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Recently, deep learning has made significant inroads into the Internet of ,ings due to its great potential for processing big data.
Backdoor attacks, which try to influence model prediction on specific inputs, have become a serious threat to deep neural network
models. However, because the poisoned data used to plant a backdoor into the victim model typically follows a fixed specific
pattern, most existing backdoor attacks can be readily prevented by common defense. In this paper, we leverage natural behavior
and present a stealthy backdoor attack for image classification tasks: the raindrop backdoor attack (RDBA). We use raindrops as
the backdoor trigger, and they are naturally merged with clean instances to synthesize poisoned data that are close to their natural
counterparts in the rain. ,e raindrops dispersed over images are more diversified than the triggers in the literature, which are
fixed, confined, and unpleasant patterns to the host content, making the triggers more stealthy. Extensive experiments on
ImageNet and GTSRB datasets demonstrate the fidelity, effectiveness, stealthiness, and sustainability of RDBA in attackingmodels
with current popular defense mechanisms.

1. Introduction

Internet of ,ings (IoT) devices have infiltrated many
industries and are now part of our daily lives. As a con-
sequence, a vast amount of data will be created. Deep
learning technology has been shown to be extremely ef-
fective in processing enormous volumes of high-dimen-
sional data, and it is now widely employed in a variety of
IoT applications, such as intelligent driving [1], computer
vision [2,3], natural language processing [4–6], and etc. In
another aspect, neural networks used in IoT are evolving
into deeper and wider architectures to perform well in
various tasks. ,is indicates that there are massive pa-
rameters to learn and a lot of computing resources to
consume. Such requirements boost the development of
machine learning-related industries, including machine
learning as a service (MLaaS). In essence, various giant
companies, such as Google and Amazon, have launched
their own MLaaS platforms to facilitate users to outsource
their model training projects. However, security vulnera-
bilities in deep neural networks may arise in any stage of the

supply chain, including but not limited to unprotected
open channels, unreliable data sources, and unreliable
training processes.

Studies have shown that deep neural networks are prone
to attacks from different stages, including inference-stage
attacks [7–9] and training stage attacks. Inference-stage
attacks, best known for adversarial attacks [10–13], generally
aim to mislead the deep neural network to produce high-
confidence error prediction results for the test data during
inference. ,ey are usually achieved by adding subtle input-
specific perturbations to the test data before querying the
target model.

Training-stage attacks usually refer to backdoor at-
tacks [14], which intend to manipulate the model pre-
dictions for those attacker-specified instances by
poisoning some normal training data. Specifically, at-
tackers inject some patterns, dubbed triggers, into clean
samples. ,ese modified data are also referred to as
poisoned data or backdoor samples, and they are assigned
predefined target labels. By involving backdoor samples
and normal data for model training, the trained model is
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thus embedded with backdoors. At the inference stage, the
backdoored model performs normally on benign inputs
but predicts the target labels for instances containing
triggers. ,is type of attack is stealthy since the victim
model has state-of-the-art performance on clean inputs,
which is indistinguishable from its corresponding clean
model, while its backdoor behavior can only be activated
by attacker-specified (unknown) inputs. In a nutshell, the
potential malicious behavior could result in dire conse-
quences in some security-critical areas, such as autono-
mous driving [15], face recognition [16], and speaker
recognition [17–19], which will also cause serious ob-
stacles to the DNN deployment and development.

In the literature, the most popular and effective
backdoor triggers are simple, fixed, or unpleasant pat-
terns, i.e., different clean data are patched with the same
trigger in a fixed position without considering the host
data content. In addition, the poisoned instances are
generated by simply stamping triggers into benign host
samples. For example, the trigger of BadNets [14], as
shown in Figure 1, is a black and white pixel block in the
bottom right corner of an image. Such poisoned data will
inevitably have abnormal distributions and appear un-
natural, raising the suspicions of model developers/users.
,ey can be easily filtered out before the model training
stage or rejected before the model inference. On the other
hand, researchers have made tremendous efforts to im-
prove the robustness of DNN models, and various
backdoor countermeasures have been proposed to remove
or suppress the backdoor behaviors of DNNmodels. It has
been demonstrated that most of the existing backdoor
methods can be successfully alleviated by some current
popular defenses, e.g., fine-tuning [20], fine-pruning [21],
and Grad-CAM based defenses [22,23].

Based on this understanding, in this work, we introduce
a novel, simple, but effective backdoor attack method using
raindrops, dubbed raindrops backdoor attack (RDBA).
Specifically, we perform two different blur operations on
uniformly distributed noise to simulate water droplets in
real scenes with different sizes and directions and make
them have motion blur. We then merge the raindrops
trigger with a small portion of clean training samples to
generate natural-looking poisoned data. Finally, the to-be-
produced backdoored model is obtained through a generic
training procedure.

Compared with the existing backdoor injection ap-
proaches, RDBA has the following advantages: (1) the
raindrops are evenly distributed across clean samples and
their natural features blend well with these host data, so the
poisoned instances can hardly be distinguished by naked
eyes or Grad-CAM based methods; (2) the backdoor triggers
are crafted based on natural phenomenon raindrops rather
than on some unpleasant patterns (e.g., BadNets) or obvious
outliers (e.g., Blending), implying that the poisoned in-
stances are closer to natural inputs and a misclassification
caused by RDBA could be considered a normal
misclassification.

In summary, the main contributions of this paper are as
follows:

(i) In this paper, we propose a backdoor attack method
RDBA, which uses natural behavior raindrops to
embed backdoors in image classification scenarios

(ii) We simulate natural raindrops through a series of
blur transformations on uniformly distributed
noise, and the resulting raindrops are evenly dis-
persed and naturally blended on each clean sample

(iii) Two datasets are used to evaluate the fidelity, ef-
fectiveness, stealthiness, and sustainability of the
proposed method in attacking two neural networks
with and without defenses

,e rest of this article is organized as follows. Section 2
discusses related work. Section 3 introduces the threat
model and attack goals. Section 4 elaborates on the details
of the proposed RDBA method. ,e experimental results
are analyzed in Section 5 and the conclusions are drawn in
Section 6.

2. Related Work

2.1. Backdoor Attacks. Backdooring DNNs refers to a
technique that is able to maliciously manipulate the model
predictions on specific inputs by poisoning a small portion
of clean data during training or fine-tuning. Backdoor at-
tacks have posed serious threats to the model supply chain
and have attracted lots of attention from both industry and
research community. Specifically, the attacker-crafted trig-
gers are injected into some benign training data to create
poisoned samples. In the inference, a neural network trained
on these poisoned data will active abnormal behaviors when
feeding inputs containing the triggers but behave normally
on benign inputs.

Existing backdoor attacks can be divided into poison-
label attacks and clean-label attacks according to whether the
labels of poisoned samples are changed. In poison-label
attacks, the labels of poisoned data are replaced with pre-
defined target labels. As a result, when the backdoored
model detects the triggers, its predictions will be the target
labels. One of the most popular works that revealing
backdoor threat in the machine learning training stage is the
BadNets [14].,e authors used a simple binary pixel block at
bottom right corner of the image as the backdoor trigger, as
shown in Figure 1, and the poisoned data was created by
stamping the trigger to a benign instance and changing its
label to the target label. However, such kind of attack can be
easily detected either by human inspection or by backdoor
detection mechanisms due to the fact that triggers are
outliers of the host images. As a remedy, Chen et al. in [24]
blended triggers with benign images to generate poisoned
images, as shown in Figure 1, where the hello kitty trigger
overlaps with clean samples with a certain transparency.
However, the above discussed triggers are fixed patterns in
fixed locations, as will be shown in Section 2.2, most existing
poison-label backdoor attacks are easily mitigated by current
popular defenses.

In clean-label backdoor attacks, the poisoned training
data still preserve their ground-truth labels, and they look
like their source instances in the input space or at a pixel
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level. One typical work was proposed by Shafahi et al. in [25],
in which the authors crafted poison data by adding unno-
ticeable perturbations to clean samples from the target class
of the training set. ,e poisoned data appear like their clean
data counterparts, however, in latent feature space, they are
closer to the target samples (i.e., the clean data from a certain
non-target class of the testing set). During inference, the
targeted inputs would bemisclassified as the target class. Zhu
et al. in [26] pointed out that the work of [25] is not suitable
in the black-box setting because the victim network is not
accessible. And they proposed an improved version of [25]
in [26] by leveraging the convex polytope attack to craft
poison data. Since the content of the poisoned data is
consistent with their labels, these data will be considered as
benign samples even by human inspection. Accordingly,
clean-label attacks are more stealthy compared with poison-
label attacks. However, it may be because the trigger is a
particular set of testing data rather than a universal pattern,
the attack success rate of clean-label attacks is relatively low,
e.g., in [25], for a 10-class classification setting, the target
success rate is 60%. Accordingly, in this work, we only target
the poison-label attacks and put forward a backdoor method
based on raindrops, which will be introduced in Section 4.

2.2. Backdoor Defenses. Backdoor defenses aim to detect or
mitigate backdoor attacks before or after model deployment.
In the current literature, various techniques have been
proposed. Here, we list the main-stream techniques for
backdoor defense before the deployment of DNN models,
which are the most commonly used in practice.

2.2.1. Fine-Tuning. Fine-tuning is one of the practical and
lightweight choices to get a well-performed model when the
labeled training data is insufficient. Researchers have found
that deep learning models suffer from catastrophic forget-
ting [20] of previously learned tasks when training on a
series of new tasks. ,e rationale for employing fine-tuning

to defend against backdoor attacks is that learning new tasks
will generally lead to large changes of the model weights,
which will disrupt previously learned trigger representations
[20]. ,e fine-tuning defense takes advantage of this cata-
strophic forgetting phenomenon to drive the victim model
to forget the implanted backdoors. ,at is, if defenders train
a model on the top of the victim using some new clean
training data, then the resultant model may drain out of
memory and forget the backdoor since it does not encounter
any triggers from new data during fine-tuning. However, in
reality, fine-tuning alone is not always effective as expected
when it comes to defense backdoors. ,is is because, neu-
rons associated with a backdoor are disentangled from
neurons associated with the original tasks, and their weights
have little contribution to the original (or new) tasks. During
fine-tuning, the weights of backdoor-related neurons will
keep unchanged due to lack of driven-force, and the
backdoor remains.

2.2.2. Fine-Pruning. Further to fine-tuning, the authors of
[14] observed that the neurons activated by benign samples
and those activated by trigger-containing samples do not
overlap. In other words, there are neurons that can only be
activated by triggers and remain dormant when inputs are
benign data. In view of this observation, removing these
trigger-sensitive neurons, dubbed backdoor neurons, can
help to disable the backdoor without impairing model
performance on normal data, as suggested by the neuron
pruning defense hypothesis. However, Liu et al. in [21]
further found that the subset of neurons activated by benign
inputs and the subset of neurons activated by malicious
inputs can overlap. Backdoors can also be triggered by
suppressing neurons activated by benign inputs. In this case,
pruning neurons alone will inevitably result in performance
loss on benign inputs. Considering such drawbacks, Liu et al.
proposed the fine-pruning defense in [21], which combines
the merits of neuron pruning with fine-tuning defense.
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Figure 1: Different backdoor instances.,e trigger crafted by the BadNets is a black and white pixel block at the bottom right hand corner of
the image. In the specific case generated by the Blending, the “hello kitty” is used as the trigger to overlap with clean samples. In the case
generated by RDBA, the trigger is evenly distributed raindrops.
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2.2.3. Grad-CAM Based Defense. Grad-CAM (Class Acti-
vation Map) [22,23] is a commonly used and useful tech-
nique for model interpretability and object detection. It
produces a visual interpretation of DNN decisions by
identifying the sample activation regions that contribute the
most to the prediction.,e defense methods based on Grad-
CAM mainly utilize this technique to distinguish malicious
salient regions and filter out potential abnormal inputs or
behaviors. For example, the SentiNet [27] proposed by Chou
et al. employs Grad-CAM and boundary analysis to locate
the activated regions when each sample is classified into a
certain class, i.e., universal regions across different instances.
,en, by separating the salient areas from the common ones,
backdoor can be eliminated. NeuronInspect [28] proposed
by Huang et al. also follows this idea to detect poisoned
samples. In a nutshell, the effectiveness of Grad-CAM based
defenses mainly relies on the localization of trigger activa-
tion regions.

3. Problem Statement

In this section, we briefly introduce the threat model, in-
cluding the capability and knowledge of attackers, model
developers, and defenders, respectively, as well as the attack
goals.

3.1. System and 2reat Model. ,is paper focuses on the
problem of poison-label backdoor attacks in image classi-
fication tasks. ,ere are three main entities involved in the
lifecycle of backdooring DNNs: the attacker, the model
developer, and the defender.

3.1.1. Attacker. In our threat model, we follow the as-
sumption in BadNets [14] that the attacker can access and
manipulate the training data, but he cannot access the
parameters, structure, and training process of the victim
model. ,e attacker could, for example, be the training
data supplier who poisons a small portion of the training
data by stamping a self-crafted trigger onto the clean
instances and changing their labels to the target labels. In
the inference stage, the attacker can query the victim
model with images containing the trigger. He neither
knows the victim model nor can he manipulate the in-
ference process.

3.1.2. Developer. ,e developer could be the third-party
platform for training the victim model. He has powerful
resources and is usually very dedicated to the training
process. He will carefully select network architecture,
hyperparameters, as well as training strategies to obtain a
well-performed model. Due to the enormous volume of data
involved in the training process, if there is no obvious ab-
normality, e.g., some data have obvious traces of modifi-
cation, he will not carefully check data legitimacy. However,
if the trained model does not perform well on the validation
data set, he will reject it.

3.1.3. Defender. After the model has been trained, the de-
fender can take measures, including detection and mitiga-
tion, as we have introduced in Section 2.2, to disable possible
backdoors of the suspicious model. In the real-world sce-
nario, the defender can access the suspicious model and has
a certain portion of the source training data. He can also
fine-tune or change themodel structure. For example, he can
use the available source training data to fine-tune or fine-
prune the model to remove the backdoor or suppress the
backdoor behavior via filtering.

3.2. Attack Goals. ,e attacker intends to inject a backdoor
into the victim model through data poisoning. An ideal
backdoor attack should have a good attack effect and attack
robustness. A good attack effect is a basic requirement for a
successful attack, which usually considers attack fidelity
and attack effectiveness. Attack robustness is a more ad-
vanced requirement for a backdoor attack, and it usually
takes into account attack stealthiness and sustainability.
Specifically, the RDBA is expected to own the following
properties.

(1) Fidelity. ,e existence of the backdoor should not
degrade the model’s accuracy on benign instances. It
is reasonable to assume that a backdoored model
whose performance on validation data is lower than
the developer’s expectations will be rejected for
deployment.

(2) Effectiveness.,e backdoor can be easily activated by
the attacker-specific trigger. ,at is, the model will,
with a high probability, return target labels when
receiving inputs containing the trigger regardless of
what their ground-truth labels are.

(3) Stealthiness. It requires the trigger should be natural
and the poisoned data can hardly be distinguished
from natural inputs by naked eyes or Grad-CAM
based detectors and their volume should be kept to a
minimum. Otherwise, the anomaly in the training
data would be detected by the model developer, and
the poisoned data would be sanitized before training
the model.

(4) Sustainability. ,e attack should still be effective
under some commonly used defenses as we have
introduced in Section 2.2.

4. Raindrops Backdoor Attack

In this section, we illustrate our proposed RDBA backdoor
attack. Our main attack flow is shown in Figure 2. Before
diving into the details, we clarify the main process of the
backdoor attack.

4.1. Overview of RDBA. Without loss of generality, we
consider the DNN backdooring problem on a C-classes
image classification task. Suppose D � (xi, yi) 

N

i�1 indicates
the benign training dataset containing N samples from a
trusted source used to train a DNN F, where
xi ∈ 0, . . . , 255{ }w×h×c is the benign sample and
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yi ∈ 0, . . . , C − 1{ } is the corresponding label. Let
yt ∈ 0, . . . , C − 1{ } be the the target label chosen by the
attacker. We follow the definition in [29] and define our data
poisoning algorithm A(·) as:

x
t
i⟵A xi, m,Δ( , (1)

x
t
jkc � 1 − mjk  · xjkc + mjk · Δjkc, (2)

where x ∈ D1 is the original benign image,D1 is a subset of
D, xt

i is the poisoned sample, Δ is the trigger, m is a two-
dimension matrix called mask, and c, w and h refer to the
number of image channels, image width and image height
respectively.

,e general training set of a backdoored model FB is the
combination of a handful of training samples with backdoor
trigger Dtrigger � (xt

i , yt) 
|D1|
i�1 and the remaining clean

samples D2 � D\D1:

Dtrain � D2 ∪Dtrigger. (3)

,e backdoor injection rate is κ � |Dtrigger|/|Dtrain|.

4.2. Raindrop-Trigger Crafting. In our method, the trigger
used to poison clean instances is raindrops. We clarify the
raindrop-trigger generation steps as follows.

For each x ∈ D1, we first generate random noise:

noise← random(0, 256){ }
w×h
i�1 . (4)

To make the generated raindrops trigger Δ looks natural
and stealthy, we preprocess the noise by constraining the
raindrops density with α and perform the first blur operation
with the convolution kernel K1:

noise �
255, if noise>(256 − α),

0, else,


Δ←B noise, K1( ,

(5)

where K1 is a single-channel 3 × 3 floating-point matrix. For
the further realization of the natural raindrops, the pre-
liminarily generated raindrops trigger needs to be stretched
and rotated to mimic rainwater of different sizes and di-
rections, then motion blur is added to it using the Gaussian
blur kernel K2. To use a Gaussian blur, it is necessary to
construct a corresponding weight matrix for filtering, and
the calculation of the weight relies on a two-dimensional
Gaussian function. ,e following is the two-dimensional
Gaussian function used:

G(x, y) �
1

2πσ2
e

− x2+y2( )/2σ2 . (6)

,e raindrops trigger is updated by applying the second
blur operation with the Gaussian blur kernel K2:

Δ←B Δ, K2( . (7)

,en, for all of the images in D1, repeat the above steps
and apply the algorithm in equation (2) to get our raindrops
trigger setDtrigger. ,e detailed raindrops-trigger generation
procedure is summarized in Algorithm 1.

4.3. Backdoor Embedding. After generating the poisoned
training set Dtrigger with the aforementioned method, at-
tackers will replace the clean subsetD1 with it to update the
training dataset Dtrain. ,e model developer uses Dtrain to
train a model with a standard model training process with
cross-entropy loss, i.e., solving the following optimization
problem:

Clean samples

Trigger

Backdoor samples

Generating Trigger

Backdoor set

Clean set

Embed the backdoor into DNN

Target DNN

DNN with backdoor

Inference Stage

Stop (true label)

20 Mile/h (target label)

Figure 2: Overview of the model. In the trigger generation stage, the attacker uses the raindrops trigger to poison a small portion of training
data to generate backdoor samples. In the backdoor embedding stage, the backdoor samples and clean samples are used together to train a
DNN to learn the mapping from the raindrops trigger to the target label. In the inference stage, the backdoored model returns the ground-
truth labels for clean inputs and the target label for poison inputs.
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argmin
θ

−
1
N


x∈Dtrain



C

i�1
yilog pi(x, θ)( , (8)

where yi is the i-th value of the ground-truth label of x, pi is
the i-th output of the softmax of FB, θ is the trainable model
weight set. ,e optimization equation (8) can be solved
using back-propagation with the SGD (stochastic gradient
descent) optimizer.

Since the dataset contains κ ratio poisoned data, the
model can learn the mapping from the trigger to the target
label, i.e., the backdoor will be embedded into the model
seamlessly during the training process. In the inference
stage, attackers can activate the backdoor behavior by
injecting the trigger into benign inputs and feeding them to
the model.

5. Experiments and Analyses

To evaluate the performance of the proposed backdoor
method in terms of attack effect and attack robustness,
extensive experiments are executed by using different
benchmark datasets and neural architectures. ,e two most
popular poison-label backdoor methods, BadNets, proposed
in [14], and Blending, proposed in [24], serve as our
benchmark.

5.1. Experimental Settings. We evaluate the performance of
the backdoor attacks on two benchmark datasets:
ImageNet [30] and GTSRB (German Traffic Sign Recog-
nition Benchmark) [31]. ImageNet is a 1000-class image
classification dataset, including 1,281,167 training images,
50,000 validation images, and 100,000 test images. GTSRB
contains 43 classes of traffic signs, including 39,209
training images and 12,630 test images. For simplicity, we
randomly select a subset containing twelve categories from
each of the two datasets, used for training and testing,
where the first category within them is defined as the target
class. For the ImageNet and GTSRB, the selected subsets

contain 15,592 images and 40,520 images, respectively.,e
two subsets are split into training sets and test set with a
10: 1 ratio, and the data enhancement methods (random
clipping and rotation) are adopted to process the samples.
,ese images are all resized into 244 × 244 × 3.

All attacks on the two datasets are conducted on
ResNet18 [32] and VGG16 [33] with the injection rate
defaults to κ � 0.09. For RDBA, the raindrops density de-
faults to α � 6. ,e SGD optimizer is used in the training
stage, and the initial learning rate is set to 0.01.,e batch size
and maximum iteration are set to 32 and 200, respectively.

,e evaluation indexes we used include ASR (attack
success rate), ATA (after attack accuracy), and PBA. ASR
refers to the probability that a test set with a backdoor trigger
is misclassified as the target label by the poisoned model.
ATA refers to the performance of the poisoned model on a
clean test set. PBA � |BTA − ATA| measures the fidelity of
the infected model, where BTA (before attack accuracy) is
the clean test set accuracy of the backdoor-free model that
trained with clean instances. A qualified backdoor attack
that satisfies the fidelity and effectiveness goals should have a
high ASR and ATA but a low PBA.

5.2. Attack Effect

5.2.1. Fidelity. It aims to test whether the performance of
clean data suffers as a result of the backdoor. As a com-
parison, we train corresponding clean models with the
above-mentioned network architectures and clean training
datasets.We also train backdooredmodels with the Blending
[24] and BadNets [14] methods, and the accuracy results are
shown in Table 1. Comparing our ATA with the BTA values,
it is clear that our backdoor attack has no negative impact on
performance.,ere is even a slight improvement in the clean
data accuracy of models trained on VGG16. However, as can
be seen in the fourth and fifth columns, the fidelity of
Blending [24] and BadNets [14] is not as well preserved. For
example, in Blending, the ATA of ResNet18 models trained
with GTSRB dropped by 3.83%; whereas in BadNets, the

Given: begin training data D � (xi, yi) 
N
i�1, poison injection rate κ, trigger density α, blur kernel K1 and K2, mask m.

Output: dataset with trigger Dtrigger
(1) noise � 0, Δ � 0, Dtrigger �

(2) D1← random select samples with ratio κ from D

(3) for all x ∈ D1 do
(4) noise← random(0, 256){ }

w×h
i�1

(5) if noise< 256 − α
(6) noise � 0
(7) else
(8) noise � 255
(9) Δ←Blur(noise, K1)

(10) Δ←Blur(Δ, K2)

(11) xt � (1 − m) · x + m · Δ
(12) Dtrigger.append xt 

(13) end for
(14) return Dtrigger

ALGORITHM 1: Raindrops-Trigger Generation.
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ATA of ResNet18models trained with ImageNet dropped by
2.87%.

We also investigate our backdoor effects with different
raindrops densities α and different injection rates κ, with the
findings displayed in Table 2 and Figure 3, respectively. As
we can see from Table 2, the PBA values are very small, in
which the largest is 0.56%, and generally it can be think as
negligible. Figure 3 shows that, although ATA decreases
slightly at the injection rates of 0.04 and 0.08, overall ATA
remains relatively stable as the injection rate increases. To
conclude, RDBA achieves high fidelity.

5.2.2. Effectiveness. ,e purpose of effectiveness is to
quantify how likely the target labels can be activated by an
instance containing a specific trigger. From Table 1 we can
see that all of the methods have high ASRs. For RDBA and
Blending, their ASR is near 100%. For BadNets trained on
ImageNet using VGG16, the ASR is about 92%, whichmeans
the effectiveness of BadNets is relatively inferior to RDBA
and Blending methods.

Table 2 further shows that ASRs of RDBA increase with
the increase of density α. When α is 0.5, its ASR is 96.42%,
which is relatively low but still outperforms BadNets, whose
ASR is only 92%.When α increases to 1, the ASR is near 99%,
which demonstrates that the backdoor effectiveness of
RDBA is high even at low density.

Figure 3 also shows a similar trend, that is, ASR increases
as the injection rate increases. When the injection rate is
0.02, the ASR of RDBA trained on the ImageNet dataset is
about 95%, which is not as high as the ASR that is close to
100% trained on the GTSRB. It is mainly because the
classification difficulty of the ImageNet dataset is higher than
that of the GTSRB dataset. When the injection rate is in-
creased to 0.04, the ASR reaches about 99%. After that, as the
injection rate is increased, the ASR value stabilizes between
99% and 100%.

To sum up, the trigger density setting has no significant
impact on the effect of the backdoor model, and the pro-
posed RDBAmethod can achieve a high attack effect even in
the case of a small density or low injection rate.

5.3. Attack Robustness

5.3.1. Stealthiness. Stealthiness is to measure how likely it is
that the poisoned data will arouse the suspicions of devel-
opers. Intuitively, the more natural the poisoned images and
the smaller the injection rate, the more concealed the poi-
soned data are and the less likely model developers will
notice them.

Figure 4 shows the poisoned images generated with
different densities. From this figure, we can see that even if
the disturbance on the clean image increases with the in-
crease in density, the modified image appears natural to
naked eyes. Figure 1 shows backdoor instances used in
different methods. It is obvious that the instances created by
Blending and BadNets have traces of artificial synthesis. In
contrast, the poisoned images created using RDBA look
more natural, and the content of the source images is un-
affected. In another aspect, as we have analyzed in Sections
5.2.1 and 5.2.2, RDBA can achieve both high fidelity and
effectiveness at a relatively low injection rate. For instance, as
shown in Figure 3, the RDBA trained on ImageNet achieves
near 99% when the injection rate is 0.04, and almost 100%
for GTSRB. So, it is concluded that the RDBA meets the
stealthiness criteria.

Table 1: Performance of different backdoor methods on ImageNet and GTSRB datasets evaluated using the ATA (%) and ASR (%), where x/
y indicates average metrics ATA/ASR and the best results are in bold.

Dataset Model BTA Blending [24] BadNets [14] Ours
GTSRB ResNet18 93.87 90.04/99.80 93.05/99.14 93.52/99.94
GTSRB VGG16 92.31 92.83/99.97 93.22/97.39 92.86/100
ImageNet ResNet18 87.30 85.12/99.32 84.43/97.24 86.70/99.25
ImageNet VGG16 86.90 85.34/99.46 84.13/92.05 87.18/99.19

Table 2: ,e ATA (%), ASR (%), and PBA (%) of backdoor triggers
with different raindrops densities tested by ImageNet dataset on
VGG16.

α ATA ASR PBA

0.5 87.15 96.42 0.25
1 86.34 98.85 0.56
2 87.05 99.12 0.15
3 86.86 99.32 0.04
4 87.03 99.39 0.13
5 86.97 99.52 0.07
6 87.18 99.10 0.28
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Figure 3: ,e effect of different injection rates κ on our method.
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5.3.2. Sustainability. ,e purpose of sustainable assessment
is to measure whether the backdoor method can withstand
backdoor defenses. In this section, we mainly pay attention
to the fine-tuning, fine-pruning, and Grad-CAM based
defenses.

(1) Fine-Tuning Defense. We evaluate the effects of Blending,
BadNets, and RDBA in evading fine-tuning defense. ,e
backdoored models are pretrained with the ImageNet
dataset using the three attack methods. And then they are all
fine-tuned for 10 epochs with a learning rate of 0.001 and a
10% clean ImageNet dataset, as shown in Figure 5.

Obviously, the ASR of BadNets has a significant decline
after only 2 epochs of fine-tuning, and the value continues to
decrease as the fine-tuning epoch increases. Finally, after 10
epochs of fine-tuning, the ASR of BadNets decreased from
92.05% to nearly 30%. On the contrary, as the fine-tuning
epoch is increased, the ASR of both Blending and RDBA is
essentially unaffected. ,e ASR of RDBA method drops by
2.18% when the epoch is 8, but it quickly recovers and is
finally maintained at around 97%. In general, RDBA is
comparable to Blending, and both are better than BadNets,
in terms of evading the fine-tuning defense. It’s possible that
this is due to BadNets’ triggers being overly simplistic, with
the trigger pattern only focusing on a small portion of an
image.,e neurons that contribute to the prediction of clean
inputs rarely overlap with the neurons that contribute to the
prediction of triggers. In this way, BadNets is more sus-
ceptible to fine-tuning defense.

We also investigate the impact of raindrops density in
RDBA on evading the fine-tuning defense, as illustrated in
Figure 6. ,e backdoored models are trained by backdoor
samples with different densities α. As we can see from this
figure, the ASR of the backdoored models with densities of

0.5 and 1 decreases significantly as the fine-tuning epoch
grows. And finally, the value degraded to nearly 90% after
fine-tuning. It is because when the density is low, the
similarity of the poisoned input and the clean sample is
relatively high, preventing the DNN model from learning to
distinguish the trigger input accurately. Meanwhile, the ASR
of the backdoored models with a density of 2 or greater than
2 is almost unaffected by the fine-tuning, and their ASR
remains near 100%. It is concluded that our method can
maintain backdoor behavior well after the fine-tuning de-
fense with density ≥2. It is worth mentioning that, as we
discussed earlier, stealthiness is well maintained in such
settings.

(a)

(b)

(c)

Figure 4: Backdoor instances generated by RDBA on ImageNet with different densities α. (a) α� 0.5. (b) α� 3. (c) α� 6.
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Figure 5: ,e sustainability of backdoor behaviors of BadNets,
Blending, and our methods to the fine-tuning defense.
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(2) Fine-Pruning Defense. We assess the susceptibility of
backdoor behaviours of our method to this defense by
designing the experiments as follows. ,e backdoored
models are trained with VGG16 on ImageNet and GTSRB
datasets. We rank the weights by magnitude, and then set the
least p% to zero to prune the model. ,en we fine-tune the
pruned model use 10% clean data. ,e experimental results
are shown in Figure 7.

As we can see from this figure, the ASR of all six
backdoored models is well preserved when 20% neurons are
pruned, but the ASR drops significantly when the proportion
of pruned neurons exceeds 20%. When the pruning rate is
40%, the ASR degradation of the Blending method is the
most severe, especially for the model trained on GTSRB
whose ASR dropped from nearly 100% to nearly 40%. For
the models backdoored with the Blending and BadNets
methods on ImageNet, their ASR degraded by about 20%.
And their ASR drops to near 60% when the pruning rate
reaches 50%. Compared with both Blending and BadNets,
RDBA is less susceptible to fine-pruning. ,e ASR values of
backdooring with RDBA on both ImageNet and GTSRB
datasets are all above 80% even when 50% neurons are
pruned. In general, the proposed RDBA outperforms
Blending and BadNets in sustaining the backdoor behavior
after fine-pruning.

(3) Grad-CAM Based Defense. As mentioned in 2.2, the
effectiveness of Grad-CAM defense methods highly relies on
the localization accuracy of malicious salient regions. To
evaluate the resistance of our method to this kind of defense,
we generate the salient heat maps, obtained through Grad-
CAM, of poisoned images with given datasets on VGG16, as
shown in Figure 8.

As we can see from the second row in both Figures 8(a)
and 8(b), the heat maps of backdoor samples obtained by
the BadNets are concentrated in specific significant areas,
i.e., the bottom right corner of images, which is exactly the
trigger embedded position. Such universal salient regions
are likely to be identified as malicious salient regions. For

the heat maps generated for Blending, as shown in the first
row of Figures 8(a) and 8(b), respectively, their salient areas
are not focused on the fixed areas of an image as the
BadNets method does. ,e distribution of highlighted
regions, on the other hand, retains some regularity, with
the majority of them concentrated in the middle of the
lower half of the images. In contrast, the salient regions of
poisoned samples generated by RDBA are scattered in the
images, as shown in the third row of Figures 8(a) and 8(b)
respectively, and they appear to be random. It is mainly
because different poisoned images generated by RDBA
contain different triggers, which are evenly distributed in
the images, while the poisoned images generated by
Blending and BadNets share fixed trigger patterns. As a
result, the triggers generated by RDBA are harder to dis-
tinguish compared to those of Blending and BadNets. In
conclusion, our attack is more resistant to the Grad-CAM-
based defense.
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Figure 7: ,e sustainability of backdoor behaviors of BadNets,
Blending, and our methods to the fine-pruning defense.
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Figure 6: ,e ASR of backdoored models with different densities α after the fine-tuning defense.
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6. Conclusion

In this article, we report that the triggers of most existing
backdoor attacks are simple, fixed, or unpleasant patterns,
which not only makes the backdoor samples easy to be
suspected by the model developer due to their unnatural
appearance, but also allows current backdoor defenses to
easily mitigate backdoor attacks. Based on this consider-
ation, we propose the RDBA attack based on the natural
raining phenomenon, which, compared to the current
backdoor trigger, is more disguised and can circumvent data
filtering. In addition, the raindrops triggers are evenly
scattered over images and do not follow a fixed pattern that
is shared by all benign samples, making the RDBA more
resistant to the existing backdoor defenses. Extensive ex-
periments have been conducted, which corroborate the
attack effect of RDBA in terms of fidelity, effectiveness,
stealthiness, and sustainability in attacking different models.
In the future, we will consider designing more stealthy
backdoor attacks by using advanced deep learning-based

techniques to generate synthetic raindrops that are indis-
tinguishable from real raindrops.
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