
method based on graph kernel clustering is proposed, which
can hunt for unknown threats without knowledge of CTI
reports.

2.2. Graph Kernel. Graph kernels are kernel functions that
compute the inner product of a graph [23], which can be
intuitively understood as functions measuring the similarity
of pairs of graphs. (e graph kernel [24] approach was
proposed by (omas Gaertner for graph comparison. (ere

is a huge amount of work in this area due to the prevalence of
graph-structured data and the empirical success of kernel-
based classification algorithms [25].

Compared with traditional machine learning methods,
graph kernels allow kernelized learning algorithms such as
support vector machines to work directly on graphs without
extraction to transform them into fixed-length, real-valued
feature vectors, which lose a lot of structured information. In
this paper, a new graph kernel method is proposed, which
can capture both structure information and rich label in-
formation of labeled directed graphs.

Let G be a graph set and k: G×G⟶R be a function
associated with a Hilbert space H, so there exists a map ∅:

G⟶H with k(G1, G2) � ϕ(G1) , ϕ(G2) for all G1, G2 ∈
G.(en 〈·, ·〉 denotes the inner product of H and k is said to
be a positive definite kernel function. Figure 1 shows a graph
kernel implicitly mapping graphs to a Hilbert space H.

Given a graph G � (V, E, L), where V denotes the set of
nodes, E denotes the set of edges, and L denotes the set of
labels of nodes. For a node v, we define neighbourhood N
(v) � v′|(v, v′) ∈ E } to denote the set of nodes to which v is
connected by an edge, and then | N (v)| � deg(v) is the
degree of node v.

(emost important and well-known of these strategies is
the Weisfeiler–Lehman (WL) algorithm and kernel [26]. In
this paper, WL subtree graph kernel is selected and im-
proved to calculate the kernel values between the nodes of
the graphs. (e basic idea of kernel calculation is as follows.

First, we assign an initial label l(0)(v) to each node of G1
and G2. In the labeled graph, this label is li ∈ L and in
unlabeled graph it is a degree, i. e., l(0)(v) � deg(v).

Next, we iteratively assign a new label to each node based
on the current labels within the node’s neighborhood

l
i
(v) � relabel l

i− 1
(v) , sort l

i− 1
(u)|u ∈N(v) , (1)

where the double-braces are used to denote a multiset. sort
(S) realizes sorting the elements in the multiple-set in as-
cending order, and then li− 1(v) is added to the front of the
set. relabel(S) maps S to a new label which has not been used
in previous iterations.

After running K iterations of relabeling, we now have a
label li(v) for each node that summarizes the structure of its
K-hop neighborhood. (en, we can summary statistics over
these labels and calculate the kernel values.

Message Passing Graph Kernels [27] is a graph kernel
framework which consists of two components. (e first
component is a kernel between vertices and the second
component is a kernel between graphs [16]. Let kv be a kernel
between nodes and kN be a kernel between neighborhoods.
(en, compute the kernel kt

v between each pair of vertices
iteratively and the recurrence is shown as follows:

k
t+1
v v1, v2(� αk

t
v v1, v2(+ βkNN v1,N v2((, (2)

where α and β are nonnegative constants. After computing
the kernel between each pair of vertices for T iterations, we
can compute a kernel between graphs as follows:

kG G1G2(� kV V1V2(. (3)

Security and Communication Networks 3

In this paper, we propose a BPG kernel on the frame-
work to calculate the similarity between BPGs. Specifically,
we improve the WL kernel based on the characteristics of
BPGs for calculating the kernel values between nodes. (en,
we compute kG(G1G2) and get a positive definite kernel
matrix Kn×n, which can be considered as a similarity matrix
in a Hilbert space.

3. Motivation

In this section, we introduce the motivation of the approach.
We first use an attack example to illustrate the challenges
and limitations of the threat hunting based on provenance
analysis and then analyse the feasibility of our approach.

3.1. Limitations and Challenges

3.1.1. An Attack Scenario. Ever since macros were intro-
duced, they have been maliciously exploited by hackers.
More recently, macros have also been widely used as attack
vectors by advanced Persistent (reat (APT) organizations
[28]. To avoid detection, macro viruses use process hol-
lowing [29]. Next, we will introduce an attack scenario using
macro viruses.

Consider a scenario where a worker in an organization
reads emails and downloads attachments (such as Office files
or zip packages) every morning. One of the emails is a
phishing email with a zip file attached. (e worker unzips
the package and opens the document containing the macro
instructions. At the same time, the macro virus begins to
work. First, the virus releases a PE file named t2.tmp and
executes it. (en, the tmp file uses process hollowing
techniques to inject malicious code into explorer.exe and
svchost.exe, which tests the connection to the C & C servers.
After that, svchost.exe queries the registry and collects host
information. Finally, the process encrypts the information
and sends it to the C & C server in POST mode.

System audit logs record the OS-level operation such as
writing file, executing process, and connecting IP address.
Specifically, we can abstract a triple (Subject, Object, Rela-
tion) from audit logs, where Relation is an operation, Subject
is the entity executing operation, and Object is the entity
being operated. (ese triples are used to build a provenance
graph [9] for tracking information flows in audit logs.
Figure 2 demonstrates the complete scenario represented by

a provenance graph, with the red dotted boxes representing
the execution of the macro virus and the black dotted boxes
representing the normal behavior of the worker.

Based on the above attack scenario, we illustrate the
limitations and challenges of existing threat hunting and
attack investigation approach:

3.1.2. Dependency Explosion. Most existing approaches or
systems based on provenance graph face the dependency
explosion problem. (e main reason for this is that some
processes have long lifetime and iterative input/output
processes. For example, mailbox client process receives and
sends a large number of emails during its lifetime [17]. (e
process is considered as a single node in the provenance
graph, which results in threat behavior and normal behavior
appearing in the same graph. As shown in Figure 2, the
attack behavior in the red dotted box is constructed in one
graph with normal behavior due to mailmaster.exe.

3.1.3. Relay on Knowledge. In essence, both the rule
knowledge base and threat intelligence rely on knowledge to
match the threat behavior in the provenance graphs. Un-
fortunately, some situations in practice can cause the threat
path to break. For example, the rule matching methods miss
the hollowed svchost.exe and explorer.exe, resulting in the
threat path interruption. In addition, many audit behaviors
of attackers are common in the audit logs of normal users,
such as writing office files or connecting to the external
network, and attackers use some techniques to disguise
themselves to avoid detection. (is condition leads to a low
threat score calculated based on the frequency of a single
event. Another obvious problem is that they can only hunt
threats described by existing knowledge.

3.2. Feasibility Analysis. Two different behaviors described
in Figure 3 intuitively reflect our first key insight. Checking
email is a normal behavior that happens frequently. (e
topology of the BPG describing macro virus behavior varies
substantially from normal behavior such as the label of
nodes and the relationships between nodes. In fact, the
topology implies high-level behaviors and goals. Because the
purpose of the attacker is different from that of the normal
user, the actions taken by the attacker and the causal rela-
tionship between the actions are also different. For example,
the topology of sending a macro virus is similar to checking
email, but the causal relationship between subsequent op-
erations implicitly includes the attacker’s purpose of dis-
guising himself and stealing information. (us, we can
compare the similarity between the provenance graphs of
different behaviors to separate advanced threats from benign
activities and model threat hunting as a clustering problem
of labeled directed graphs.

We design an algorithm in Section 4.1 to extract BPGs
from audit logs to describe different behaviors. (en, we
choose the graph kernel to implement our graph clustering
task, which is a popular method for measuring the similarity
between graphs. However, the existing graph kernel cannot

G

G3 G4

G2

G1

ϕ (G3)

ϕ (G2)

ϕ (G4)

ϕ (G1)

Hilbert Space

Figure 1: Illustration of the kernel-based graph mapping.

4 Security and Communication Networks

be directly used to perform the similarity measurement due
to two reasons. First, the BPGs nodes not only have distinct
types but also contain attributes that are signi�cant for
determining similarity. Besides, the type of edges is also a
critical feature. Second, the graph kernel method is typically
used for classi�cation tasks and the data are balanced
samples, while the number of graphs in each cluster of BPG
clustering tasks vary greatly. An unsupervised graph kernel
clustering approach is proposed in Section 4.2.

4. Approach

�e overall approach of LogKernel is shown in Figure 4,
which consists of three phases: BPGs construction, Graph
Kernel Clustering, and �reat assessment. First of all,
LogKernel analyses audit logs for information on entity
types, attributes, and relationships between entities.
According to the information, logs are constructed as BPGs,
which describes various behaviors. Next, the similarity be-
tween the BPGs is calculated through an improved graph
kernel, and the BPGs are clustered using a clustering al-
gorithm. Finally, abnormal behavior is identi�ed based on
the frequency of similarity behavior. In order to reduce false
positives, a threat quanti�cation method is introduced to
assess risk.

4.1. Behavior Provenance Graph Construction. �e con-
struction process of the behavior provenance graph (BPG) is
described in detail in this section. �e BPG is proposed to
represent di�erent behaviors in this paper. Compared to the
existing work [1–4], nodes and edges of BPG are assigned
appropriate labels to represent the characteristics of be-
haviors. As discussed in Section 3.1, long-running processes
cause false dependencies in the provenance graph, which

causes di�erent behaviors to appear in the same graph. So, a
density-based partitioning method is proposed to remove
false dependencies to generate more concise BPGs.

De
nition 1. (behavior provenance graph (BPG)). �e la-
beled directed graph G � (V, E, LV, LE) represents the be-
havior provenance graph, whereV represents the node set of
system entities and LV � lvi||vi ∈ V{ } indicates the label set
of nodes. E � Ueij{ } is the directed edge set, and LE � leij{ }
is a label set, where leij � eij: Relationship{ } denotes op-
eration between entities. �e entity types and relationships
between entities in this work are shown in Table 1. In fact, a
BPG describes the information �ow of a certain behavior at
the system level. For example, a BPG can represent the
complete process of downloading an attachment in an email,
modifying it, and forwarding it.

De
nition 2. (node label). Node labels are used to indicate
the characteristics of behaviors. Relationships can be used
directly as the label of the edge, such as leij � eij: Read{ }.
However, the entity type cannot be directly used as the node
label, which will ignore the rich attribute information of the
entity. Rich attribute information and relationships imply
the purpose of behavior, but some information is not useful
for similarity calculation. For example, the same malware
executed in di�erent hosts may have di�erent paths and
names of the generated �les.

To measure the similarity between BPGs, the attribute
information of the entity is mapped to labels and assigned to
nodes. Function GETNODE in Algorithm 1 abstracts at-
tribute information as labels. For process, the label is process
name, such as mailmaster.exe and svchost.exe. �e label of
the
le only considers the �le type and not the path in-
formation. For example, report.doc and data.xls in D:
\download\ are assigned the same label of o�ce
le. �e label

encryptor.exe

mailmaster.exe

/.../*.docx

Read

Read

Read

Save

Read
Read

read

Create svchost.exe Create

Create

Create

Connect

C&C
Connect

Write

Write

Write Write
WriteSystem

Information

WORD.EXE

WORD.EXE

EXCEL.EXE

t2.EXE

WORD.EXE

*.zip *.zip

crypt32.dll

explorer.exe

Process Hollowing

*.exe

7z.exe 7z.exe

/.../*.docx

/.../*.docx /.../*.docx

/.../*.doc

/.../*.doc /.../*.jpeg /.../*.jpeg/.../*.pdf

/.../*.rtf /.../*.rtf

/.../t2.tmp

/.../*.xlsx

chrome.exe

Word Macro Virus

Figure 2:�e provenance graph for themacro viruses attack scenario. Rectangles represent processes, diamonds represent IPs, and rounded
rectangles represent �les.

Security and Communication Networks 5

of IP is address and port, while the label of User is the user’s
name. Function GETEDGE abstracts the relation as edge
and operation as the label of edge.

An example is presented below to illustrate the im-
portance of the node label. As shown in Figure 5, there are
three subgraphs of BPGs. (a) and (b) denote behaviors that
normal users download and unzip the zip �les from the
emails, and (c) denotes the behavior of macro virus releasing
PE �le. (a) and (c) are isomorphic when only node types with
distinct forms are considered. Consider another scenario
where the entity attributes are directly used as the label of the
node, such as %name%.docx. In this case, (a) and (b) are
considered di�erent behaviors due to the labels.

In order to extract BPGs that describe di�erent behaviors, a
forward depth-�rst search (DFS) is performed on the prove-
nance graph. File type nodes are the starting point of DFS
because they only appear at the end of the directed edges, as
illustrated in Table 1. In the process of traversing the graph, two
operations are performed to prevent false dependencies. First,
we compare the time of directed edges to prevent information
�owing from a future event to a past event. Second, the long-
running processes are partitioned to remove false dependencies
and achieve the segmentation of the provenance graph.

To partition the long-running process, a density-based
partitioning method is proposed. In other words, the long-
running process is partitioned by the density of depen-
dencies during its life cycle. A common phenomenon at the
system level is that when a process has dependencies on
multiple entities in a short period of time, these depen-
dencies belong to the same behavior instance. �e depen-
dencies are expressed as points on the time axis for
calculating their density, as shown in Figure 6. Note that the
edges from and to node are separately calculated. Timestart is
the time when the �rst dependency appears, and Timeend
is the time when the last dependency appears. Let tsi indicate
the timestamp of the occurrence of the i-th dependency and
calculate a time interval sequence T � T1, T2, . . . , Tn{ },

Behavior Provenance
Graphs Construction

Split Graphs

Generate Graphs

Extracts Attributes

System audit logs

BPG
Kernel

Kernel matrix

9.2
Gn

3.9

40.

18.9
G2

36.8

3.9

45.5
G1

ϕ (G)ϕ (G)ϕ (G)

G1
G2

Gn

18.9

9.2

INPUT

HDBSCAN

Implement Clustering

Threat Assessment

Abnormal Behaviors

num<
Tgraph

score<Tscore

Threat Behaviors

Threat Quantification

Graph Kernel Clustering

Task

Hilbert space

Figure 4: Overview of LogKernel.

Table 1: Entity types and relationships.

Start node End node Relationships

Process
File Read; write; execute
IP Connect

Process Create
IP User Logon
User Process Execute

encryptor.exe

Word Macro VirusCheck Mail

mailmaster.exe

mailmaster.exe

Read

Read

Create

Create

Connect
Connect

C&C

Create

Create

Create

Write

Write

picture picture

Write

Write

Write
Write

Write
WriteWrite

Write

Write
7z.exe

7z.exe

svchost.exe

explorer.exe

t2.EXE

zip file

zip file

office file

office file

office file

office file

office fileoffice file pdf file

tmp file

WORD.EXE WORD.EXE
EXCEL.EXE

chrome.exe chrome.exe

System
Information

Read

Read

dll file

Read

Save

Read

read

Figure 3: Two di�erent behavior provenance graphs. Checking mail is a normal behavior and word macro virus is a threat behavior.

6 Security and Communication Networks

where Ti � tsi+1 − tsi denotes the time interval between
adjacent dependencies. (e formula for calculating the
density of the i-th node is as follows:

Densityi �
Timeend−Timestart

Ti−1 + Ti

. (4)

When the density of the node is high, it suggests that
there are dependencies in a short period of time before and
after this node. We traverse all the nodes and consider
continuous dependencies with a density higher than the
average density as belonging to the same behavior instance.
In this process, the long-running process is divided into
several partition units.

(e edges to a node are also divided into different ex-
ecution partitions through the above process. Ultimately, we
judge which edges belong to the same behavior instance. To
prevent information flowing from a future event to a past
event, the time of edges to node should be before the edges
from node, which is shown by tsIN

i < tsOUT
j . tsIN

i denotes the
time when the last dependency occurred in the execution
partition, and tsOUTj denotes the time when the first de-
pendency occurred in the execution partition.

In order to construct BPGs, a graph abstraction algo-
rithm is proposed. First, the algorithm obtains entity in-
formation from audit logs, as shown in Lines 3 through 7.
(e function GETNODETYPE determines the type of
entity in the log, and then GETTYPENODE extracts at-
tributes based on the entity type NodeAttributeProcesses �

I D,{ name,Target ID∗, Opreation∗}. NodeList stores the

attributes of all entities for the construction of BPGs. Next,
the function GENERATEGRAPH generates a provenance
graph and assigns labels to nodes and edges. Finally,
function SPLITGRAPH performs forward depth-first
search (DFS) on the provenance graph and partitions the
long-running processes, which are described in the above
section.

4.2. Graph Kernel Clustering. A BPG kernel is proposed in
this paper to calculate the similarity between behavior
provenance graphs. It consists of two components. (e first
component is an improved WL kernel to calculate kernel
values between nodes, and the second component is to
calculate the kernel values between graphs.

(e traditional WL graph kernel is only suitable for the
undirected graph. An improved WL kernel is proposed to
calculate kernel values between nodes in directed label
graphs. (e improved kernel only compares each node’s
multilabel set without label compression. Considering the
type of directed edges, a kernel function for comparing
directed edges is proposed. (e kernel value is calculated by
multiple iterations, which is more helpful for distinguishing
nodes in different BPGs. (e improved WL kernel is de-
scribed in the following.

First, according to Definition 1, G � (V, E, LV, LE) is a
labeled directed graph. (e elements in LV and LE are
strings, which are not suitable for the process of multiset-
label sorting and label compression in the WL method.
(erefore, we convert the string label sets into numeric label
sets, in which each string element corresponds to a unique
value. By this means, each node in G is assigned an initial
numerical label l(0)(v).

Next, we iteratively assign a new label to each node. (e
traditional WL graph kernel gets the multiset from the label
set of neighborhoods, which does not consider the rela-
tionship between nodes. (e BPG kernel improves the WL
kernel by introducing a multiset of edges. Given a node
vi ∈ G and N (vi) � u|(vi, u) ∈ E , where N (vi) denotes
the neighbour node set of vi, and the multiset is M(vi) �

(le(vi, u), li− 1(u))|u ∈ N(v) N (v)}, where le(vi, u) is the
numerical label of the edge. Like theWL kernel, the elements
of a multiset are sorted in ascending order, and then l(0)(v) is
added to the front of the set.

firefox.exe

/.../*.zip

7z.exe

/.../*1.docx

/.../*2.xlsx

/.../*3.docx

firefox.exe

/.../#.zip

7z.exe

/.../#.xlsx
/.../#.doc

Save

Read

Save

Save

Save

Save

Read

Save Save

firefox.exe

/.../**.docx

WORD.EXE

/.../**.rtf

/.../**.rtf

Save

Read

Save

Save

Macro virusNormal
behavior 1

Normal
behavior 2

a b c

/.../**.tmp

Save

Figure 5: Subgraphs of BPGs to illustrate the importance of node label.

Long Running Process
tsi

IN

tsi
OUT

tsi

Time AxisTimestart

Timestart

Timeend

Timeend

Figure 6: Density-based partitioning method. (e dependencies
are expressed as points on the time axis.

Security and Communication Networks 7

(en, we calculate the kernel values between nodes. It is
necessary to take full account of the particularity of BPGs,
that similar behavior graphs are not completely isomorphic.
(erefore, set v1 ∈ G1 and v2 ∈ G2, k1

v(v1, v2) is calculated by
comparing the label in M(vi), (e calculation formula is as
follows:

k
1
v v1, v2(� M v1(

∩
M v2(

, (5)

where k1v(v1, v2) denotes the similarity of subgraphs with
high � 1, which are generated by the nodes v1 and v2 as the
root. Finally, we compute the kernel kT

v between each pair of
vertices iteratively, and formula is as follows:

k
t+1
v v1, v2(� αk

t
v v1, v2(+ βkedge u1, u2(·

u1ϵN v1()

u2ϵN v2()

k
t
v u1, u2(,

(6)

where kedge(u1, u2) is defined as the kernel value of the edge,
which means that if the label of two edges is the same, the
kernel value is assigned 1; otherwise, it is 0. (e formula is as
follows:

kedge u1, u2(�
1, ifle v1, u1(� le v2, u2(,

0, otherwise.
 (7)

In essence, the kernel value kT
v (v1, v2) is a quantification

of the similarity of the subgraphs, in which the shortest step
from vi to any node is less than T. In our method, the best
effect is achieved when T� 5.

(e second component of the BPG kernel is to calculate
the kernel values between the graphs based on the kernel
value between nodes. First, we build a mapping set B
(V1, V2) between nodes based on the idea of an optimal
assignment kernel, which can provide a more valid notion of
similarity [1]. Vi is the node set of Gi, and the mapping is
only operated between nodes of the same type. (en, B
(V1, V2) � v1: v2|k

T
v (v1, v2) � kmax , where kmax � max

kT
v (v1, v,

2), kT
v (v,

1, v2) and v,
2 ∈ V2 has the same type as v1.

Note that the mapping is from a set with fewer nodes to a set
with more nodes. (e formula for calculating kernel values
between BPGs is as follows:

kG G1G2(�

v1 ,v2()ϵB

k
T
v v1, v2(.

(8)

Finally, a positive definite kernel matrix KN×N is cal-
culated by the BPG kernel, where Ki,j is the kernel value
between Gi and Gj. A kernel matrix can be considered as a
similarity matrix which represents pairwise similarities
(inner products) between Gi and Gj in a Hilbert space.

Clustering methods are used to achieve the task of
separating threatening behavior from normal behavior.
Clustering methods continue to develop and are applied in
many fields. For example, spectral clustering is widely used
in many fields, and many works have made innovative
improvements to spectral clustering [30, 31]. In addition,
some new clustering class methods are proposed, such as
Hierarchical Density-based Spatial Clustering of Applica-
tions with Noise (HDBSCAN) [32]. We compare various

clustering methods according to the task requirements and
finally choose HDBSCAN to implement our clustering task.
(e main reasons are as follows: (1) it does not need to
declare the number of clusters in advance, (2) it has good
robustness to outliers, and (3) it supports input custom
similarity (distance) matrix. In our approach, the
HDBSCAN code published by McInnes et al. [33] is adopted
to implement the clustering task, which takes the kernel
matrix generated by the BPG kernel as input.

4.3. *reat Assessment. After clustering, the graphs repre-
senting attack behavior and normal behavior are divided
into separate clusters. According to the second key insight
above, LogKernel determines which clusters of graphs are
abnormal. In order to reduce false positives, the threat
quantification method is performed on abnormal BPGs to
find the threat behaviors.

4.3.1. Determines Abnormal Behaviors. When the number of
graphs in a cluster is less than the Thresholdgraphs, the be-
haviors represented by BPGs in the cluster are determined to
be abnormal behaviors. However, an obvious issue is that
some of these abnormal behaviors are performed by normal
users at a low frequency, which leads to high false positives.

4.3.2.*reat QuantificationMethod. To overcome the above
problem, the threat quantification method has been pro-
posed to evaluate the threat level of abnormal BPGs. (ere
are several characteristics of advanced cyber threats. For
APT attacks, executing malicious files, collecting sensitive
information, and connecting to the C & C server are nec-
essary operations [10]. Based on these characteristics, we
designed a quantification method.(e execution of malware
has been implicitly expressed by BPGs, so our method uses
malicious domain name access, sensitive information ac-
quisition, and privilege escalation as the criteria for threat
quantification.

First, the threat values of IP and URL are quantified
through public databases and the frequency of appearances
in audit logs. An online database of malicious IPs [34] and
Alexa Traffic Rank [35] are employed to identify unsafe web
resources, and then some IPs that cannot be determined are
assigned scores by frequency. Second, different threat values
are assigned to different types of sensitive information, such
as account information, sensitive databases, and sensitive
files. (ese are generally labeled within enterprises or au-
tomatically identified by tools [36]. Finally, it is a critical step
for the attacker to elevate the user’s privileges or login as a
higher-privileged user such as a root, which provides a
prerequisite for the attacker’s subsequent operations. (e
final threat quantification formula is as follows:

Threat_Score �
k

i�1
αf

i
ip + βf

i
user + cf

i
sens , (9)

where fi
ip denotes the threat values of IP and URL, fi

user
represents the quantification of user permissions, and fi

sens

8 Security and Communication Networks

denotes the quantification of sensitive information. α, β and
c represent the weight of three criteria, which can be ad-
justed according to actual requirements. Ultimately, we rank
the threat scores of the abnormal BPGs. If the threat score
exceeds a threshold value, Logkernel determines that the
BPGs represent threat behavior and raises an alarm.

5. Evaluation

5.1. Experimental Datasets. We evaluated LogKernel’s effi-
cacy and accuracy on three datasets: (1) a malicious dataset,
which comes from the real work environment and contains 7
attack scenarios; (2) the DAPRACADETS dataset, which is a
public dataset; and (3) a benign dataset, which comes from
the real work environment without cyber-attacks.

5.1.1. Malicious Dataset. In order to obtain the dataset
containing attacks, we added some hosts and virtual ma-
chines to the existing work environment and collected audit
logs from all hosts in the work environment. Like in previous
work [1–5], we simulated seven attack scenarios on these
hosts and virtual machines, as shown in Table 2. Among
them, three real attack scenarios come from the public APT
report, two synthetic APT scenarios are designed based on
the attack methods and strategies in the public report, and
also two homologous cyber weapons from third-party re-
leases are used [40]. To simulate real attack scenarios, we set
the attack time span to 7 days and continuously executed
extensive ordinary user behaviors and underlying system
activities in parallel to the attacks on the added hosts and
virtual machines. We used ETW to collect logs on a Win-
dows system and used camflow [41] to collect logs on the
Linux system.

In the malicious dataset, in addition to attack behaviors,
the normal behaviors mainly include remote login, mail
checking, code modification and execution, and software
installation.

5.1.2. DAPRA CADETS. DAPRA CADETS dataset [42] is
released by the DARPA Transparent Computing program,
which contains APT attacks. (e dataset was collected from
hosts during DARPA’s two-week red team vs. blue team
engagement 3 in April 2018 [43]. In this engagement, some
normal operations such as SSH login, web browsing, and
email checking will be executed on the hosts. At the same
time, attackers will use various APT attack methods to
penetrate the system and steal private information. (e
attacks on CADETS were executed four times, resulting in
44,404,339 system-level audit entries.

5.1.3. Benign Dataset. (e benign dataset comes from the
real work environment. We collect system audit logs of
common user behaviors and low-level service activities for
two weeks. (e main behaviors performed by these users
include connecting to SSH, executing code, browsing
websites, and downloading files. To better verify the ap-
plicability of the method, we collected audit logs from two
GPU servers at the same time, including the behavior of
ordinary users and administrators. (e attributes of the
above three datasets are shown in Table 3.

In all the experiments, the values of Thresholdgraphs and
ThresholdScore are set to 3 and 3600, respectively.(is choice
is described in detail in Section 5.3. (e performance is
evaluated on the malicious dataset and the CADETS dataset.
(e threshold values are validated on the benign dataset.

5.2. Experimental Result. In this section, the performance of
LogKernel is evaluated by a large number of experiments on
the malicious dataset and the CADETS dataset. First, the
accuracy of graph kernel clustering is analyzed and visu-
alized. Next, we evaluate the threat quantification method to
demonstrate its effectiveness in eliminating false positives.
(en, the accuracy of hunting threats was analyzed. And we
conducted several sets of comparative experiments to

Input: OS-level logs
Output: Behavior Dependency Graphs

(1) Logs←READLOGS (OS-level logs)
(2) Processes← LONGRUNNINGPROCESS (OS-level logs)
(3) for all log in Logs do
(4) Type�GETNODETYPE (log)
(5) NodeAttributei�GETTYPENODE (log)
(6) NodeList.append (NodeAttributei)
(7) end for
(8) ProvenanceGraph�GENERATEGRAPH (NodeList)
(9) V, LV←GETNODE (NodeAttribute)
(10) E, LE←GETEDGE (NodeAttribute)
(11) BehaviorGraphs� SPLITGRAPH (ProvenanceGraph, Processes)
(12) Density←CALCULATEDESITY (Processes)
(13) Units←PARTITION (Density)
(14) return BehaviorGraphs

ALGORITHM 1: Graph abstraction algorithm.

Security and Communication Networks 9

illustrate the effectiveness of the BPG and BPG kernel
proposed in this paper in threat hunting. Finally, we analyse
and discuss the advantages of LogKernel compared with
other methods.

5.2.1. Accuracy of Graph Kernel Clustering. (e accuracy of
the graph kernel clustering indicates whether the attack
behaviors are successfully separated from the normal be-
haviors. After the BPGs are abstracted, the threat BPGs are
marked, which is used to track intermediate results. At the
same time, the normal BPGs of checking mails are also
marked. Figure 7 shows the 2D visualization of mutual
reachability distance and outliers indicate threat BPGs.
Table 4 shows the clustering result, where Min Distance
represents the minimum distance from other clusters, and
Number of Graphs indicates the number of BPGs that
denote the attack scenarios and behaviors. For example, the
closest dot to Kimsuky is Unknown Attack 1, as shown in
Figure 7. (e reason is that they both use process hollowing
techniques for explorer.exe, and the collected host infor-
mation is encrypted and sent back to the C2 server. In the

behavior provenance graphs of the two scenarios, the
subgraphs describing the above behaviors are similar, so the
distance between the two graphs is relatively small. However,
there are also many dissimilar parts in these two graphs, so
they are not clustered in the same cluster.

Checkingmail behaviors are further analyzed. Due to the
differences in subsequent operations caused by different
attachment types, the BPGs containing mail-related pro-
cesses are divided into multiple clusters. However, some
BPGs that do not contain mail processes appear in these
clusters, along with checked mail BPGs in other clusters. (e
reason is that the behavior of some attachments is more

Table 2: Attack scenarios in the malicious dataset.

Attack
scenario Description Key nodes and operation

OceanLotus
[37]

Using phishing mails to deliver a malicious payload and
a malicious sample and decrypt the sample to load

additional data, then releasing the white application file
of the adobe reader, and after loading, it connects to C&

C sever.

Node:{hat file, %random%.exe, %deceive %.docx, dll files, C2
sever} operation {execute hat file, release malicious files and

deceive document, connect C2}

APT28 [38]

Using the macro file to release the trojan file andmodify
the registry to realize self-starting after booting and
then encrypting the collected files and sending them

back.

Node {%macro%.xls, %Trojan%.exe, %malicious%.dll, C2 sever}
operation {execute macro, decrypt trojan, release malicious dll,

connect C2}

Kimsuky [39]
Using process injection to evade the intrusion detection

system, then escalating privileges to obtain host
information, and finally sending it to C & C sever.

Node {%malicious%.scr, registry, explorer.exe (Process
Hollowing), privileges, C & C sever} operation {execute

malicious scr, write registry, inject code to process, connect C2}

Unknown
attack 1

Using phishing emails to deliver macro virus samples,
which release PE files and perform process hollowing
and finally encrypting the collected information and

sending it to C & C sever (attack scenario)

Node {%macro%.doc, %PE%.tmp, explorer.exe&snchost.exe
(Process Hollowing), C2 sever} Operation {download&execute
macro, process hollowing, encrypted information, connect C2}

Unknown
attack 2

Using weak passwords for remote login, then getting
higher privileges user information in the host and
accessing the registry information, and finally

exfiltrating collected information over FTP to remote
servers

Node {remote user, root, C2 sever} operation {remote login,
login root, encrypted information, connect C2}

Cyber
weapons

Using two homologous cyber weapons with no initial
intrusion and delivery phases and seeing what happens

when logs are incomplete

12

10

8

6

M
ut

ua
l r

ea
ch

ab
ili

ty
 d

ist
an

ce

4

2

Figure 7: 2D visualization of mutual reachability distance and
outliers indicate threat BPGs.

Table 3: Attribute information of the above three datasets.

Datasets Size (GB) Logs
Graphs

Attack Benign
Malicious dataset 10.3 8,796,458 7 1867
CADETS 35.7 44,404,339 4 1683
Benign dataset 15.6 13,446,341 0 2453

10 Security and Communication Networks

similar to the behavior in other class clusters. Finally, the
accuracy of the checked mails is 72.3%. (e above situation
does not affect our final results. (is paper focuses on
clustering the threat BPGs into the correct clusters, and the
results show that the clustering for the threat BPGs is 100%.

5.2.2. Evaluate *reat Quantification Method. To evaluate
the performance of threat quantification methods in re-
ducing false positives, we conducted experimental evalua-
tions on the malicious dataset and the CADETS dataset. In
the scenarios of using and not using the threat quantification
approach, we count the number of false negatives, true
negatives, and false positives in the result. Furthermore,
Thresholdgraphs is also critical to avoid false signals. We select
six values (1–6) to evaluate their impact on the result.

(e result is depicted in Figure 8. When the number of
graphs in the cluster does not exceed the threshold of a
graph, these graphs are determined to be abnormal be-
haviors. As the threshold increases, the number of false
alarms also increases. When using the threat quantification
method, the number of false alarms is significantly reduced.
(e number of false alarms can be reduced to 0 by selecting
an appropriate threat score threshold. (is demonstrates
that the use of the threat quantificationmethod in LogKernel
can effectively reduce false alarms caused by low-frequency
abnormal behaviors.

5.2.3. Accuracy of Hunting *reat. (en, the accuracy of the
LogKernel is analyzed, and Table 5 shows the hunting results
on two datasets. It can be seen that LogKernel can hunt all
attack scenarios without false positives. In the malicious
dataset, five complete attack scenarios appeared in five different
clusters, and two homologous cyber weapons were clustered in
the same cluster. Among these clusters, the maximum number
of graphs is 2, which is lower than the Threshol d value of 3.
However, there are multiple clusters where the number of
graphs is not greater than 3. (e graphs in these class clusters
represent behaviors that users rarely perform. For example, in
order to install a program on the mobile phone, a worker
accesses the relevant file from social software on the mobile
phone.(e above behavior appears only twice in the malicious
dataset. We perform threat quantification on these anomalous
behaviors and find that the threat values of nonthreatening
behaviors are all below the threshold.

(e threat quantification of the above-mentioned graphs
shows that the threat scores of all threat BPGs exceed the
threshold, while those of normal low-frequency behaviors
have threat values well below the threshold. Finally, Log-
Kernel successfully hunts all threats without false positives
on the malicious dataset and the CADETS dataset.

(e effectiveness of LogKernel is evaluated by several
comparative experiments that mainly contain the following
two parts: First, the existing graph kernel methods are
compared with the BPG kernel proposed in this paper. Note
that these graph kernel algorithms are not specifically
designed for BPGs, and we use the public codes [26, 27, 44]
to calculate the similarity between BPGs. Second, we con-
sider two other cases of abstracting graphs and compare
them with BPGs to illustrate the importance of abstracting
attribute information such as node label, which is introduced
in Section 4.1. (e first is no label graphs, that hide the node
labels of BPGs and only consider the type of nodes. (e
second is attribute label graphs. Instead of mapping the
attribute information to a node label, we use the attribute
information directly as the label of the nodes to get the
attribute label graphs. For example, C:\Window-
s\System32\%name%.dll represents the attribute informa-
tion of a file object.

(e results of comparative experiments are shown in
Table 5. When only the node type is considered, false
negatives are generated. When the logs are constructed as
attribute label graphs, it results in a lot of false positives in
our approach. Besides, the traditional WL kernel and
MPGK AA are compared with the BPG kernel. (e
number of iterations of the two kernels is set at 5 which
can achieve the best results. MPGK AA employs the
theory of valid optimal assignment kernels for developing
kernels based on message passing graph kernels, and its
code is published on GitHub [45]. As shown in Table 5,
the performance of LogKernel outperforms MPGK AA
and WL kernel.

1

0

10

20

30

40

50

60

2 3 4
Threshold of Graph

FN
TP
FP

FP (TS Threshold = 1000)
FP (TS Threshold = 3600)

G
ra

ph
 N

um
be

r

5 6

Figure 8: (e influence of different thresholds on the results.

Table 4: Clustering result of some scenarios.

Scenario Min
distance

Number of
graphs

Accuracy
(%)

OceanLotus [37] 11.468 1 100
APT28 [38] 10.734 1 100
Kimsuky [39] 9.278 1 100
Unknown attack
1 3.136 1 100

Unknown attack
2 5.121 1 100

Cyber weapons 4.257 2 100
Check mails 0.594 483 72.3

Security and Communication Networks 11

5.2.4. Approach Comparisons. Compared [26, 43] with [27]
the state-of-the-art approaches (e.g., Poirot [1] and
THREATRAPTOR [3]), LogKernel can hunt known at-
tacks, such as three attack scenarios simulated from the
APT reports and four attacks in CADETS. Additionally,
LogKernel can also hunt for unknown attacks that have
not been disclosed by threat intelligence. For example,
unknown attack 1 is designed by us in combination with
the attack characteristics of multiple APT organizations.
Since this attack scenario does not appear in threat in-
telligence, current methods based on threat intelligence
cannot hunt this attack. We used the attack scenario to
represent the upgrading of attack technology by APT
organizations and the attacks that have not been dis-
covered or disclosed.

Compared with WATSON [3], which can abstract high-
level behaviors from audit logs and reduce the analytical
workload of attack investigations, LogKernel focuses on
comparing and clustering behaviors to realize threat de-
tection. WATSON’s purpose is to abstract high-level be-
havioral and semantic information from contextual
information in audit logs. (e method applies heuristics to
specify system entities as termination conditions for DFS
during the extraction subgraph phase, which causes the
complete behavior to be split into multiple subgraphs.

5.3. False Positive Analysis

5.3.1. Determine the Optimal *reshold Value. (e selection
of the threshold value is critical to reducing false alarms. For
example, setting the threat score threshold too low could
cause some normal behaviors to be misclassified as attack
behaviors, while setting the threshold too high could result
in false negatives.

(us, there is a trade-off in choosing an optimal
threshold value. To determine the optimal threshold value,
we measured recall, precision, and F1-score using varying
threshold values, as shown in Figure 9. When the
Thresholdgraphs � 3 and the Thresholdgraphs ∈ [3387, 3743],
the F1-score, the harmonic mean of precision and recall, is at
its peak. In fact, 3387 is the maximum score of the normal
behavior provenance graph and 3743 is the minimum score
of the threat behavior provenance graph. Another reason we
set the Thresholdgraphs to 3 is to consider the homology of
malware, although this is not the scope of our work. When

executing homologous malware, attack behavior provenance
graphs with similar topological structures will be generated,
which means when homologous malware is discovered in
the information system, it will be classified into the same
cluster. (erefore, we set the Thresholdgraphs � 3 and
ThresholdScore � 3600 as the optimal threshold values.

5.3.2. Evaluation on Benign Dataset. We use the benign
dataset to validate the threshold values and LogKernel. (e
benign dataset comes from the real work environment.
Despite the fact that cyber-attacks are not included in the
dataset, there are some normal behaviors that do not occur
frequently. Besides, workers are inquisitive about opening
some domains that are not frequently accessed or using
higher-privileged users to access secret information or ex-
ecute processes during work. As a result, we execute Log-
Kernel on the benign dataset. Inevitably, LogKernel
recognizes some abnormal behaviors that occur infre-
quently. However, when we quantify the threat of these
abnormal BPGs, the highest threat score is 2980, well below
the threshold. Compared to real attacks, these abnormal
behaviors have a shorter path and only involve several types
of untrusted IPs, user privilege escalation, and sensitive
information but not all of them.(erefore, their threat score
cannot reach the threshold.

5.4. System Performance. To measure the performance of
LogKernel, we record the running overhead of the system on
malicious datasets and DAPRA CADETS. (e scale and
magnitude of these two datasets are similar to user data
within an organization or enterprise. (e runtime overhead
of the system is divided into two parts: the first part is the
overhead of reading all the audit logs from the disk and
generating the BPGs and the second part is the overhead of
finding the threat behavior from the BPGs. We performed
the experiments on a server with an Intel (R) Xeon (R) Silver
4215R CPU (with 8 cores and 3.20GHz of speed each) and
256GB of memory running on Ubuntu 18.04.5 LTS.

5.4.1. BPGs Construction. In DAPRA CADETS, attacks are
carried out in three different time periods, so the BPGs were
constructed from three segments that are divided according
to the attack cases, as shown in Table 6. Attacks simulated in
the malicious dataset overlap in time, so they are not

Table 5: Hunting results on malicious dataset and CADETS dataset.

Dataset Graph kernel Graph type Recall (%) Precision (%) F-score (%)

Malicious dataset
BPG kernel

BPGs 100 100 100
No label graphs 57.1 57.1 72.7

Attribute label graphs 100 43.8 60.9
WL kernel [27, 41] BPGs 85.7 50 63.2
MPGK AA [28] 42.9 30 35.3

CADETS dataset
BPG kernel

BPGs 100 100 100
No label graphs 25 20 22.2

Attribute label graphs 100 50 66
WL kernel BPGs 75 42.9 54.6
MPGK AA 50 33.3 40

12 Security and Communication Networks

segmented by attack cases. Table 6 shows the LogKernel
performance overhead. (e third column shows the initial
size of the logs on disk, and the fourth column represents the
time it takes to read the audit logs from the disk intomemory
and construct the BPGs. (e runtime overhead of BPGs’
construction depends on the number of audit logs and the
operating system. In addition, the current experiment uses a
single host, and the efficiency of the system can be further
improved by the parallel processing of multiple hosts. (e
fifth column represents the size of the constructed graph,
including the number of nodes and edges and the size of the
hard disk.

5.4.2. *reat Searching. (e sixth column represents the
time spent hunting threats on both datasets. (is time in-
cludes graph kernel clustering and threat quantification. In
the hunting stage, we combined all the graphs of the three
cases in the CADETS dataset for searching.(e results in the
table show that by constructing the BPGs from 34.5GB of
large-scale log data and finding all the attacks in it can be
completed in a relatively short time (134.24 s). Compared
with LogKernel with POIROT [1] and THREATRAPTOR’s
fuzzy search mode [4], the total running time of these three
systems is of the same order of magnitude. And LogKernel is
faster than POIROT when processing the same size of data.

5.5. Case Study. In order to understand the hunting process
of LogKernel more intuitively, we consider Kimsuky [40] as
a case study from Table 5. For the attack scenario, we
manually analyse the accuracy of BPGs and evaluate the
performance of LogKernel.

In this case, the infection starts with a classic executable
file with scr extension, which is used by Windows to identify
screensaver artifacts. A worker intends to implement a
function in the project, so he downloads similar code from
the public website for reference, but this zip file contains
malware scr file. It writes a dll file and sets the registry key to
gain persistence. (en, the explorer.exe injection is per-
formed by the dll file to avoidantivirus detection. Finally, the
malware contacts the C & C server and sends back the

encrypted information about the compromised machine. At
the same time, the worker also downloads documentation,
data samples, and installs Python.

As shown in the black dashed box in Figure 10, the
complete provenance graph is generated and chrome.exe is a
long-running process, causing false dependencies between
multiple behavior instances. LogKernel’s graph abstraction
algorithm successfully separates these behavioral instances
according to the density and occurrence time of their related
dependencies. A normal exe file appears in the Kimsuky BPG
because it occurs close to the download of the zip file, but its
impact is almost negligible. (e PDF and CSV files come
from the same website, and the worker downloads both files
at about the same time, so they are considered to belong to
the same BPG. After a long time, the worker downloaded
and installed Python from the official website, which is a new
behavioral instance.

(en, LogKernel computes the kernel values between
these BPGs and clusters them. As shown in Figure 10, the
topological structure of Kimsuky BPG is quite different from
that of normal BPGs, which leads to the low kernel value
between them. After clustering, there are many behaviors for
downloading pdf and CSV files in a certain cluster. However,
since Python was installed only twice during the experiment,
it was judged to be abnormal behavior.

Finally, LogKernel quantifies Kimsuky and installs Py-
thon BPGs to achieve threat hunting. Because installing
Python does not involve these three operations, the threat
score is well below the threshold. In Kimsuky BPG, the
attacker’s host information contains some labeled sensitive
information, which makes the threat score higher than the
threshold. Even if we design new methods of leaking data,
such as using a network disk that does not appear in the
threat report, LogKernel can still find the unknown threat.

6. Discussion and Limitations

In this section, some limitations and possible extensions of
LogKernel will be discussed.

(e basic assumption of our method is that audit logs are
trusted and cannot be tampered with or destroyed. In fact,

10
00

.0

20
00

.0

30
00

.0

34
00

.0

36
00

.0

38
00

.0

Threat Score

6.0

5.0

4.0

3.0

N
um

be
r o

f G
ra

ph
s

2.0

1.0

6.0

5.0

4.0

3.0

2.0

1.0

6.0

5.0

4.0

3.0

2.0

1.0

1.0

0.82 0.82 0.82 0.82 0.82 0.82 0.73 0.73 0.55 0.45 0.9 0.9 0.9 1 1 1 1 1 1 1 0.86 0.86 0.86 0.9 0.9 0.9 0.84 0.84 0.71 0.62

0.88 0.92 0.96 1 1 0.9 0.84 0.84 0.71 0.62

0.67 0.76 0.92 1 1 0.9 0.84 0.84 0.71 0.62

0.51 0.59 0.85 0.96 1 0.9 0.84 0.84 0.71 0.62

0.37 0.49 0.76 0.96 1 0.9 0.84 0.84 0.71 0.62

0.29 0.47 0.73 0.96 1 0.9 0.84 0.84 0.71 0.62

0.79 0.85 0.92 1 1 1 1 1 1 1

0.5 0.61 0.85 1 1 1 1 1 1 1

0.34 0.42 0.73 0.92 1 1 1 1 1 1

0.22 0.32 0.61 0.92 1 1 1 1 1 1

0.17 0.31 0.58 0.92 1 1 1 1 1 1

1 1 1 1 1 0.82 0.73 0.73 0.55 0.45

1 1 1 1 1 0.82 0.73 0.73 0.55 0.45

1 1 1 1 1 0.82 0.73 0.73 0.55 0.45

1 1 1 1 1 0.82 0.73 0.73 0.55 0.45

1 1 1 1 1 0.82 0.73 0.73 0.55 0.45

Recall Precision F1-score

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

40
00

.0

42
00

.0

46
00

.0

50
00

.0

10
00

.0

20
00

.0

30
00

.0

34
00

.0

36
00

.0

38
00

.0

Threat Score

40
00

.0

42
00

.0

46
00

.0

50
00

.0

10
00

.0

20
00

.0

30
00

.0

34
00

.0

36
00

.0

38
00

.0

Threat Score

40
00

.0

42
00

.0

46
00

.0

50
00

.0

Threshold
Number of Graphs
Threat Score

Figure 9: Determine the optimal threshold values.

Security and Communication Networks 13

this is an important assumption for almost the entirety of
recent work in provenance-based forensic analysis ensuring
that the integrity of audit logs is beyond the scope of this
work. In addition, LogKernel cannot detect attacks that do
not use system call interfaces because they cannot be cap-
tured by the underlying provenance tracker. However, such
behaviors appear to be rare, and the harm they can cause to
the rest of the system is limited. Finally, LogKernel cannot
hunt down the attacks exploiting OS kernel vulnerabilities.

For LogKernel, the definition of labels requires some
manual involvement. For common file types, we can use the
extension to automatically assign the file’s label, such as
∗.zip and ∗.rar which are marked as zipped file. For some
uncommon file types, the manual participation of experts is
required to assign appropriate labels to such files. In fact,
after manually labeling this type of file, automatic labeling
can be performed later.

(e density-based partitioning method in this paper is
less accurate than the existing execution partitioning system
[17–19]. (ese systems require complex binary program
analysis to instrument a target application for execution
partitioning at runtime [15]. During the experiment, there
will be some normal behavior instances that are not sepa-
rated from the threat behavior, such as the exe file in the case
study. However, the errors produced by our method do not
have a decisive impact on the results.

(reat hunting is a data imbalance problem, and threat
behavior samples are few compared to normal behavior
samples. (erefore, some methods that require labeled data
for training, such as GNNs, cannot achieve good results
when directly used for threat hunting [46]. (e traditional
sampling method can solve the problem of sample imbal-
ance, but it may change the distribution of training data and

lead to a “covariate shift.” To solve the above problems, some
work proposes a pattern-balanced cotraining for extracting
and preserving the latent activity patterns from imbalanced
datasets [47]. (ese methods provide solutions to the
problems encountered by threatening hunting.

LogKernel is an offline system that analyses audit logs of
Windows and Linux systems. It still scales well for other
formats of logging. Extra work is simply to extract entities
and relationships.

7. Conclusion

In order to reduce the dependence on additional expert
knowledge and hunt unknown attacks, this paper proposes a
threat hunting approach based on graph kernel clustering,
which consists of the following three parts: BPGs con-
struction, graph kernel clustering, and threat assessment.
First, a graph abstraction algorithm is proposed to construct
behavior provenance graphs (BPGs), in which a density-based
partitioning method is proposed to alleviate the dependency
explosion problem. Second, based on the characteristics of the
BPGs, a BPG kernel is proposed that can capture structure
information and rich label information, and then HDBSCAN
is used to perform the clustering task. Finally, LogKernel
determines which clusters are abnormal, and the threat
quantification method is performed on abnormal BPGs to
hunt the threat behaviors. Experiments are carried out on
three datasets containing simulated APT attacks, unknown
attacks, public attack datasets, and a large number of normal
behaviors. Experimental results show that our method can
hunt for all threats in the dataset and can detect unknown
attacks [48] compared with the method based on threat
intelligence.

src fileUser

scr

dll file

regsvr32.exe

dll file

regedit.exe

read write

execute

execute
read

execute

bat file
write

doc file

write

runas

explorer.exe

execute

execute

C&C

connect

zipped file

7z.exe
write read

encryptor.exe

System
Information

Create

write

chrome.exe

read

write

exe file

write

src file
User

scr

dll file

regsvr32.exe

dll file

regedit.exe

read write

execute

execute read

execute

bat file

write

doc file

write

runas

explorer.exe

execute

execute

encryptor.exe

System
Information

Create

write

C&C

read
connect

chrome.exe

zipped file exe file pdf file exe file

7z.exe
write

read

write write

csv file

write

AcroRd32.exe
read

pdf file
write

python-3.10.1-amd64.exe

Python Fileswrite

read

chrome.exe

pdf file csv file

AcroRd32.exe
read pdf filewrite

writewrite

chrome.exeexe file

python-3.10.1-amd64.exePython Files write

read

write

Kimsuky Kimsuky BPG

Install Python

Figure 10: Case study to analyse the accuracy of BPGs and evaluate the performance of LogKernel.

Table 6: Logkernel performance overhead.

Datasets Attack cases Size on disk (GB) BPGs construction time
Graphs size

Search time (s)
Nodes (K) Edges (K) Size (MB)

DAPRA CADETS
cadets_1 11.1 25min 28 s 133.1 295.6 57.6

134.24cadets_2 17.7 40min 53 s 171.1 408.3 78.5
cadets_3 6.77 19min 47 s 94.9 171.9 35.2

Malicious dataset 10.3 22min 19 s 106.2 183.6 42.9 94.62

14 Security and Communication Networks

Data Availability

(e data DAPRA CADETS supporting this paper are from
previously reported studies and datasets, which have been
cited. (ese prior studies (and datasets) are cited at relevant
places within the text as references [42, 43]. (e processed
data are available from the corresponding author upon
request. (e other datasets used to support the findings of
this study are available from the corresponding author upon
request.

Conflicts of Interest

(e authors declare that they have no conflicts of interest.

Acknowledgments

(is work was supported by National Natural Science
Foundation of China under Grant numbers (U1936216 and
U21B2020) and Fundamental Research Funds for the
Central Universities (Beijing university of posts and tele-
communications) for Action Plan (2021XD-A11-1).

References

[1] S. M. Milajerdi, B. Eshete, R. Gjomemo, and
V. N. Venkatakrishnanet, “Poirot: aligning attack behavior
with kernel audit records for cyber threat hunting,” in Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1795–1812, London, UK,
November 2019.

[2] S. M. Milajerdi, R. Gjomemo, B. Eshete,
V. N. Venkatakrishnanet, and R. Sekar, “Holmes: Real-Time
Apt Detection through Correlation of Suspicious Information
flows,” in Proceedings of the 2019 IEEE Symposium on Security
and Privacy (SP), pp. 1137–1152, SAN FRANCISCO, CA,
USA, May 2019.

[3] J. Zeng, Z. L. Chua, Y. Chen, and J. Kaihang, “Watson:
Abstracting Behaviors from Audit Logs via Aggregation of
Contextual semantics,” in Proceedings of the 28th Annual
Network and Distributed System Security Symposium, NDSS,
2021.

[4] P. Gao, F. Shao, X. Liu, and X. Xusheng, “Enabling efficient
cyber threat hunting with cyber threat intelligence,” in Pro-
ceedings of the 2021 IEEE 37th International Conference on
Data Engineering (ICDE), pp. 193–204, Chania, Greece, April
2021.

[5] R. Wei, L. Cai, L. Zhao, Y. Aimin, and M. Dan, “DeepHunter:
A Graph Neural Network Based Approach for Robust Cyber
(reat Hunting,” in Proceedings of the International Con-
ference on Security and Privacy in Communication Systems,
pp. 3–24, Springer, Cham, April 2021.

[6] W. Ul Hassan, B. Adam, and D. Marino, “Tactical provenance
analysis for endpoint detection and response systems,” in
Proceedings of the IEEE Security and PrivacySAN FRAN-
CISCO, CA, USA, May 2020.

[7] M. N. Hossain, M. M. Sadegh, J. Wang, and E. Birhanu,
“Sleuth: real-time attack scenario reconstruction from cots
audit data,” in Proceedings of the USENIX Security
Symposium, Vancouver, BC, Canada, August 2017.

[8] M. N. Hossain, S. Sheikhi, and R. Sekar, “Combating de-
pendence explosion in forensic analysis using alternative tag

propagation semantics,” in Proceedings of the IEEE Security
and Privacy, SAN FRANCISCO, CA, USA, May 2020.

[9] W. U. Hassan, S. Guo, D. Li et al., “Nodoze: Combatting threat
alert fatigue with automated provenance triage,” in Pro-
ceedings of the Network and Distributed System Security
Symposium, San Diego, CA, USA, January 2019.

[10] S. T. King and P. M. Chen, “Backtracking intrusions,” in
Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles, pp. 223–236, NY, USA, October 2003.

[11] C. Xiong, T. Zhu, and W. Dong, “CONAN: A Practical Real-
Time APT Detection System with High Accuracy and Effi-
ciency,” IEEE Transactions on Dependable and Secure Com-
puting, vol. 19, no. 1, pp. 551–565, 2020.

[12] X. Han, T. Pasquier, and A. Bates, “Unicorn: Runtime
Provenance-Based Detector for Advanced Persistent threats,”
2020, https://arxiv.org/abs/2001.01525.

[13] A. Alsaheel, Y. Nan, and S. Ma, “{ATLAS}: A Sequence-Based
Learning Approach for Attack Investigation,” 30th {USENIX}
Security Symposium ({USENIX} Security 21), USENIX Asso-
ciation, California, USA, 2021.

[14] W. U. Hassan, M. A. Noureddine, and P. Datta, “OmegaLog:
High-Fidelity Attack Investigation via Transparent Multi-
Layer Log analysis,” in Network and Distributed System Se-
curity Symposium, January 2020.

[15] Y. Kwon, F. Wang, W. Wang, and H. L. Kyu, “MCI: Mod-
eling-based causality inference in audit logging for attack
investigation,” in Proceedings of the Network and Distributed
System Security Symposium, San Diego, CA, USA, January
2018.

[16] M. N. Hossain, S. M. Milajerdi, J. Wang, E. Birhanu, and
G. Rigel, “SLEUTH}: real-time attack scenario reconstruction
from {COTS} audit data,” in Proceedings of the 26th {USENIX}
Security Symposium ({USENIX} Security 17), pp. 487–504,
Vancouver, BC, Canada, August 2017.

[17] K. H. Lee, X. Zhang, and D. Xu, “High accuracy attack
provenance via binary-based execution partition,” Network
and Distributed System Security Symposium, vol. 16, 2013.

[18] S. Ma, J. Zhai, F. Wang, and Z. Xiangyu, “{MPI}: multiple
perspective attack investigation with semantic aware execu-
tion partitioning,” 26th {USENIX} Security Symposium
({USENIX} Security 17), pp. 1111–1128, 2017, https://www.
usenix.org/conference/usenixsecurity17/technical-sessions/p
resentation/ma.

[19] S. Ma, X. Zhang, and D. Xu, “Protracer: Towards Practical
Provenance Tracing by Alternating between Logging and
Tainting,” in Proceedings of the Network and Distributed
System Security Symposium, January.2016.

[20] H. Yin, D. Song, and M. Egele, “Panorama: capturing system-
wide information flow for malware detection and analysis,” in
Proceedings of the 14th ACM Conference on Computer and
Communications Security, pp. 116–127, Alexandria, Virginia,
USA, January.2007.

[21] W. U. Hassan, L. Aguse, and N. Aguse, “Towards Scalable
Cluster Auditing through Grammatical Inference over
Provenance graphs,” in Proceedings of the Network and
Distributed Systems Security Symposium(NDSS), San Diego,
United States, January.2018.

[22] P. Gao, X. Xiao, and Z. Li, “{AIQL}: Enabling efficient attack
investigation from system monitoring data,” in Proceedings of
the 2018 {USENIX} Annual Technical Conference ({USENIX}
{ATC} 18), pp. 113–126, Boston, USA, July 2018.

[23] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and
K. M. Borgwardt, “Graph kernels,” Journal of Machine
Learning Research, vol. 11, pp. 1201–1242, 2010.

Security and Communication Networks 15

https://arxiv.org/abs/2001.01525
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ma
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ma
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ma

[24] T. Gärtner, P. Flach, and S. Wrobel, “On graph kernels:
hardness results and efficient alternatives,” Learning theory
And Kernel Machines, pp. 129–143, Springer, Berlin, Hei-
delberg, 2003.

[25] N. M. Kriege, F. D. Johansson, and C. Morris, “A survey on
graph kernels,”Applied Network Science, vol. 5, no. 1, pp. 1–42,
2020.

[26] N. Shervashidze, P. Schweitzer, and E. J. Van Leeuwen,
“Weisfeiler-Lehman graph kernels,” Journal of Machine
Learning Research, vol. 12, no. 9, 2011.

[27] G. Nikolentzos and M. Vazirgiannis, “Message passing graph
kernels,” 2018, https://arxiv.org/abs/1808.02510.

[28] M. S. Tok and B. Celi̇ktas, “MuddyWater APTgrubu ve makro
zararlı yazılım analizi metodolojisi önerisi,” Bilişim Tekno-
lojileri Dergisi, vol. 12, no. 3, pp. 253–263, 2019.

[29] “Process Injection: Process Hollowing,” 2020, https://attack.
mitre.org/techniques/T1055/012/.

[30] Z. Li, F. Nie, X. Chang, L. Nie, H. Zhang, and Y. Yang, “Rank-
constrained spectral clustering with flexible embedding,”
IEEE Transactions on Neural Networks and Learning Systems,
vol. 29, no. 12, pp. 6073–6082, 2018.

[31] Z. Li, F. Nie, X. Chang, Y. Yang, C. Zhang, and N. Sebe,
“Dynamic affinity graph construction for spectral clustering
using multiple features,” IEEE Transactions on Neural Net-
works and Learning Systems, vol. 29, no. 12, pp. 6323–6332,
2018.

[32] L. McInnes and J. Healy, “Accelerated hierarchical density
based clustering,” in Proccedings of the: 2017 IEEE Interna-
tional Conference on Data Mining Workshops (ICDMW),
pp. 33–42, New Orleans, LA, USA, November 2017.

[33] M. Leland, H. John, and A. Steve, “hdbscan: Hierarchical
density based clustering,” *e Journal of Open Source Soft-
ware, vol. 2, no. 11, p. 205, 2017.

[34] “Google Safe Browsing,” 2018, https://developers.google.com/
safe-browsing/v4/.

[35] B. Kahle and B. Gilliat, “Alexa Rank,” Amazon, 1996, https://
www.alexa.com/topsites.

[36] Data Security Center, DSC, https://support.huaweicloud.
com/function-dsc/index.html.

[37] Team Red Raindrops, “Sea Lotus is using new techniques to
attack an environmental group in Vietnam,” Qianxin, 2019,
https://ti.qianxin.com/alpha-api/v2/apt-dossier/apt-report?n
ame�5d0c89c897868c0020c593a2.

[38] FreeBuf Service, “(eMagic Bear (APT28) organizes the latest
attack,” Tencent Security, 2018, https://cloud.tencent.com/
developer/article/1042927.

[39] Yoroi Blog, “(e North Korean Kimsuky APT keeps threat-
ening South Korea evolving its TTPs,” YOROI TINXTA
CYBER, 2020, https://blog.yoroi.company/research/the-north-
korean-kimsuky-apt-keeps-threatening-south-korea-evolvi
ng-its-ttps/.

[40] sbousseaden, “Windows EVTX Samples [200 EVTX exam-
ples],” https://github.com/sbousseaden/EVTX-ATTACK-
SAMPLES/.

[41] T. Pasquier, X. Han, M. Goldstein et al., “Practical whole-
system provenance capture,” in Proceedings of the 2017
Symposium on Cloud Computing (SoCC’17), pp. 405–418,
Association for Computing Machinery, New York, NY, USA,
September 2017.

[42] “Transparent computing engagement 3 data release,” 2020,
https://github.com/darpa-i2o/Transparent-Computing/blob/
master/README-E3.md.

[43] “DARPA Transparent Computing,” 2020, https://www.darpa.
mil/program/transparent-computing.

[44] G. Siglidis, G. Nikolentzos, and S. Limnios, “GraKeL: a graph
kernel library in Python,” Journal of Machine Learning Re-
search, vol. 21, no. 54, pp. 1–54, 2020.

[45] https://github.com/giannisnik/message_passing_graph_
kernels.

[46] F. Liu and W. Yu, “Log2vec: a heterogeneous graph em-
bedding based approach for detecting cyber threats within
enterprise,” in Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security, London,
UK, November 2019.

[47] K. Chen, L. Yao, D. Zhang, X. Wang, X. Chang, and F. Nie, “A
semisupervised recurrent convolutional attention model for
human activity recognition,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 31, no. 5, pp. 1747–1756,
2020.

[48] J. Li, R. Zhang, and J. Liu, “LogKernel A (reat Hunting
Approach Based on Behaviour Provenance Graph and Graph
Kernel Clustering,” 2022, https://arxiv.org/ftp/arxiv/papers/
2208/2208.08820.

16 Security and Communication Networks

https://arxiv.org/abs/1808.02510
https://attack.mitre.org/techniques/T1055/012/
https://attack.mitre.org/techniques/T1055/012/
https://developers.google.com/safe-browsing/v4/
https://developers.google.com/safe-browsing/v4/
https://www.alexa.com/topsites
https://www.alexa.com/topsites
https://support.huaweicloud.com/function-dsc/index.html
https://support.huaweicloud.com/function-dsc/index.html
https://ti.qianxin.com/alpha-api/v2/apt-dossier/apt-report?name=5d0c89c897868c0020c593a2
https://ti.qianxin.com/alpha-api/v2/apt-dossier/apt-report?name=5d0c89c897868c0020c593a2
https://cloud.tencent.com/developer/article/1042927
https://cloud.tencent.com/developer/article/1042927
https://blog.yoroi.company/research/the-north-korean-kimsuky-apt-keeps-threatening-south-korea-evolving-its-ttps/
https://blog.yoroi.company/research/the-north-korean-kimsuky-apt-keeps-threatening-south-korea-evolving-its-ttps/
https://blog.yoroi.company/research/the-north-korean-kimsuky-apt-keeps-threatening-south-korea-evolving-its-ttps/
https://github.com/sbousseaden/EVTX-ATTACK-SAMPLES/
https://github.com/sbousseaden/EVTX-ATTACK-SAMPLES/
https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md
https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md
https://www.darpa.mil/program/transparent-computing
https://www.darpa.mil/program/transparent-computing
https://github.com/giannisnik/message_passing_graph_kernels
https://github.com/giannisnik/message_passing_graph_kernels
https://arxiv.org/ftp/arxiv/papers/2208/2208.08820
https://arxiv.org/ftp/arxiv/papers/2208/2208.08820

