Hindawi

Security and Communication Networks
Volume 2022, Article ID 4605685, 14 pages
https://doi.org/10.1155/2022/4605685

Research Article

WILEY | Q@) Hindawi

Group Public Key Encryption with Equality Test under

Standard Model

Xiangtian Deng and Haifeng Qian

Software Engineering Institute, East China Normal University, Shanghai 200062, China

Correspondence should be addressed to Haifeng Qian; hfgian@cs.ecnu.edu.cn

Received 25 December 2021; Revised 2 June 2022; Accepted 10 June 2022; Published 7 July 2022

Academic Editor: Jie Cui

Copyright © 2022 Xiangtian Deng and Haifeng Qian. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Group public key encryption with equality test (G-PKEET) scheme supports group granularity authorization on the equality test.
An authorized proxy is able to check whether two ciphertexts belonging to the same group are encrypted from identical plaintext
without decrypting them. However, in indistinguishability-based security notion, current existing PKEET and G-PKEET schemes
do not allow adversary to invoke equality test as a service. In contrast, under practical circumstance, an adversary is probably able
to exploit the equality test service offered by proxy to decipher a ciphertext, leading to unexpected and unwanted privacy leakage.
In this paper, we propose a security definition that includes the abovementioned adversary ability. Through extending the
functionality of current G-PKEET scheme, we design a concrete scheme that satisfies our new security definition. Furthermore,
our G-PKEET scheme is the first G-PKEET scheme whose security properties can be proved under the standard model.

1. Introduction

Public key encryption with equality test (PKEET) is originally
proposed by Yang et al. [1]. In PKEET scheme, users are able
to check the equality of a pair of ciphertext without decrypting
them, i.e., whether plaintexts decrypted from the ciphertext
pair are equal. The tested ciphertext pairs are unnecessary to
be encrypted by same public key. However, in PKEET scheme
proposed by Yang et al,, any user is allowed to perform
equality test on arbitrary ciphertexts. In order for private key
holders to manage access to equality test on corresponding
ciphertexts, Tang proposes PKEET scheme in [2, 3], which
introduces the concepts of “proxy” and “token.” Tokens are
generated by private key holders, and proxy can correctly
perform equality test on ciphertext pairs only after obtaining
corresponding tokens. This concept has been applied in a
series of subsequent related works [4-7].

In common PKEET scheme, proxy has to request au-
thorization from a user for executing equality test on ci-
phertexts encrypted by the user’s public key. This
authorization mode is referred to in [8] as “user granularity
authorization.”

To cope with different application scenarios, the concept
“group granularity authorization” has been put forward [8, 9].
Under this authorization mode, a normal user can generate
group ciphertexts with the permission of group administrator.
Meanwhile, token issued by group administrator can be and
only be used to conduct equality test on all group ciphertexts
within the same group, thus helping to reduce the compu-
tational, storage, and communication overheads caused by
token issuance. However, current PKEET definitions are not
suitable for group granularity authorization in terms of ef-
ficiency [8]. Group public key encryption with equality test
(G-PKEET) scheme is firstly proposed by Ling et al. [7], which
is the first PKEET scheme supporting group granularity
authorization. Besides the concepts of “proxy” and “token,” a
trustable “group administrator” role is additionally intro-
duced in G-PKEET, in charge of issuing tokens. Each normal
user, holding his own key pair, may apply to a “group ad-
ministrator” for joining his group. With the permission of
administrator, user is able to generate group ciphertexts.
Similar to the definition of PKE, a group ciphertext can only
be successfully decrypted by corresponding private key
holder. In order to conduct equality test on group ciphertexts

mailto:hfqian@cs.ecnu.edu.cn
https://orcid.org/0000-0003-4920-5405
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4605685

oA
Request permission

for generating 7

. Group
hertexts ~~
group cipher ex/s/ Administrators
.
Patients Medical Cloud Server

&%

Patient Information &
Groups (logical)

Security and Communication Networks

Request permission
for equality test

N .
\\?n group ciphertexts

N
N

Service Providers Medical Workers

O <———Inv0ke-———&%

e

s
’

Equalit}; Test

FiGURE 1: G-MHSN scenario of G-PKEET.

within same group, a proxy only needs to submit an au-
thorization request to the group administrator.

We remind readers that the primary feature of another
existing definition Group Encryption (GE) [10] is allowing
encryptor to conceal a recipient (decryptor) within a group
of legitimate receivers. In G-PKEET, the entity of a group isa
ciphertext. Detailedly speaking, users generate key pairs on
their own and are able to join multiple group with same key
pair. The group public key used when generating ciphertext
decides which group the ciphertext belongs to, while proxy
can only perform equality test on ciphertexts within the
same group. In short, GE achieves anonymization of
decryptor identity, while G-PKEET aims to save the over-
head of communication and storage in aspect of token is-
suance. The two definitions are similar in naming but far
various from each other in functionality.

In terms of security, several recently proposed PKEET
schemes [4-6] have proved their security properties under
standard model. Their security properties are more robust
than those relying on random oracle model [11]. Scheme
under random oracle model does not always guarantee its
security when random oracle is instantiated with real hash
function [12]. No G-PKEET scheme has proved to be secure
under standard model up till now.

Existing works generally classify potential adversaries
into two major categories relying on whether adversary is
authorized to perform equality test on target user’s ci-
phertext, i.e., obtaining corresponding token.

However, with respect to definition on adversary abili-
ties, almost none of the existing schemes consider the sit-
uation where unauthorized adversary can restrictively
invoke a proxy able to perform equality test on target user’s
ciphertext; i.e., he cannot directly perform equality test on
target ciphertext. This gives rise to potential risk that un-
authorized adversary exploits this service to arouse un-
wanted information leakage.

On the other hand, PKEET and G-PKEET schemes
proposed in related works commonly embed plaintext and

corresponding hash values into different components of
ciphertext, aiming to make the ciphertext structurally ca-
pable of equality test. Thus we propose the definition of
“improper ciphertext,” standing for ciphertexts whose em-
bedded plaintext, hash values, and other components are
noncorrespondent. These ciphertexts may be submitted by
malicious encryptor in order to interfere the correctness of
equality test. Once such interference attack is launched in
existing G-PKEET scheme, authorized proxy and private key
holder have to interact to judge the properness of ciphertext,
leading to communication overhead.

We use the following example to demonstrate our
motivation more concretely: Consider a group based medic
social network scenario (G-MHSN) in Figure 1.

The medical cloud server (MS) is responsible for storing
encrypted patient information. A medical worker uses pa-
tient’s public key to generate ciphertexts of patient infor-
mation. A Service Provider (SP) owning computation power
provides patient information equality test service for medical
workers.

“Groups” represent different medical databases or
different partitions of single medical database, depending
on demanding of medical workers. The “group” mecha-
nism allows SPs to request authorization only once to check
the equality of ciphertexts belonging to the same group,
regardless of whose public key these ciphertexts are
encrypted by.

The group administrator (GA) is responsible for man-
aging the group, including granting users to generate group
ciphertexts and granting SPs to perform equality test on any
pair of ciphertexts within the group.

Assume patient information of patient A and patient B
needs to be tested in form of ciphertext. The workflow of this
scenario is as follows: Firstly, the patient information of A
and B is encrypted using their respective public keys and
group public keys. Both ciphertexts need to belong to the
same group. Secondly, the service provider SP requests
permission from the group administrator GA to enable itself

Security and Communication Networks

to perform equality test within this group. Finally, medical
worker can invoke SP to perform equality test on patient
information of user A and user B.

Furthermore, we use the above scenario to describe the
security concerns that existing G-PKEET solution can not
address.

(i) Service provider (SP): the SP should ensure that
patient information equality test service it provides
to medic workers does not reveal information other
than equality test result.

(ii) Patients: Patients should have the ability to check
properness of patient information ciphertext to
prevent equality test service from misjudging their
ciphertexts.

In coping with the security concerns mentioned above,
we make extensions on existing G-PKEET definition. The
contribution of our proposed scheme is listed as follows:

(1) Our G-PKEET scheme is the first G-PKEET scheme
proved to be secure under standard model. Com-
pared with existing G-PKEET scheme, our scheme is
no longer dependent on random oracle to prove its
security property. Simultaneously, our scheme is
acceptable in aspect of communication and storage
overhead.

(2) In response to the status that current G-PKEET
scheme is incapable of permitting private key holder
to verify whether embedded message value and hash
value are corresponded, we modify the definition of
decryption algorithm. The new definition allows
private key holder to check whether components are
corresponded and output L in case of incorres-
pondence. This modification allows private key
holder to detect and remove improper ciphertext
more efficiently, ensuring correctness of equality test
service. Implicitly, we demonstrate that the modi-
fication itself would not compromise security
properties of our scheme; ie., adversary cannot
exploit this function to arouse information leakage.

(3) Our scheme strengthens the capability of unautho-
rized adversary, allowing adversaries of this type to
invoke equality test oracle. Correspondingly, we
prove our scheme to be secure under newly defined
security property. This modification would guaran-
tee that the unwanted leakage of plaintext infor-
mation will not occur even when equality test service
would be provided publicly.

2. Related Works

2.1. G-PKEET. The G-PKEET scheme is first proposed by
Ling et al. [7], which introduces a trustable “group ad-
ministrator” role in charge of a group secret key. Each user,
holding their own public/private key pair, can apply to a
“group administrator” for joining his group, i.e., obtaining a
group public key. With the use of group public key, cor-
responding user private key, and the other user’s public key,

a group ciphertext is generated, able to be decrypted by
private key of the other user. In order to test the equality of
two group ciphertexts belonging to the same group, a proxy
only needs to apply to “group administrator” for a group
trapdoor.

Furthermore, this scheme is also claimed to be resistant
to OMRA attack (offline message recovery attack) proposed
by Tang in [13]. In OMRA attack, an attacker authorized by
token distributor, who knows the distribution of message
space in advance, can recover plaintext from target ci-
phertext through repeatedly performing equality test be-
tween target ciphertext and ciphertext encrypted from
guessing message.

Ling et al. show that their scheme is resistant to OMRA
attack through avoiding group ciphertexts from being
generated publicly. This technique is similar to which used
by Wu et al. in [14]. Detailedly speaking, only users who are
granted with group public keys by the group administrator
can generate a group ciphertext. Thus an OMRA attacker
can not organize an attack unless he colludes with the group
administrator or any user in the group.

2.2. PKEET under the Standard Model. Zhang et al. put
forward a PKEET scheme in standard model [4], which is
based on a specific IND-CCA2 public key encryption
scheme [15]. Lee et al. also realize a PKEET scheme in
standard model [6]. Their solution is generic, using HIBE
and one-time signature as building blocks. Compared with
Zhang’s scheme, Lee’s scheme gets rid of relying on specific
number theoretic assumptions, at the cost of computational
efficiency and dependency on strong cryptography primi-
tive. Recently, Zeng et al. propose a generic PKEET scheme
[5] in standard model based on hash proof system [16].

2.3. Other Related Works. In terms of refining the security
performance of PKEET, Lin et al. put forward PKEET
supporting flexible designated authorization (PKEET-FDA)
[17]; PKEET-FDA requires proxy to use its secret key to-
gether with token to perform equality test, thus preventing
attacker from testing ciphertexts with stolen token. Flexi-
bility is embodied in allowing user to authorize multiple
testers by once instead of generating specific token for each
tester. Zhao and Zeng include access to equality test service
within the scope of adversary capabilities and propose a
PKEET scheme with corresponding security definition [18].
In aspect of authorization granularity, Lin et al. present
PKEET supporting partial authentication (PKEET-PA) [19],
where user can adaptively authorize the test right of any
number of ciphertexts to a tester by providing constant-size
token to tester. With regard to improvement on compu-
tation efficiency, several works have explored designing
PKEET scheme without relying on bilinear pairing [20, 21].

3. Preliminaries

Notation 1. For a finite set S, we denote by s« .S the process
of uniformly sampling a random element from S. We say

that a function f is negligible if f(1)<1/p(A) for all
polynomials p(-) and sufficiently large A s.

3.1. Cryptography Primitives

3.1.1. Bilinear Map. Let G, = {g,7,G, = {g,> and G be
cyclic groups of prime order p. A bilinear map
e: G; x G, — Gy satisfies the following properties:

(1) Biligeaz: for any glabe G, 9,€G, and a,be Z),
e(g1.92) = e(g1.92)

(ii) Nondegenerate: for any g, € G;, g, € G,, e(g;,
9,) # 1, where 15 _is the generator of Gy

(iii) Computable: e is efficiently computable

Additionally, in type-1 bilinear pairing G, = G,, in type-
3 bilinear pairing G, #G,, and there are no efficiently
computable homomorphisms between G,,G, [22].

3.2. Cryptography Assumptions

3.2.1. Decisional Bilinear Diffie—-Hellman (DBDH)
Assumption. A game corresponding to DBDH assumption
is constructed as follows, the roles included in which are
challenger C and adversary A. We define Gen as a function
which takes a security parameter A as input and outputs a
tuple (p,G,Gr,e, g) where G,Gr are multiplicative cyclic
groups of order p, e is a bilinear map from G x G to G, and
g is a generator of G.

Firstly C obtains a tuple (p,G,Gr,e,g) by executing
Gen(A). C then randomly selects elements a,b,¢ from Z,
and f3 from {0, 1}. If § = 1, C randomly selects an element in
Gy as T; otherwise it sets T = e(g, g)**.

C passes the challenge tuple (g, g% g°, g, T) to A. A then
outputs a guess /'. We define an advantage of A in the above
game as |Pr[f = '] - 1/2|.

The DBDH assumption in G, G claims that, for any PPT
adversary, its advantage in the above game is negligible in the
security parameter A.

3.2.2. External Decisional Diffie-Hellman (XDH)
Assumption. This assumption is firstly defined in [23].
Consider the following game between challenger C and the
adversary A: Let Gen be an algorithm that takes a security
parameter A as an input and outputs a tuple (p,G;,G,,
Gr, e, g,) where G, G,, G are multiplicative cyclic groups
of order p, e is a type-3 asymmetric bilinear map from G, x
G, to Gy, and g, is a generator of G;.

Firstly C obtains a tuple (p,G;,G,,Gr,e,g,) by exe-
cuting Gen (A). C then chooses random elements a,b from
Z » and f3 from {0, 1}. If $ = 1, C chooses a random element
in G, to be T; otherwise T = g®.

C passes the challenge tuple (g;, g%, g% T) to A. A then
outputs a guess /'. We define an advantage of A in the above
game as |Pr[f = '] - 1/2|.

The XDH assumption in G, claims that, for any PPT
adversary, its advantage in the above game is negligible in the
security parameter A.

Security and Communication Networks

4. Definition

4.1. Definition of G-PKEET. To help understand the rela-
tionship between algorithms and entities of G-PKEET, we
illustrate execution entities of various algorithms and the
interaction specification by Figure 2.

We remind readers that all algorithms of our G-PKEET
scheme do not require multiround interaction. Thus we
divide involved parties simply into executor and invoker.
Invoker provides part of parameters needed for executing
function to executor. Then executor, holding remaining
secret parameters, executes the function and returns the
result to invoker.

We describe the definition of G-PKEET functions as
follows:

(i) Setup (A): this nondeterministic function takes a
security parameter A as input and returns public
system parameter PP.

(ii) KeyGen ., (PP):this nondeterministic function
produces a public/private key pair (pk,sk) for a

normal user.

(iii) KeyGen g, (PP):this nondeterministic function
produces a group secret key gsk for a group
administrator.

(iv) Join (gsk, pk;): this nondeterministic function
permits a user holding user key pk; to join a specific
group holding group secret key gsk. If executed
properly, this function will generate and output a
group public key gpk; for user U,.

(v) Enc (gpk;, sk, gpk;, pkj, m): this nondeterministic
function takes in a group public key, its corre-
sponding private key, another group public key, its
corresponding public key, and a plaintext m to
generate a ciphertext, where indices i, j, respec-
tively, refer to encryptor and decryptor index.

(vi) Dec (gpk;, gpkjsk;,C;;): this deterministic
function takes in a ciphertext C; ;, group public key
gpk; of encryptor U; and group public key gpk;,
and private key sk; of decryptor U; to recover
plaintext from ciphertext. The function may
output L representing rejection under certain
circumstances.

(vii) Verify (gpk;, gpk;,sk;,C; ;): this deterministic
function takes in the same parameters as function
Dec. Verify outputs L if and only if Dec taking in
the same parameters outputs L; otherwise Verify
outputs 1 standing for the passing of verification.

One key purpose of Verify algorithm is allowing proxy to
confirm to private key holder whether ciphertext is proper.
Thus it needs to differ from decryption algorithm for not
outputting plaintext as a result. On the other hand, Verify
helps private key holder to detect improper ciphertext on his
own and takes further reaction, such as removing them from
the cloud server:

(i) Aut (gsk): this function generates a group trapdoor
tuple gtd used for equality test.

Security and Communication Networks

/ Group \

Aut

Join Administrators

e Verify

Normal Users
090
»Y

~
~

Cloud Server

Enc/Dec
AN N Ciphertexts &
Groups
a8

—> Interaction procedure (Executor)

—— Interaction procedure (Invoker)
--- Non-interaction procedure

AN

Proxies

O «—— Test

e

Equality Test
Service Users

&

FIGURE 2: Interaction specification and function executor entity of G-PKEET.

(ii) Test (C;;,Cy 7> pkj> pkyr, gpk;, gpky, gtd): this de-

terministic function takes in two ciphertexts
C;j»Cy,j belonging to the same group, corre-
sponding group trapdoor gtd, group public key, and
public key of two decryptors as input. It returns
either 0,1 representing result of equality test or L

representing rejection under certain circumstances.

Optionally, proxy in advance queries private key holders
with Verify (gpk;, gpk;, sk;,C; j)and Verify (gpk;, gpk;,
skj,Cy). In such cases, proxy may output L, indicating
that the equality test is ceased due to failure on passing
ciphertext verification.

4.1.1. Scheme Correctness. Let i, j,k, k' be distinct user in-
dexes; gsk be group secret key generated by KeyGeng,,;
(pki» sk), (pkj, sk;), (pky ski), (pky, skir) be correspond-
ing user key pairs; gpk;, gpk, gpki, gpk;: be group public
keys generated, respectively, by Join(gsk, pk;),Join (gsk,
pk;),Join (gsk, pky), Join (gsk, pky:); gtd be group trapdoor
generated by Aut(gsk).

Given the aforementioned symbols, G-PKEET scheme
achieves correctness if all following statements hold:

(1) Dec(gpk;, gpk > sk;, Enc(gpk;, sk, gpk;, pk;,m)) =
m.

(2) In the following procedure, Test outputs 1 when
m =m'; otherwise, it outputs 1 with negligible

probability:
Cix = Enc(gpk;, sk;, gpki pho m),
Cix = Enc(gpkj, sk, gpky'» pky', m'), (1)

Test(Cygo Cjue> Phio Phics 9Pk 9Pk gtdl).

4.2. Security Model. First, we make some foundational as-
sumptions related to adversary’s behavior pattern for sim-
plicity similarly as in [3]:

(1) All users honestly generate their public/private keys

(2) There is no overlap between the user set and the
proxy set

Due to the functionality of G-PKEET, an adversary who
obtains a group token can trivially break the indistin-
guishability-based security notion of corresponding ci-
phertexts. Thus we introduce definition on two types of
adversary, in the view of an arbitrary user U, and a group
administrator GA:

(1) Type-1 adversary: given a target ciphertext, the
purpose of type-1 adversary is to guess the plaintext
decrypted from it. The adversary has no access to
corresponding private key, but he is able to invoke
function Dec with this private key as one parameter
(in a black-box fashion). Restrictedly, adversary is
not allowed to invoke this function to decrypt the
target ciphertext. In addition, type-1 adversary ob-
tains the token required to check equality of the
target ciphertext. Dec t.

In practical scenario shown by Figure 2, type-1
adversary can be regarded as an adversary stronger
than authorized proxy due to its ability to invoke the
Dec function black box mentioned above.

(2) Type-2 adversary: given a target ciphertext, the
purpose of type-2 adversary is to distinguish which
plaintext a target ciphertext is decrypted from. The
adversary is assured that target ciphertext is
encrypted from either of two plaintexts designated
by him. In contrast to type-1 adversary, the adversary

Security and Communication Networks

1. The adversary claims a specific index t, representing the target user he would

attack. Challenger runs KeyGerngroyp to generate group public/secret key pair
gpk, gsk.Challenger runs KeyGenyser, to generate key pairs(pk;, sk;) for all users index
among 1 <= i <= N, and runs Join(sk;, gsk) for each user to generate public
user-group key gpk;.

. Query Phase 1: The adversary is allowed to issue following oracle queries:

(a) Oraclepec(C,i,j): Adversary submits ciphertext C, encryptor index and decryptor
index 7, j. Challenger returns the result of Dec(gpk;, gpk;, skj, Ci).

(b) Oraclepy; :
adversary.

Challenger runs algorithm Aut(gsk) and returns the result to

(c) Oraclegyc(m,i,]) : Adversary submits plaintext message 1, encryptor index and
decryptor index i, j. Challenger returns the result of Enc(gpk;, ski, gpk;, pkj, m).

(d) Omclewyify(C, i,j): Challenger is queried with data C, encryptor index and
decryptor index i, j. Challenger returns the result of Verify(gpk;, gpk;, sk;, C).

. Challenge Phase: Challenger chooses a message m; <, M and sends

Enc(gpki, sk, gpks, pke, m) to the adversary, where i <, [1, N] and i # t.

. Query Phase 2: The adversary is allowed to launch same type of oracle queries as

in Query Phase 1 with additional restriction: The challenge ciphertext C; can not be

submitted to Dec oracle together with decryptor index t.
5. The adversary terminates by outputting his guess m;

Ficure 3: OW-CCA2 security game.

has no access to the corresponding token required
for equality test on target ciphertext. However, he is
able to invoke a specific Test function with this token
as a parameter (in a black-box fashion). Similar to
the restriction imposed on type-1 adversary, type-2
adversary is not allowed to invoke Test function to
check equality of the target ciphertext.

In practical scenario shown by Figure 2, a type-2
adversary can be regarded as adversary stronger than
service user due to its ability to invoke the Dec function
black box mentioned above and designate target ci-
phertext. In existing G-PKEET scheme, type-2 adversary
can however be only regarded as an adversary stronger
than normal user.

As for adversary of different types, corresponding se-
curity property is designed as follows (in the view of U,):

(i) Type-1 adversary: OW-CCA. A type-1 adversary can
not recover the plaintext from a ciphertext, even if it
is allowed to query the decryption oracle, verification
oracle with specific restrictions. This is the best
achievable security guarantee considering the
equality test functionality.

(ii) Type-2 adversary: IND-CCA. A type-2 adversary is
not allowed to obtain equality test token from GA.
But he is allowed to access the decryption oracle,
verification oracle, and test oracle with specific re-
strictions and enables choosing the challenge
plaintext pair.

We remind readers that, for type-2 adversaries, IND-
CCA2 security to be proved in our paper covers OW-CCA2
security. Specifically, the game definition of OW-CCA2
differs from that of IND-CCA2 only in how the challenge
ciphertext is generated. Moreover, the proof of OW-CCA2
security can be reduced to IND-CCA2 security.

4.3. Security Properties

Definition 1. A G-PKEET cryptosystem achieves OW-CCA2
security against a type-1 adversary, if, for 1 <t <N, any PPT
adversary has only a negligible advantage in the attack game
shown in Figure 3, where the advantage is defined to be
Pr(m; = m,].

We notify our readers that the definition of our scheme is
weakened compared to that in the original G-PKEET defi-
nition of [7] in aspect of restriction imposed on decryption
oracle in Query phase 2. Detailedly, in Ling et al.’s scheme,
decryption oracle refuses to execute Dec algorithm only when
challenge ciphertext and corresponding encryptor index and
corresponding decryptor index are requested together. In our
scheme, oracle refuses to execute Dec algorithm when
challenge ciphertext and corresponding decryptor index are
requested together, no matter what encryptor index is.

Definition 2. A G-PKEET cryptosystem achieves IND-
CCA2 security against a type-2 adversary, if, for 1<t <N,
any polynomial-time adversary has only a negligible ad-
vantage in the attack game shown in Figure 4, where the
advantage is defined to be |Pr[b' = b] - 1/2|

We notify our readers that the definition of our scheme is
weakened compared to that in the original G-PKEET definition
of [7] in aspect of restriction imposed on decryption oracle in
Query phase 2 for the reason mentioned above. Corresponding
to Oracle,, which has not been included in related works, a
new precondition is added: Target user and proxy should
interact honestly in Verify procedure when proxy intends to
conduct equality test on target user’s ciphertext.

5. Construction

We remind our readers that building a generic G-PKEET
scheme through combining an IND-CCA2 secure public key

Security and Communication Networks

1. The adversary claims a specific index t, representing the target user he would

5. The adversary terminates by outputting his guess b'.

attack. Challenger runs KeyGergroup to generate group public/secret key pair gpk, gsk.
Challenger runs KeyGenys,r to generate key pairs(pk;, sk;) for all users index among
1 <=1i <= N, and runs Join(sk;, gsk) for each user to generate public user-group key
gpki.

. Query Phase 1: The adversary is allowed to issue following oracle queries:

(a) Oraclepec(C,i,j): Challenger is queried with data C, encryptor index and
decryptor index i, j. Challenger returns the result of Dec(gpk;, gpk;, sk, C).

(b) Oracleg,.(M,i,j) : Adversary submits plaintext message M, encryptor index and
decryptor index i, j. Challenger returns the result of Enc(gpk;, ski, gpk;, pkj, m).

(c) Omclewyify(C, i,j): Challenger is queried with data C, encryptor index and
decryptor index i, j. Challenger returns the result of Verify(gpk;, gpk;, sk;, C).

(d) Oracleryst(Cijj,i,], Cir/jr,l‘/,]‘,)l Challenger is queried with ciphertext C;j;, Cy r,
corresponding encryptor index i,i’ and decryptor index j,j’. At least one
of the decryptor index should be t. Challenger returns the result of
Test(Cij, Cy j, pkj, pkjr, gpkj, gpkyr, gtd)

At some point, the adversary sends two messages 1, 11 to challenger, and turns into
next phase.

. Challenge Phase: Challenger randomly chooses a random bit b. If b = 0, send
Enc(gpk;, sk, gpky, pke, my) to the adversary, where i <—, [1, N] and i # t.

. Query Phase 2: The adversary is allowed to launch same type of oracle queries as in
Query Phase 1 with additional restrictions: The challenge ciphertext C; can not be
submitted to Dec oracle or Test oracle together with decryptor index t;

F1GURE 4: IND-CCA2 security game.

encryption with a OW-CCA2 secure equality test scheme
may be able to satisfy G-PKEET definition in aspect of
functionality. However, it is difficult to prove its security
properties, because trivially combining two schemes to-
gether will allow adversary to break security game through
decryption oracle.

To be detailed, adversary modifies the ciphertext
component of target ciphertext which supports equality
test (specifically, the component embedded with plaintext
hash value) and then submits new ciphertext to decryption
oracle. According to game definition, the oracle would
work normally by returning decrypted plaintext, leading to
a successful attack. Our method adopts specific con-
struction strategy, allowing components respectively em-
bedded with plaintext and plaintext hash value to be
bonded together. Consequently, in our scheme the ci-
phertext modified as mentioned above would be rejected by
decryption oracle. It is worth noting that current general
PKEET scheme (not G-PKEET) is built upon cryptographic
primitives with specific properties, such as IBE and hash
proof system. None of these related works adopts abstract
PKEET definition to build a general PKEET scheme with
special properties.

We present our construction for G-PKEET scheme as
follows:

(i) Setup (A): this algorithm outputs public parameter
PP = (p)q)G)GTyG)GT>g)glyg2,e,E,Hl,H2) as
follows.

(1) G,Gy are groups of prime order p, satistying
bilinear map e: GXG — Gy. g is a random
generator of G.

(2) G,,G,, Gy are groups of prime order g corre-
sponding to size of message space M, satistying
asymmetric bilinear map & G, x G, —> Gj.
J1> g, are random generators of G,,G,.

(3) Hash functions H;, H,, respectively, map
M — G,; (Gr,G,,G,,G,,G, G, G, G,) —

Z,.

(ii) KeyGen ., (PP): this algorithm randomly selects
X Y20 2Ly5 g, = 9% 9o =G Y, 9,2, The
structure of generated key pair is as follows:
sk = (x. ¢, 95, %, y,2), pk=(Z=e(g,g,)uv,w,
9193 91> G5)» where u = g*,v = g, w = g°.

(iii) KeyGen group(PP): this algorithm outputs gsk =
(6,,6,,0;) where 0,,0,,0,—,2Z,.

(iv) Join (gsk, pk;): this algorithm outputs group public
key efor 9U in th¢e followmg structure: gpk; =

(7 !71 ’91? ’>913)

(v) Encrypt (gpk;, sk;, gpk;, pkj,m): the ciphertext is

generated with structure as follows:

Cl =(mll)}1||yz)encode Ik CZ = H (m)Xxyl "9272g93¢j]’1’
C3 = gl ’C4 gyl 1X, — gs, C6 -
& _(ujvjw]) Gy = %1 W,Cy = g, o ,Ci0 =53

(2)

where y,y, 25—, Z,, t=H,(C,C,,C5,Cys
C;,C4,Cy,Cy). The encoding function and
decoding function (to be mentioned later) map
between 3-element tuple m,y,,y, and Gp. Assume

that the message space M is Z_. The definitions of
encode and decode are as follows:

(1) encode(m, y,,y,): this function takes in plaintext
element m and 2 group elements y;,y, € Z,. It
outputs a group element (my,[1V;)encoqe € G-

(2) decode ((mlly;11Y2) encode): this function takes in
a group element that belongs to Gy. It outputs 3
group elements m,y,,y, € Z, or L to indicate
decoding failure.

Both of these functions are public, satisfying equation
decode (encode (m,y,,y,)) = (m,y,,y,) for any m,y,,
y, € Z,. Note that these two functions impose an implicit
restriction on |Z,|,Z,|: the parameter should satisfy the
inequality Iqu3 <|Z,|, corresponding to the size of M x
Z,x Z, and Gp. We will omit subscripts “encode” and
“decode” in subsequent formulas for conciseness:

(i) Decrypt (gpk;> gpk;,sk;,C, ;): firstly, decryptor
checks whether the following equation stands:

(C5,utvC6w) =e(Cy, 9), (3)

where t = H, (C,,C,,C5,C,,Cs, Cq, Cy, Cp)-
Decryptor outputs L and aborts decryption pro-
cedure if aforementioned equation does not stand;
otherwise he continues to execute the following
steps:

G

(_e(CS’gg,j);’ @

o
where component g3 ; is taken from sk;.

Additionally, decryptor should judge whether the
following equations stand:

o -
(Cz(g) ' >92)
E(Hl (m")", !72(‘)
where g‘fz is taken from group public key gpk;.

~0,x; v _ [= m _ ¢ J
(gz) =Cy| 9 =Cs: 9,
Ox; ~0x:

where §,'", g,

=5 _
g1 = Ls;

~e(argr). ©

=Cy;8' =Cu
(6)

are taken from gpk;.

Decryptor returns m”* if the above equations stand;
otherwise it outputs L. We define ciphertexts which
do not satisty the equations above as “improper
ciphertext.”

(ii) Verify (gpk;, gpk;,sk;,C;;): this algorithm works
the same as Dec except for returning 1 instead of m1*.
In terms of concrete construction, private key
holder has to check the correspondence of em-
bedded plaintext and hash value by extractmg
plamtext value from ciphertext €(g gl # ,Cyo) =
e(g gl ’,Cy) in advance. Thus the Verify algorithm
unavoidably has similar procedure to Dec

Security and Communication Networks

algorithm. How to allow Verify algorithm to check
the properness of ciphertext without needing of
extracting plaintext value is an issue that requires
further discussion.

(iii) Aut (gsk):
{62.65}.

(iv) Test (C, ;, Cy 1, gtd, pk;, pk;): firstly, tester needs to
verify the correspondence of Cy and C,, through
judging whether the following equatron stands,
where the component of gpk; is used:e (g(f ,Cyp) =

e(gl ,Co)

Similar process will be performed on the other ciphertext
Cy j. Tester proceeds only when both equations stand;
otherwise, it aborts by outputting L.

The algorithm outputs 1 if

C(eNlo A C(CTCHENN
(Ccy) e

this algorithm returns tuple gtd =

(7)

Otherwise, it outputs 0.

Optionally, proxy in advance queries private key holders
with Verify (gpk;, sk;, C; ;), Verify (gpki, sk, Cy ;) in order
for detecting whether ciphertexts to be tested are proper. In
such cases, proxy outputs L when Verify procedure outputs
1, indicating that the equality test is ceased due to improper
ciphertext.

Theorem 1. The proposed G-PKEET cryptosystem achieves
correctness mentioned on Section 4.4.1.

Proof. As for the two stated statements, we correspondingly
have the following:
(i) The first step of decryption judges whether
(CS,u v iw,) =¢e(Cy, 9), (8)

corresponds to e(g¥, u]v]wj) = e((u
where t = H, (Cl,Cz,C3,C4,CS,CB,Cg,CIO)

The second step of decryption, which calculates

W), g),

C
Y 9)
e(Cs. g5);

corresponds to (mIIyIIIyZ)Z;/e(gS,gg‘).

In the final step, we have
E@A%ywﬁgg:awarmga(f“@ﬁ
o(H, (m")", %) o(H, (m')"™,3,)

(10)

It is obvious that all aforementioned steps stand if
ciphertext ¢ = Enc(gpk;, sk, gpk, pk;,m) is cor-
rectly encrypted.

(ii) Set C,C', respectively, as Enc(gpkl,sk,, gpks
pkk,m) and Enc(gpk],sk],gpkk pky,m'). E(Cy/
C3 ,C4)/e(C8,C9) can be reduced to

Security and Communication Networks

E(Hl (m))gz))(i)(j)’ﬂu@. (11)

Obviously, &(Cj/(C})%,C,)/E(Cy, (CH%) equals the
above formula if m = m'; otherwise the equation stands only
when a hash collision happens, the rate of which is
negligible. O

6. Security Analysis
6.1. OW-CCA2 Security

Theorem 2. The proposed G-PKEET cryptosystem achieves
OW-CCA2 property against a type-1 PPT adversary in the
standard model based on the DBDH assumption on G.

Invalid

iy, G G = (Invalid

mYle)

Proof. The main idea of proof is to construct a series of
games which are reduced from the original OW-CCA2
game. The adversary unconditionally gains negligible ad-
vantage in the last game and is unable to distinguish each
pair of games adjacent in reduction.

To complete the proof formally, we need to construct a
series of games [24]:

Game 0. Challenger behaves the same as OW-CCA2
game in Figure 3.

Game 1. In Game 1, challenger modifies component C,
challenge ciphertext C; consequently altered ciphertext
is given as the following structure using corresponding
components of pk,, gpk;, sk; of

Z:’C2 — I_Il (m)Xi%glezgla‘PrYl’ C3 — g)l’z’

(12)

_ =1 _ S _ _(,ta N _ =nox _ =" _ =Y
Ci=9; >C5—9»C6—")C7—(”t"twt)’C8—91 :Co=9,"Cp=9;"

Superscript ¢ = H,(C,,C,,C;, C4,Cs,Cg,Co,Cio); s,
r— 2y Y1 Y2 2Ly

r

We will prove that there exists no PPT adversary able to
distinguish Game 0 from Game 1 with nonnegligible ad-
vantage as long as DBDH assumption holds on G. d

6.1.1. Indistinguishability between Game 0 and Game 1.
Briefly speaking, we construct an attacker B against DBDH
assumption. He simultaneously invokes A as subprocedure,
who attempts to distinguish between Game 0 and Game 1;
i.e., B will play the role as challenger against A.

Setup. After receiving a DBDH tuple (g,g% g%, g%, T), B
replaces corresponding elements of public key pk, with
DBDH challenge tuple elements as follows:

a (%)
g=9gm=gu=gg"v=(4")""g",

w=(g") " g0,

where y,, X, ¥, Xy ¥y Z,. Other unmentioned elements
contained in pk, are generated according to our scheme.

Correspondingly, the private key tuple sk, can be rep-
resented as sk, = {$,, x, g x=b+y,y=bx, +y,w=
bx, + y,}, where x, y,z, g“b is not known to B.

(13)

Query Phase 1. (1) Decryption Oracle: when B is queried
with user index ¢, firstly he checks whether the following
statement stands:

e(CS, utvcﬁw) =e(C; 9) (14)

where superscript t= H, (C;,C,,C;,Cy, Cs, Cg, Cy, Cyp).

If t +rx,+x,; =0, B aborts the whole procedure and
outputs a random bit to DBDH challenger. Since adversary
has no idea of x, and x, the probability for this type of event

is query/p, where query is the times that adversary visits
decryption oracle.

Otherwise, B begins to extract plaintext from non-
challenge ciphertext, by firstly generating 6,7

—ty Ay, Y, (tHrx,+x, fr \O
oy = g T

-1 (15)

(t+rx, +x,) 9

dcr =9 g -

Let § = & —a/(t + rx, + x,)). Then, we have

e(dC,I,CS)
e(C7,dC,2)
Finally, it checks the consistency of plain text, hash

message, and other components embedded in the ciphertext
and outputs result of decryption:

de, = g2 (uv'd) de, = gy v, = C, (16)

. RN U1 IC)
Decryptiong,,q. (¢ct, sk, pk) = { m. otherwise (17)
where (1) refers to the following statement:
~ Y1 : —~Y; —
(g’frea) ngHl (m))mﬁ + szg)z(rel)/I + C4Vg)1/2 +C, (18)

-~ '61 1 V1Y%t =11
vy ¢C8V9§¢ #CyVgh' #Cy.

(2) Encryption Oracle: challenger B works the same as
mentioned in original G-PKEET scheme, since he
knows the value of y, when being required to gen-
erate a ciphertext with encryptor index ¢.

(3) Verification Oracle: challenger B works in the same
way as mentioned in Decryption Oracle except for
following the description of Verify on output.

Challenge. Challenger B selects m«,M and generates
challenge ciphertext tuple in the following structure:

10

C’l" — (m"Yl“)}Z)T’ C’Z" — I_I1 (m))(f)’lg(fz}’zglsﬁbt}’l’c; — g)l’z’cz — g;lgl)(i)c; —

Security and Communication Networks

*

" +x "
w)C7

! (19)

g°Cs =

(A C) e =110 _—n¢ _ =N
—(g) e Gy =91 M Co=95"5C0 =33

where superscript t = H, (C,,C,,C5,C,4,Cs,Cs, Co, Cp);
YI’YZ(_qu‘

Query Phase 2. In this phase, decryption oracle is added with
new restrictions: (1) challenge ciphertext cannot be
requested together with decryptor index “t”; (2) when C # C*
and hash value H,(C,,C,,C;5,Cy,Cs,Cq,Co,Cp) =t
challenger B aborts the whole game and outputs a random
bit to DBDH challenger.

Verification oracle works the same as mentioned in
phase 1 except when being queried with challenge ciphertext
and t as decryptor index. More detailedly, output is defined
as follows:

1, ifi=i"

OradeVeriﬁcation (Ct’ Sk* > pk) = { (20)
1, otherwise

Under actual circumstances, Verify might output 1 when
i#i*, consequently breaking the indistinguishability be-
tween Game 2 and actual circumstance. However, this sit-
uation happens when and only when a hash collision
happens, the rate of which is negligible.

Guess Phase. The adversary A outputs 0 or 1 representing the
game he recognizes. B outputs the guess T = e(g, g)*
when A outputs 0, otherwise 1.

Similar to [4], the probability that B aborts during the
simulation is at most ADVR + query/p, corresponding to
the illustration in Query phases 1,2, where ADVR refers to
the probability of a hash collision.

When B does not abort then A’s view is identical to its
view in Game 0. Otherwise, his view is identical to that of
Game 1. Uniform randomly generated T =e(g,g)™ in
Game 1 is statistically indistinguishable to Invalid when

Invalid?, when T = e(g,)% The reason is as follows:
T=e(g 92—, 2Z,st.T =e(g"g"),
(" Iyi)T =(m" i s)e(g®. 6) e(a™ 6") "
(i) - el o) Vel
Invalid,,, . o(m"[yily;)-e(g"a")
(21)
Invalid,,, , «,Gr,C; =(Invalid,,,)

Since adversary A can be invoked to attack DBDH
problem, his advantage can be expressed as

c . . Ccr = query
dlStlngulShO)l < €dbdh + PrAbOrt < €4vdh + ADV +

(22)

In Game 1, C7 in challenge ciphertext is irrelevant to
plaintext message; therefore adversary ’s advantage can be
reduced to the success rate of breaking hash function’s
preimage properties. Eventually, the advantage of adversary
in OW-CCA2 game can be reduced as follows:

eOW — CCA2 = distinguish,, ; + eGame2 < edbdh

(23)
+ ADVE 4 % + ADV?

where ADV'! refers to advantage of adversary in preimage
attack on hash function H,. Thus Theorem 2 is proved.

6.2. IND-CCA2 Security

Theorem 3. The proposed G-PKEET cryptosystem achieves
IND-CCA2 property against a type-2 PPT adversary in the
standard model, as long as DBDH assumption on G and XDH
assumption on G, hold.

Proof. Game 0. Challenger behaves the same as in IND-
CCA2 game of Figure 4. Game 1. In Game 1, challenger
modifies component C; of challenge ciphertext C;; conse-
quently altered ciphertext is given as the following structure
using corresponding components of gpk,, pk,, gpk;, sk;:

Zi, C2 — I_I1 (m)Xi71§?2Y2g?3¢rV1’ C3 — Ell’z’

(24)

~y,0,v: s t r S ~v,0,x; - _
Cy =95 " Cs=9¢"Cs=1,C, :<utvtwt) Cy =391 ", Cy = 9§‘¢’,Clo =3

Security and Communication Networks

We will prove that there exists no PPT adversary able to
distinguish between Game 0 and Game 1 as long as DBDH
assumption holds on G. O

6.2.1. Indistinguishability between Game 0 and Game 1.
Using similar technique referred to in Section 6.1.1,, we
construct an attacker B against DBDH assumption. He si-
multaneously invokes A as subprocedure, who attempts to
distinguish between Game 0 and Game 1; i.e., B will play the
role as challenger against A.

Setup. After receiving a DBDH tuple (g,g% g%, g% T), B

replaces corresponding elements of public key pk, and

private key sk, in the same way referred to in Section 6.1.1.
Query phase 1.

(1) Decryption Oracle: when Decryption oracle is
queried with parameter decryptor index ¢, B deals
with the ciphertext using the same way mentioned in
Section 6.1.1.

(2) Encryption Oracle: challenger B works the same as
mentioned in original G-PKEET scheme.

(3) Verification Oracle: challenger B works the same as
mentioned in Section 6.1.1.

(4) Test Oracle: before performing the computation in
procedure Test and outputting result, the test oracle
takes corresponding measures according to
decryptor index:

When decryptor index equals ¢, the test oracle in-
vokes verification oracle to process queried cipher-
text together with decryptor index t. The test oracle
refuses to continue the test by outputting L if ver-
ification oracle returns L. This step corresponds to
the precondition that user ¢ and the proxy will in-
teract with each other honestly.

Invalid,,, , «—,Gp;C] = (Invalid

my1y,

””Yl)/z)

11

Otherwise, decryptor will assume submitted ciphertext is
proper, corresponding to precondition that other users may
not honestly interact with the proxy, i.e., maliciously
claiming that an improper ciphertext is proper.

Challenge. After receiving plaintext m,, m, from adversary,
challenger B selects b<,0,1 and generates challenge ci-
phertext tuple in the same way as mentioned in Section
6.1.1.

Query Phase 2. Decryption oracle and verification oracle
are applied with the same modification referred to in
Section 6.1.1.

Guess Phase. The adversary A outputs 0 or 1 representing the
game he recognizes. B outputs the guess T = e (g, g)*
when A outputs 0, otherwise 1.

Similar to that referred to in Section 6.1.1, the probability
that B aborts during the simulation is at most
ADVCR + query/p.

When T = e(g, g)™ and B does not abort then A’s view
is identical to its view in Game 0. Otherwise, his view is
identical to that of Game 1.

Since adversary A can be invoked to attack DBDH
problem, his advantage is expressed as

.. . cr query
dlstlngulsho,l < €abdh + PrAbort < €dbdh + ADV + T

(25)

Game 2. In Game 2, challenger modifies components C, C}
of challenge ciphertext C; on the basis of Game 1. Con-
sequently altered ciphertext is generated using corre-
sponding components of gpk,, pk,, gpk;, sk; as follows:

S o _ =Y * _ =Y w _ =y
Z,C=91,C=915C =9,

(26)

¥ _ S o~k * _ (T s _ =10 _ =N _ =Y
C=9,C=1C _(utvtwt) Cs =91 " Co=3,",Cy =55

where y;,y,<—,Z,, superscript t = H, (C},C;,C5,C}, Cs,
Cs,C5,Ciy).

We will prove that there exists no PPT adversary able to
distinguish between Game 1 and Game 2 as long as XDH
assumption holds on G,.

6.2.2. Indistinguishability between Game 1 and Game 2.
We construct an attacker B against XDH assumption. He
simultaneously invokes A as subprocedure, who attempts to
distinguish between Game 1 and Game 2; i.e., B will play the
role as challenger against A.

Segtup. %hallenger B receives a XDH tuple (g, gf , gf) and sets
1> = g); thus he does not know concrete value of 0, included

in gsk. Other public parameters and key pairs are generated in
the same way according to our scheme definition.
Query phase 1.

(1) Decryption oracle: When being queried with
decryptor index t, since challenger B does not know
the value of 0,, he has to check THE consistency of
C, and C, by judging whether

v (=6 \V1
Cy =71 (92 .) =Gy (27)

ngIGEuVI b

(=6, =1} _ ~ _
(itaf)-e(iphma) o
1

12

where m™ and y}, y; are extracted from C;, which is
available to B since he has access to corresponding
components of sk,.

(2) Encryption Oracle: challenger B works the same as
mentioned in original G-PKEET scheme.

(3) Verification Oracle: challenger B works similarly as
mentioned in decryption oracle except for following
the definition of Verify during output.

(4) Test Oracle: when decryptor index equals ¢, the test
oracle processes submitted ciphertext using corre-
sponding method mentioned in Section 6.2.1.

Otherwise, test oracle will handle query by situation. Let
ciphertexts C,C’ be queried ciphertexts, one of whose
decryptor index is t and the other is not.

Situation 1. The adversary stores y,, corresponding to
component C; = g,

In this situation, the test oracle judges whether the
following equation stands:

cy _Hcune)

6<C8’(9) >

If the equation stands, test oracle outputs 1; otherwise, it
outputs 0.

(C /gez)’z
g(ciC)

Situation 2. The adversary takes g¢ as Cj.
In this situation, the test oracle judges whether the
following equation stands:

¥(Calgy ™, Ch) _ 2(Cy/ghC)
~ 0, T (30)
e(CS, Cy) 3<C8’ (C9) 3>
Invalidmy y, GT7 C (Invahdmyly)

s _ ; * s * %
Ci =95 lX”Cs =9,C=1GC;

Superscript
Ly, s—Z,.

t = H,(C},C3,C3, G}, C, Gy, G5, Ci)i vy

Query Phase 2. Verification oracle is applied with the same
change as it is on page 16. The test oracle is supplemented
with following rule:

Challenger B aborts and outputs random bit when a
ciphertext whose decryptor index is not ¢ (we refer to it
by j) satisfies the following formula:

¢ 3 1Yt
(91,92’)‘6(91 N) (33)

where component gfj is taken from g pk , y; is extracted

from component C, of queried c1phertext and y, cor-
responds to challenge ciphertext component C3.

Security and Communication Networks

TaBLE 1: Scheme properties.

Scheme Security model Functionality
Yang et al. [1] RO PKEET
Tang [2] RO PKEET
Zhang et al. [4] SM PKEET
Zeng et al. [5] SM PKEET
Lee et al. [6] SM PKEET
Ling et al. [7] RO G-PKEET
Ours SM G-PKEET

Note. RO: random oracle model. SM: standard model.

If the equation stands, test oracle outputs 1; otherwise, it
outputs 0.

Situation 3. The adversary himself has no idea of value y,
and directly sets component C; = Zﬂz

In this situation, the test oracle will directly output 0 as a
result if the equality test procedure is not aborted by out-
putting L in other steps.

Since adversary does not know y,,6,, according to
the definition of CDH assumption, he is also incapable
of knowing g . Thus probability for adversary to find
out exact g that satisfies the following equation is

negligible.
= ! ~62 ’z
¢ e(Cz/gl V,c4)
=— A
e<Cs’ (Co))

From the above, we believe that PPT adversary cannot
distinguish Game 1 from Game 2 through exploiting in-
consistency output which may happen in Situation 3.

(Cz/g?ﬂz

(31)
g(ciC)

Challenge. B makes additional modifications to challenge
ciphertext of Game 1, embedding the third element of XDH
challenge tuple gl into it:

Z,,C;, = H, (m)m1~(~ 3¢”‘,C§ -5

(32)
= (uiv:w,)s.

Since adversary has no idea of value 0;,y],¢,, the
probability of abortion owing to the reason above is
negligible.

Guess Phase. If A I‘eCO%aneS the current game as Game 1, B
outputs guess 91 g, ; otherwise it outputs the opposite
guess.

Apparently, when g1 gi’ﬁ , A’s view is identical to his
view in Game 1. Otherwise, his view is identical to that of
Game 2. Since adversary A can be invoked to attack XDH
problem, his advantage is expressed as

distinguish, , < J- . (34)
xdh

This is negligible when corresponding assumption stands.

Security and Communication Networks

13

TaBLE 2: Computational efficiency.

Scheme Enc Dec Test Communication round(s) of test
Yang et al. [1] 3Exp 3Exp 2P 1
Tang [2] 5Exp 2Exp 4Exp 1
Zhang et al. [4] 6Exp 2BP + 1Exp 2P 1
Zeng et al. [5] 4Exp 4Exp 4Exp 1
Lee et al. [6] 1P + 14Exp 9P + 11Exp 6P + 10Exp 1
Ling et al. [7] 5Exp 2Exp 2P + 2Exp 1
Ours 9Exp 9Exp + 3P + 3P, 6Exp + 6P; 2

Note. Exp: the exponent computation. P: the type-1 bilinear pairing computation. P;: the type-3 bilinear pairing computation.

In Game 2, the adversary ’s advantage is negligible since
the challenge tuple has no relation with m,. Eventually, we
can reduce the adversary’s advantage in attacking IND-
CCA2 Game as

= distinguish, , + distinguish, , + J.

JIND—CCAZ Game2

< J + ADVR (35)
dbdh

+ qaiery + J +0.
P xdh

Thus, Theorem 3 is proved.

7. Comparison

7.1. Theoretical Analysis. In Table 1, we list out the security
model and functionality of related PKEET schemes and
G-PKEET schemes, showing that our scheme is the first
G-PKEET scheme under standard model. All listed schemes
obtain IND-CCA2 security against unauthorized users and
OW-CCA2 security against authorized users except [1],
since it does not introduce token mechanism and is only able
to obtain OW-CCA2 security.

In Table 2, we compare the computational efficiency
of our schemes with related PKEET schemes and
G-PKEET schemes. The second to fourth column show
the computational cost of Enc algorithm, Dec algorithm,
and Test algorithm. In the aspect of computational efli-
ciency, our scheme is acceptable comparing with other
schemes listed.

The reason why computational cost of our scheme is
higher than existing G-PKEET scheme [7] is that we add
more ciphertext components to ensure our scheme satisfies
new security and functional definition. And correspond-
ingly, we have to supply decrypt, test algorithm with cor-
responding verification steps on these components. These
verification steps guarantee scheme security at cost of in-
creasing computational complexity.

Through the fifth column of the table, we remind readers
that security properties of our scheme rely on a prerequisite
that proxy should interact with user on whether the ci-
phertext to be tested is proper. This prerequisite implicitly
requires a two-round communication for equality test ser-
vice, i.e., the algorithm Test; otherwise the security prop-
erties cannot be completely guaranteed.

TABLE 3: Time consumption (ms).

Scheme Enc Dec Test
Ling et al. [7] 82 37 59
Ours 1724 953 895

As for two generic PKEET schemes, we employed
[25, 26] to instantiate Lee et al’s scheme and use DDH
assumption to construct hash proof system, on which Zeng
et al.’s scheme is based.

7.2. Experimental Evaluation. We implement experimental
performance analysis by using Java Pairing Based Cryp-
tography (jPBC 2.0.0) as underlying cryptographic library
[27]. The JDK version is Oracle jdk1.8.0_121. More de-
tailedly, we, respectively, choose type-A curve and type-F
curve provided by jPBC to perform symmetric bilinear
pairing and asymmetric bilinear pairing. The field size bit
length of all curves is at least 256. Our machine is equipped
with Intel Core i7-10510U CPU 2.30 GHz processor and
16 GB RAM, running Ubuntu 16.04.

We compare time consumption between our scheme and
Ling et al. [7] in aspect of three algorithms: Enc algorithm,
Dec algorithm, and Test algorithm. For each algorithm, we
run it for ten times and calculate its average time cost. The
result is shown as in Table 3.

The gap between two schemes on computation time
consumption reflects, on one hand, the gap in theory time
complexity. On the other hand, type-A curve pairing operation
provided in jPBC takes 10% of the time required by type-F
curve pairing operation. Furthermore, the implicit restriction
on public parameters in our scheme makes the field size bit
length of G larger than 256 * 3, three times as that of G, and the
computation time is equally increased. We conclude that
constructing a more efficient G-PKEET scheme with equivalent
security property is an issue that requires further discussion.

8. Conclusion

In this paper, we firstly broaden the current existing security
notion of G-PKEET by granting specific adversaries restricted
access to the equality test service. The new security notion
ensures that unexpected privacy leakage can be avoided even
when proxy may provide equality service to malicious users. To
construct a solution that matches our definition, we secondly
extend the functionality of G-PKEET scheme by allowing

14

private key holder to detect whether a ciphertext is proper while
proxy can optionally request private key holder to verify a
ciphertext, before he conducts equality test on it. Eventually, our
new G-PKEET scheme is acceptable in aspect of computational
efficiency and proved to be OW-CCA2 secure against adversary
authorized by group administrator and IND-CCA2 secure
against unauthorized adversary. Furthermore, our scheme is the
first G-PKEET proved to be secure under standard model.

Data Availability

The data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This research was supported by the NSFC-ISF Joint Scientific
Research Program (61961146004) and Innovation Program
of Shanghai Municipal Education Commission (2021-01-07-
00-08-E00101).

References

[1] G. Yang, C. Tan, Q. Huang, and D. Wong, “Probabilistic
public key encryption with equality test,” in Topics in Cryp-
tology - CT-RSA 2010 CT-RSA 2010, pp. 119-131, Springer,
San Francisco, CA, USA, March 2010.

[2] Q. Tang, “Public key encryption schemes supporting equality
test with authorisation of different granularity,” International
Journal of Applied Cryptography, vol. 2, no. 4, pp. 304-321,
2012.

[3] Q. Tang, “Public key encryption supporting plaintext equality

test and user-specified authorization,” Security and Com-

munication Networks, vol. 5, no. 12, pp. 1351-1362, 2012.

K. Zhang, J. Chen, H. Lee, H. Qian, and H. Wang, “Efficient

public key encryption with equality test in the standard

model,” Theoretical Computer Science, vol. 755, pp. 65-80,

2019.

M. Zeng, J. Chen, K. Zhang, and H. Qian, “Public key en-

cryption with equality test via hash proof system,” Theoretical

Computer Science, vol. 795, pp. 20-35, 2019.

[6] H. Lee, S. Ling, J. Seo, H. Wang, and T. Youn, “Public key
encryption with equality test in the standard model,” Infor-
mation Scientist, vol. 516, no. 89-108, 2020.

[7] Y. Ling, S. Ma, Q. Huang, X. Li, and Y. Ling, “Group public
key encryption with equality test against offline message re-
covery attack,” Information Scientist, vol. 510, no. 16-32, 2020.

[8] Y. Ling, S. Ma, Q. Huang, X. Li, Y. Zhong, and Y. Ling,
“Efficient group id-based encryption with equality test against
insider attack,” The Computer Journal, vol. 64, no. 4,
pp. 661-674, 2021.

[9] Y. Ling, S. Ma, Q. Huang, R. Xiang, and X. Li, “Group id-

based encryption with equality test,” in Information Security

and Privacy ACISP 2019, pp. 39-57, Springer, Christchurch,

New Zealand, July 2019.

A. Kiayias, Y. Tsiounis, and M. Yung, “Group encryption,” in

ASIACRYPT 2007, pp. 181-199, Springer, Kuching, Malaysia,

2007.

[4

[5

(10

Security and Communication Networks

[11] M. Bellare and P. Rogaway, “Random oracles are practical: a
paradigm for designing efficient protocols,” in CCS 93,
pp. 62-73, Fairfax, Virginia, USA, 1993.

[12] R. Canetti, O. Goldreich, and S. Halevi, “The random oracle
methodology, revisited,” Journal of the ACM, vol. 51, no. 4,
pp. 557-594, 2004.

[13] Q. Tang, “Towards public key encryption scheme supporting
equality test with fine-grained authorization,” in Information
Security and Privacy ACISP 2011, pp. 389-406, Springer,
Melbourne, Australia, July 2011.

[14] T. Wu, S. Ma, Y. Mu, and S. Zeng, “Id-based encryption with
equality test against insider attack,” in Information Security
and Privacy ACISP 2017, Auckland, New Zealand, pp. 168-
183, Springer, July 2017.

[15] J. Lai, R. Deng, S. Liu, and W. Kou, “Efficient cca-secure PKE
from identity-based techniques,” in Proceedings of the
Interlaken, Topics in Cryptology - CT-RSA 2010, pp. 132-147,
Springer, Switzerland, June2010.

[16] R. Cramer and V. Shoup, “Universal hash proofs and a
paradigm for adaptive chosen ciphertext secure public-key
encryption,” in Advances in Cryptology - EUROCRYPT 2002
EUROCRYPT 2002, pp. 45-64, Springer, Amsterdam, The
Netherlands, 2002.

[17] H. Lin, F. Gao, H. Zhang, Z. Jin, W. Li, and Q. Wen, “Public
key encryption with equality test supporting flexible desig-
nated authorization in cloud storage,” IEEE Systems Journal,
vol. 16, no. 1, pp. 1460-1470, 2022.

[18] Z. Zhao and P. Zeng, “Efficient all-or-nothing public key
encryption with authenticated equality test,” IEEE Access,
vol. 9, pp. 94099-94108, 2021.

[19] H. Lin, Z. Zhao, F. Gao et al., “Lightweight public key en-
cryption with equality test supporting partial authorization in
cloud storage,” The Computer Journal, vol. 64, no. 8,
pp. 1226-1238, 2021.

[20] H. Zhu, L. Wang, H. Ahmad, and D. Xie, “Pairing-free for
public key encryption with equality test scheme,” IEEE Access,
vol. 9, pp. 77239-77249, 2021.

[21] X.]. Lin, L. Sun, H. Qu, and X. Zhang, “Public key encryption
supporting equality test and flexible authorization without
bilinear pairings,” Computer Communications, vol. 170,
pp. 190-199, 2021.

[22] S. Galbraith, K. Paterson, and N. Smart, “Pairings for cryp-
tographers,” Discrete Applied Mathematics, vol. 156, no. 16,
pp. 3113-3121, 2008.

[23] L. Ballard, M. Green, B. Medeiros, and F. Monrose, “Cor-
relation-resistant storage via keyword-searchable encryp-
tion,” IACR Cryptol. ePrint Arch.vol. 417, p. 2005, 2005.

[24] V. Shoup, “Sequences of games: a tool for taming complexity
in security proofs,” IACR Cryptol. ePrint Arch.vol. 332,
p. 2004, 2004.

[25] D. Boneh, E. Shen, and B. Waters, “Strongly unforgeable
signatures based on computational diffie-hellman,” in Public
Key Cryptography - PKC 2006 PKC 2006, pp. 229-240,
Springer, New York, NY, USA, April 2006.

[26] D.Boneh and X. Boyen, “Efficient selective-id secure identity-
based encryption without random oracles,” in Advances in
Cryptology. - EUROCRYPT 2004 EUROCRYPT 2004,
pp. 223-238, Springer, Interlaken, Switzerland, May 2004.

[27] A. D. Caro and V. Iovino, “jpbc: Java pairing based cryp-
tography,” in Proceedings of the 16th IEEE Symposium on
Computers and Communications, ISCC 2011, pp. 850-855,
Kerkyra, Corfu, Greece, July 2011.

