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Deep packet inspection (DPI) is widely used in detecting abnormal traffic and suspicious activities in networks. With the growing
popularity of secure hypertext transfer protocol (HyperText Transfer Protocol over Secure Socket Layer, HTTPS), inspecting the
encrypted traffic is necessary. ,e traditional decryption-and-then-encryption method has the drawback of privacy leaking.
Decrypting encrypted packets for inspection violates the confidentiality goal of HTTPS. Now, people are faced with a dilemma:
choosing between the middlebox’s ability to perform detection functions and protecting the privacy of their communications. We
propose OTEPI, a system that simultaneously provides both of those properties. ,e approach of OTEPI is to perform the deep
packet inspection directly on the encrypted traffic. Unlike machine and deep learningmethods that can only classify traffic, OTEPI
is able to accurately identify which detection rule was matched by the encrypted packet. It can facilitate network managers to
manage their networks at a finer granularity. OTEPI achieves the function through a new protocol and new encryption schemes.
Compared with previous works, our approach achieves rule encryption with oblivious transfer (OT), which allows our work to
achieve a better balance between communication traffic consumption and computational resource consumption. And our design
of Oblivious Transfer and the use of Natural Language Processing tools make OTEPI outstanding in terms of
computational consumption.

1. Introduction

Packet inspection and analysis are widely used to detect,
mitigate, and prevent suspicious network activities. Real-
time inspection of packet payloads and headers is essential to
achieve these goals. ,e equipment deployed for these
purposes is middlebox, an intermediate device providing
various services. Middlebox is essential in today’s network
infrastructure. ,e primary services provided by middlebox
include firewalls, intrusion detection, parental filtering, data
leakage detection, forensic analysis, malware analysis, and
others.

With the popularity of HTTPS, 87%–90% of the current
network traffic is encrypted by protocols such as SSL (Secure
Sockets Layer) and TLS (Transport Layer Security)[1].
According to Google’s statistics, in November 2020, 81% to
98% of the traffic from the Chrome browser on different

platforms used HTTPS [2]. ,e Man-in-the-Middle (MitM)
technology is one of the commonly used approaches to
inspect encrypted traffic. An MB establishes encrypted
connections between both the client and the server. ,e
middlebox decrypts the traffic in the connections, inspects
the payloads according to the intrusion detection rules, and
then re-encrypts the payloads. When rules are matched,
alerts will be sent to the administrator to take actions such as
disconnection and alert.

,is decrypt-and-detect approach violates the security
goal of HTTPS. A survey [3] from USENIX Association
shows that 75.8% of users have privacy concerns about the
MitM system that decrypts encrypted traffic, and 83.2% of
the surveyors believe that the third-party inspection should
be notified in advance. ,e MitM technology can achieve
either the function of traffic inspection or privacy in com-
munication due to the intrinsic conflict between the two.
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With the popularity of HTTPS, TLS/SSL encrypted traffic in
the network has gradually become the majority. Performing
the traffic inspection while protecting the privacy of both
parties has become a problem that attracted much research.
We hope to implement a traffic inspection that provides
privacy protection, propose a new method to optimize the
bandwidth, and overhead compared with the previous
methods.

1.1. RelatedWorks. Encrypted traffic detection technologies
are classified into three categories: Searchable Encryption,
Machine and Deep Learning, and Trusted Hardware. We
give a brief survey as follows.

1.1.1. Searchable Encryption. Sherry et al. proposed the
BlindBox [4] in 2015, which is the first privacy-preserving
deep packet inspection scheme using searchable encryption
techniques. ,ey adopted oblivious transfer (OT) [5–7]
along with garbled circuits (GC) [8, 9] to perform the in-
spection of the encrypted traffic without decrypting the
payloads. ,e middlebox cannot access the plaintext in the
traffic, and the client and the server cannot learn the content
of the rules. While this method achieved the desired privacy
protection, it requires a significant amount of calculation
and communication due to the use of garbled circuits [10].
In addition to the considerable overhead of the garbled
circuit itself, every new rule in each new session has to
generate a new garbled circuit.

To address the performance bottleneck of the BlindBox,
Canard et al. proposed BlindIDS [11], which is a token-
matching protocol that uses a Decryptable Searchable En-
cryption (DSE) tool based on the pairing-based public key
algorithm. Compared with BlindBox, BlindIDS drastically
reduce the overhead of the rules setup, moving some
overhead to the middlebox detection phase.

Fan et al. introduced the SPABox [12], which uses
oblivious pseudorandom functions in the rule encryption.
,e middlebox portion performs two matching operations,
namely, keyword matching and machine learning model
matching. Like all searchable encryption methods, SPABox
also adopts tokenization. ,e only difference between the
SPABox and other methods is the adoption of machine
learning which uses a different approach in token matching.

Ning et al. proposed the PrivDPI [13]. ,is method
improves the BlindBox that enhances the setup phase to
reduce bandwidth consumption.,ey introduced the idea of
reusable encryption rules, which significantly reduced the
bandwidth overhead in the case of multiple continuous
sessions. However, modular operations in token encryption
increase the computational overhead compared with
BlindBox.

1.1.2. Machine and Deep Learning. Machine learning
technology is also widely used in encrypted traffic inspec-
tion. Yamada et al. [14] proposed a new anomaly detection
technology. ,is method performs anomaly detection by
analyzing the data packet’s size and the flow’s temporal

characteristics. ,e scheme proposed by Anderson et al.
[15, 16] detects malicious programs mainly by TLS header
information and DNS data. ,e article finds that encrypted
malware traffic has different characteristics from regular
traffic.

Deep learning methods are also widely used in intrusion
detection for network security. Ferrag et al. [17] analyzed the
performance of seven deep learning models is analyzed for
three metrics: accuracy, false alarm rate, and detection rate
under different data sets. Montieri et al. [18] proposed a
scheme that allows traffic classification in anonymous
browsers (e.g., tor) employing a hierarchical approach. In
detail, the proposed framework was designed with varying
constraints, resulting in implementations with different
degrees of complexity (in terms of classifiers, features, and
reject options). Adept [19] is an attack detection and
identification framework for identifying multi-stage dis-
tributed attacks on the Internet-of-,ings (IoT). It is based
on a hierarchical distributed framework, where local gate-
ways monitor network traffic and generate alerts for any
anomalous activity. ,e central security manager detects
attacks by mining the aggregated alerts and identifies cor-
responding attack stages using a comprehensive set of
features via machine learning. Liu et al. [20] proposed a Flow
Sequence Network (FS-Net) scheme that uses recurrent
neural networks for encrypted traffic classification. ,e FS-
Net takes a multi-layer bi-GRU [21] encoder to learn the
representation of the flow sequence and reconstructs the
original sequence with a multi-layer bi-GRU decoder. ,e
features learned from the encoder and decoder are combined
for classification. Aceto et al. [22] proposed a traffic classifier
called DISTILLER, a multi-modal multi-task deep learning
method. DISTILLER addresses the performance limitations
of existing traffic classifiers based on single-mode deep
learning and provides an adequate design basis for so-
phisticated network management requiring the solution of
different network visibility tasks. A new method for clas-
sifying end-to-end encrypted traffic using one-dimensional
convolution neural networks is proposed byWang et al. [23]
based on the analysis of traditional methods for classifying
encrypted traffic in machine learning. ,is strategy differs
from the traditional divide-and-conquer strategy. ,e 1D-
CNN classification strategy integrates feature design, feature
extraction, and feature selection in a single framework,
making it more likely to yield a globally optimal solution
than a divide-and-conquer strategy. A Tree-Shaped Deep
Neural Network (TSDNN) and Quantity Dependent
Backpropagation (QDBP) algorithm was proposed by Chen
et al. [24]. ,is model can memorize and learn from the
minority class, to perform malicious flow detection.

1.1.3. Trusted Hardware. Trusted hardware is a new tech-
nology that has been deployed for privacy-preserving deep
packet inspection. David Goltzsche et al. presented ENDBox
[25] that uses the Intel SGX tool provided by Intel, which
supports both local and remote verification. ENDBox and
SGX are connected through a virtual network, and the traffic
is decrypted and inspected inside the SGX.,e SGX between
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the two terminals is directly connected to enable the direct
transmission of the traffic, without which the SGX traffic will
be garbled. ,e McTLS proposed by David Naylor et al. [10]
modifies the existing TLS protocol and use the SGX to allow
the client, middlebox, and the server to establish an au-
thenticated and secure channel to exchange read and write
secret keys in addition to the session key.

1.1.4. Summary. ,e searchable encryption-based scheme
can enhance privacy protection, but it will incur a huge
overhead. All searchable encryptions require two data flows:
the TLS session and the tokenized data. Although most of
the works performing traffic and malware classification le-
verage Machine and Deep Learning Approaches. However,
machine and deep learning methods extensively depend on
reliable training sets. And this method can only classify the
traffic and cannot accurately identify the exact rule matched.
Furthermore, in Trusted Hardware technology, the security
of the Trusted Hardware (i.e., Intel SGX) is still actively being
studied. Moreover, it is less efficient for inspection, at least
when compared to the searchable encryption schemes dis-
cussed. ,erefore, improving the efficiency of the searchable
encryption method is still a meaningful research direction.

1.2. Our Contributions. ,is paper proposes an encrypted
packet inspection scheme based on oblivious transfer, namely,
OTEPI (Encrypted Packet Inspection Based on Oblivious
Transfer). OTEPI is in the category of searchable encryption-
based scheme. OTEPI reduces the bandwidth consumption
required to rules encryption without increasing the cost at the
packet sender compared to BlindBox. We also adopt the idea
of reusable encryption rules in PrivDPI. ,ough the band-
width consumption is higher than that of PrivDPI, the
computational costs of the packet sender is less than that of
the PrivDPI. In general, for arbitrary types of data, the
proposed scheme is able to strike a balance between the low
computational resource consumption and high bandwidth
consumption of BlindBox and the low bandwidth con-
sumption and high computational resource consumption of
PrivDPI. In particular, for plaintext data such as HTML web
pages, our scheme optimizes the tokenization method, which
is smaller than either PrivDPI or BlindBox in terms of
computational resource consumption.

Table 1 shows the specific characteristics of our proposed
OTEPI method. OTEPI uses oblivious transfer to reduce
bandwidth overhead and does not use the exponential
operation to reduce computing overhead. We also use NLP
tools to segment tokens to reduce the number of tokens.

Our contributions are as follows:

(1) We designed a new rule encryption method based on
oblivious transfer that can protect the privacy of both
the traffic and rules and realizes the reuse of en-
cryption rules. Compared to BlindBox, the rule
encryption consumes much less bandwidth; the
bandwidth required for 3000 rules encryption is
reduced from 50GB in BlindBox to 82MB.

(2) We designed a new rule encryption method based on
oblivious transfer that can protect the privacy of
traffic and rules and realize the reuse of encryption
rules.,e tokenization reduces the number of tokens
compared to the sliding window method. We only
generate 10% to 20% of the tokens generated by
BlindBox. Our encryption performance with NLP is
1.7 times faster than BlindBox and 7.6 times faster
than PrivDPI. For recurring packets, our token
encryption is 3.5 times more efficient than BlindBox
and 3.8 times more efficient than PrivDPI.

(3) We use the sliding window tokenization for payloads
unsuitable for NLP, such as images and audio. In this
case, token encryption of OTEPI is 2.6 times slower
than that of PrivDPI. For recurring packets, OTEPI
is more efficient than PrivDPI. Although it is not as
efficient as BlindBox in encryption, OTEPI con-
sumes less bandwidth than BlindBox.

1.3. Article Structure. We organize the paper as follows.
Section 1 reviews the related work and presents the con-
tributions of this paper. Section 2 describes the system ar-
chitecture, threat model, and preliminaries. Section 3 details
our scheme. Section 4 provides correctness and security
analysis. Section 5 gives the performance evaluations. We
conclude in Section 6.

2. Overview

We provide notations, the system architecture, and the
threat model used in the paper.

2.1. Preliminaries. For a vector or 1-D array P, we use Pi to
denote the i-th element of P. For a matrix or 2-D array Q, the
entry in the i-th row and j-th column is denoted by Qi,j, the
i-th row vector of Q is denoted by Qi. For a bit string
s � s1s2 · · · sm, sj denotes the j-th bit of s. As in BlindBox and
PrivDPI, we tokenize the network traffic to a series of tokens,
and the lengths of rules and tokens are fixed to m bits.

2.1.1. Oblivious Transfer. We define the 1-out-of-2 oblivious
transfer protocol between two parties, A and B. B has
twobit-strings D0 and D1. A has a bit b. When the protocol
completes, A gets Db without knowing D1−b, and B has no
information on b. ,e process is denoted as
OT( A, b{ }, B,D0,D1􏼈 􏼉). We build the oblivious transfer
based on the Even-Goldreich-Lempel OTprotocol proposed
by Even et al. [5].

In this paper,Encpk(·) represents the public key en-
cryption and Decsk(·) represents the private key decryption.

(1) For each OT, parties A and B first share two m-bit
string y0 and y1.

(2) A selects an m-bit string x and the input bit b,
computes the ζ to send to B.

ζ � EncpkB
(x) − yb. (1)
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(3) B calculates as follows and sends to A

z0 � DecskB
ζ + y0( 􏼁 + D0, (2)

z1 � DecskB
ζ + y1( 􏼁 + D1. (3)

(4) A as the receiver of oblivious transfer, the formula
for calculating Db is as follows:

Db � zb − x. (4)

2.2..eArchitecture. Our solution has a similar architecture
to BlindBox [4]. Its architecture is shown in Figure 1.

,e system consists of four entities: Rule Generator (RG),
middlebox (MB), the client (C), and server (S). RG is a third-
party agency generating rules. MB monitors the traffic using
the rules provided by RG. C is the party sending network
traffic. S is the party that receives the traffic sent by C.

,e client encrypts tokens with the secret key shared by
client and server in the setup phase. Moreover, MB encrypts
the rules with this secret key. MB only needs to check
whether the encryption rules and the encrypted token are the
same, and there is no need to decrypt the payloads or tokens.

,e goal of the system is that the MB can detect the
matching of rules in traffic and cannot access the plaintext of
encrypted traffic and the rules from RG; the client and server
cannot access the rules.

2.3. .reat Model. We assume that at least one of the client
and server in a session is honest, and MB is semi-honest
(honest but curious). ,is assumption is the same as these in
BlindBox [4] and PrivDPI [13]. Under this security as-
sumption, there are two threats. ,e first comes from either
S or C. One of S and C can be malicious, but two entities will
not be malicious simultaneously. ,e cases when both C and
S are malicious are beyond the scope of our assumptions
because they can deceive the MB by collusion.

,e second threat comes from the MB. MB will not
actively attack encrypted payloads but will monitor and
analyze encrypted tokens to learn the content of the
encrypted traffic.

3. Encrypted Traffic Inspection by
Oblivious Transfer

,is section introduces our oblivious transfer-based
encrypted traffic inspection approach.,e approach uses the
same system architecture and threat model as BlindBox and
PrivDPI. Unlike BlindBox and PrivDPI, we use OT solely to
achieve secure multi-party computation [26] to encrypt

rules. Meanwhile, to address the problem of excessively
useless tokens generated by current tokenize methods, we
introduce an NLP-based tokenizing method, which signif-
icantly reduces the number of tokens.

Table 2 describes the variables used in our approach.

3.1. System Flow. Our solution includes the following
phases:

(1) Setup: MB receives rules and rule validation from
RG.

(2) Rule preprocessing: MB interacts with C and S to
establish a set of reusable obfuscated rules using
oblivious transfer. It ensures that C and S will not
learn the rules, and MB cannot learn the key used by
C and S.

(3) Packet tokenization and token encryption: C toke-
nizes the payloads, encrypts the tokens, and loads
them into traffic.

(4) Token inspection: MB inspects the tokens sent by C
to search for the matching of the rules obtained in
equation (2).

(5) Token validation: S checks the whether the tokens
sent by C accord with the payloads of the TLS/SSL
session.

3.2. Setup. ,e ruleset from RG is denoted byR � R1)􏼈 ,. . .,
(Rn}. In this phase, C, S, and MB set up the parameters used
in the procedure. We assume that MB has the public key of
RG, and C and S have the public key of MB. For each Ri, RG
generates a rule verification pair: (Xi, sign(Xi)), where Xiis
the ciphertext of Ri encrypted by the public key of MB,
sign(Xi) is the signature of Xi signed by RG. RG sends all
rule verification pairs (Xi, sign(Xi)) to MB. MB gets the
public key of RG and decrypts each Xi to have the rule set.

Next, C and S establish a session with a session key sk. C
and S generate K, e, and w using the same method with sk as
a random seed. Array K has m entries where each entry is a
pair of m-bit strings. Kj, 1≤ j≤m denotes the j-th pair of K,
and Kb

j, b ∈ 0, 1{ } is the b-th bit-string of the pair Kj. K is
used in token and rule encryption by OT. In OT, Kb

j serves as
the stand-in for the b bit for the bit on position j of the token.
K has a total of 2m2 bits.

,e random number w is shared by C, S, and MB, which
is used as the seed to generate a random array W. ,is array
will be employed to confuse duplicate tokens against fre-
quency-based attacks by MB. We give the whole process in
Algorithm 1.

Table 1: Characteristics of existing schemes.

Characteristic BlindBox PrivDPI OTEPI
Bandwidth consumption High Low Mid
Encryption time consumption Mid High Low
Encryption rule calculation method GC and OT ECC OT
Segmentation method of tokens Sliding window Sliding window NLP
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Enc(p, t) represents the encryption result of the t-th
occurrence of the string p. F

↚
(·) denotes a one-way function.

In this paper, we use the Rabin one-way function. C is
responsible for generating the parameters of the Rabin
function, including two big prime numbers ρ, σ, and
η � ρ · σ. C sends η to MB and S and keeps ρ, σ secret.

3.3.RulePreprocessing. In this phase, MBwill obtain the rule
set encrypted with K by oblivious transfers with C and S.,e
procedure of the rule preprocessing is shown in Figure 2.

,e security requirement in the rule encryption pro-
cedure is that MB should not obtain the key array K, and C/S
should not obtain any rule. ,e rule encryption process has
the following steps (a)–(e).

MB processes the rule set as follows:

(a) Standardization of rule length:MB pads the eachRi with
0’s or computes the hash value such that the resulting
length 8􏼆

􏼌􏼌􏼌􏼌Ri|/8􏼇. Each Ri is a string of m-bit length.
C/S performs the following operations:

(b) Verification: C/S uses the public key of RG to check
whether sign(Xi) and Xi are matched.

(c) Generate the confusion vector of the key: for each Ri,
C/S generates a mask array KMi that is an array of m

entries and KMi,j, j ∈ [1, m] is an m-bit string. For
any KMi, the following relation holds:

e � ⊕mj�1KMi,j. (5)

,en, C/S encrypts K using KM. ,e result is an
array, namely, KE, where

Table 2: Variables.

Name Description Type Known by
n ,e number of rules int MB, C, S
m ,e number of bits in a token/rule int MB, C, S
e Confusion parameter on the C/S side m-bit string C, S
R ,e rule set, where Ri is the i-th rule Each Ri is an m-bit string MB

K
Array of keys of C/S to Array of m pairs, each pair has two m bit strings C, Sencrypt tokens and rules

KM
Mask vector for obfuscating K

n × m array of m-bit strings C, Sused in OT
KE Encrypted K by KM n × m array of m-bit strings C, S

RK ,e keys to encrypt rules worked out Array of m-bit strings of n elements MBby MB via OT with C, S
RE Encrypted rules Array of m-bit strings of n elements MB

Wt

Masks to obfuscate the t-th
m-bit string C, S, MBoccurrence of a token

Rule Generator RG

rules and signatures
rules preparation

Encrypted
rules

Client C

TLS

Tokenize Encrypt
Deteced

TLS
Validate

Server S 
Middle box MB

Figure 1: System architecture.

RG:

for i←1 to n do
Xi← encrypts Ri with MB’s public key.
sign(Xi)← signs Xi with RG’s private key.
sends (Xi, sign(Xi)) to MB.

end for
C/S:

uses sk as a random seed to generate K, e, and w.
generate two random big prime numbers ρ, σ.
η←ρ · σ.
send w and η to MB on a secure channel.
MB:

decrypts and verifies each Ri from (Xi, sign(Xi)).

ALGORITHM 1: Setup step.
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KE
b
i,j � K

b
j⊕KMi,j, for i, j ∈ [1, m], b ∈ 0, 1{ }. (6)

Next, MB and C/S run the OT as follows.
(e) Rule encryption: for each bit (Ri)j, MB and C run the

OT protocol as follows, OT( MB,{

(Ri)j}, C, KE0
i,j, KE1

i,j􏽮 􏽯).

By the OT, MB gets all KE
(Ri)j

i,j from C/S. MB then
computes the keys used to encrypt the rule set, namely, RK.
RK is an array of m entries, where

RKi � ⊕mj�1KE
Ri( )j

i,j . (7)

Bit-string RKi is the key used in encrypting Ri.
MB and S run the same procedure, and MB computes an

alternative RK. MB checks whether the two RK’s are the
same. If the results are different, the procedure stops. Finally,
MB encrypts each Ri as follows:

REi � F
↚

RKi⊕Ri( 􏼁. (8)

,e whole process is shown in Figure 3. ,e mask KM

prevents MB from revealing the content of K, but also allows
MB to encrypt the rule set with K. We will prove the
correctness in Section 4.2.

3.3.1. Obfuscating Repeated Tokens. We use an array W to
hide the repeated tokens, an array of m-bit strings. MB and
C/S use the same method to generate the same W. A token
with t copies in previous tokens will be masked by Wt; thus,
all encrypted tokens of the same token will be different. We
set W0 to m 0 bits.

3.4. Packet Tokenization. We introduce natural language
processing (NLP) to traffic tokenization. Many packets have a
text payload of natural languages and program codes. ,ese
texts are composed of words (keywords) and delimiters used to
represent the grammatical structure of the text. ,e inspection
rules for these texts also have the same proprieties, such as the
parent control system and keyword censoring. ,e NLP-based
tokenization segments the token without generating tokens
that violate the structure properties. ,e NLP-based tokeni-
zation also supports languages with longer encoding, such as
Chinese, Japanese, and Korean. C pads each token with 0’s or
computes the hash value as MB does with rules, which ensures
that both the tokens and the rules are m-bit strings.

3.5. TokenEncryption. We take a token as an m-bit bit-string.
Given a token of content p such that there are t tokens with
content p in previous tokens, the C encrypts p as follows.

Enc(p, t) � F
↚
⊕mj�1K

(p)j

j􏼒 􏼓⊕e⊕p⊕Wt􏼒 􏼓. (9)

For duplicated tokens, the encryption can be simplified.
,e client record the ciphertext of the last occurrence of p,
namely, Dup token(p).

Dup token(p) � ⊕mj�1K
(p)j

j􏼒 􏼓⊕e⊕p⊕Wt. (10)

And the times of occurrences of p so far, namely, c(p).
For a token with content p, the client encrypts the token as
follows.

Enc(p, c(p)) � F
↚

Dup token(p)⊕Wc(p)􏼐 􏼑. (11)

,en the client computes Dup token(p) to Enc(p, c(p))

and increases c(p) by 1 (see Algorithms 2 and 3).

3.6. Token Inspection. To search for the occurrence of rules
in packets, MB matches the encryption ruleset against the
encrypted token sequence. To accord with the token en-
cryption for duplicated tokens, MB initializes each
Dup token(Ri) to REi. When an encrypted token arrives,
MB compares the token with each REi. If the token matches
REi, MB updates Dup token(Ri) in the same way as token
encryption as follows.

Protocol 1 Rule preprocessing protocol

Input: MB inputs (Ri), C/S inputs (K, e)
Protocol:

1. MB: standardizes the Ri length.
2. C/S: for each Ri generate a random mask vector array KMi.
3.
for j = 1 to m do

(a) C/S: KE0
i,j ← K0

j ⊕ KMi,j, KE1
i,j ← K1

j ⊕ KMi,j.

end for

5. MB: Determine whether the computed encryption rules are correct:
Case 1: If the RKi calculation results obtained from the C/S side are the same, MB
calculates the encryption rules REi ← F

↚

(RKi ⊕ Ri) used for matching tokens.
Case 2: If the RKi calculation results obtained from the C/S side are different, MB
knows that at least one of two parties is malicious.

(b) OT ({C/S, (Ri)j}, {MB, KE0
i,j, KE1

i,j}).

4. MB: computes RKi = KEi,j
(Ri)1⊕…⊕ KEi,m

(Ri)m .

Figure 3: Rule preprocessing protocol.

Client Server

1.Standardization of rule
length

2.Standardization rule
converted to 0 / 1 bit

3.Use bits as input to OT

1.Validation rules from RG

2.�e obfuscated key pair is
used as the input of OT

Middle Box

1.Validation rules from RG

2.�e obfuscated key pair is
used as the input of OT2. OT

1. send (Xi, sign (Xi))

2. OT

1. send (Xi, sign (Xi))

Figure 2: Rule preprocessing outline.
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Dup token Ri( 􏼁 � ⊕mj�1KE
Ri( )j

j􏼒 􏼓⊕Ri⊕W0.

REi � F
↚

Dup token Ri( 􏼁⊕Wc Ri( )􏼒 􏼓.

(12)

,e counter of occurrences of the Ri, namely, c(Ri), is
increased by 1. MB also takes actions such as disconnecting
or issuing a warning to the user or administrator. ,e whole
process is shown in Algorithm 3.

3.7. Token Validation. ,e receiver S runs the same toke-
nization and token encryption on the decrypted TLS/SSL
traffic. S checks whether the plaintext of traffic is the same as
the plaintext of the encrypted token sequence received from
MB. Any inconsistency implies that C is malicious.

3.8. Detecting the Malicious MB. ,is section considers a
stronger adversary MB that does not follow the protocol and
applies chosen plaintext attacks to the proposed system. We
present a mechanism for the client to detect the middlebox
that uses faked rules. For a given MB, the RG generates some
rule verification information that the clients can use to verify
the honesty of the middlebox, that is, the middlebox uses the
unfeigned rules in the rule encryption phase. First, RG
determines all the parameters of the OTs between the given
MB and clients. X is a 2-D array of integers, Y0 and Y1 are 1-
D arrays of integers, where Xi,j, Y0

j , and Y1
j are the ζ, y0, and

y1 parameters of the OT for encrypting bit (Ri)j, respec-
tively. ,e first message of the OT between MB and C for
(Ri)j can be expressed as follows:

oi,j � Encpkc
Xi,j􏼐 􏼑⊕ Ri( 􏼁j · Y

1
j⊕ Ri( 􏼁j · Y

0
j􏼐 􏼑. (13)

,e rule verification for Ri is defined as follows:

vi � Hash oi,1􏼐
����oi,2‖ · · · ‖oi,m). (14)

,eRG can compute each vi as RG has all the parameters
for computing each vi. ,en, RG sends each vi to the client.
In the followed rule encryption phase between MB and C,

the client computes vi
′ using the message in OTwith the same

method in equation (15). If vi � vi
′, the client is sure that MB

uses the unfeigned rule.
,e above mechanism imposes a heavy burden on RG

since RG must compute the verification for all the sessions
between any clients and servers. An improvement is to use
the garbled circuit. RG builds a garbled circuit to compute
each vi for a given middlebox. As all the parameters to
compute vi except for the client’s public key are known
before a session, the circuit’s input is the client’s public key.
When a client starts a session, it asks for the garbled circuit
for its corresponding MB from RG and computes each vi

with its public key as input. In rule encryption, the client
computes the vi from both the garbled circuit and messages
from the MB and checks whether they are the same. In this
scheme, RG only needs to build the garbled circuit for each
MB rather than compute verifications for every pair of C/S.

4. Security and Correctness

4.1. Security and Correctness Requirements. ,e security
definition follows BlindBox, PrivDPI, and Song et al. [27].
Either of the two endpoints in our system may be malicious,
but at least one of the two endpoints is honest. ,is re-
quirement is also essential for any intrusion detection system
[28]. Because when both ends are malicious, they can collude
to treat the middlebox.

,ere are some requirements implemented in methods
such as BlindBox and PrivDPI. (A) MB can perform rule
detection. MB can identify the substring of the payload
matching a rule. (B) C/S cannot obtain the rules used byMB.
,is requirement prevents C/S from eluding detection. It
also makes the rules-suppliers (RG) keep the confidentiality
of the rules that are their pivot assets.

In addition to the above two requirements, we also
achieve the same security requirements of BlindBox and
PrivDPI: (C) MB cannot decrypt the payloads. (D-i) MB
cannot decrypt the encrypted token sequence. (D-ii) MB
cannot analyze the frequency of plaintext occurrence by the
sequence of encrypted tokens. MB can only learn the
number of occurrences of the rules in the session. MB cannot
learn the frequencies of other tokens.

4.2. Correctness. We prove that the requirement (A) is met.

4.2.1. Correctness Definition. Correctness is defined as
follows. (i) Assume that a substring s of the plaintext
equals rule Ri. ,e MB will identify the corresponding
token and report a matching of Ri. (ii) When s does not
equal any rule, the probability of MB reporting a matching
is negligibly small.

4.2.2. Correctness Guarantees. We first prove that MB en-
crypts the rule set correctly, that is, REi � Enc(Ri, 0).
According to equation (8), we have the following:

Input: Token series, K, W

Output: Encrypt token series for each token p do
if p occurs at the first time then

c(p)←0
Dup token(p)←(⊕mj�1K

pj

j )⊕e⊕p
Enc(p, c(p))←F

↚
(Dup token(p)⊕Wc(p))

else
Dup token(p)←Dup token(p)⊕Wc(p)

Enc(p, c(p))←F
↚

(Dup token(p))

end if
c(p)←c(p) + 1
output(Enc(p, c(p)))

end for

ALGORITHM 2: Token encryption.
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RKi � ⊕mj�1KE
Ri( )j

i,j � ⊕mj�1K
Ri( )j

j ⊕KMi,j. (15)

As e � ⊕mj�1KMi,j, we have

RKi � e⊕mj�1K
Ri( )j

j . (16)

,erefore,

REi � F
↚

RKi⊕Ri( 􏼁 � F
↚
⊕mj�1K

Ri( )j

j􏼒 􏼓⊕e⊕Ri⊕W0􏼒 􏼓 � Enc Ri, 0( 􏼁.

(17)

Let the content of a token be Ri, and it is the first oc-
currence of Ri in the token series. ,e encrypted token is
Enc(Ri, 0). MB will detect the match as REi � Enc(Ri, 0).
Assume that a token with the content Ri is the t-th oc-
currence of Ri in the token series. ,e encrypted token is
Enc(Ri, t). Assume that on the MB side, we have REi �

F
↚

(Dup token(Ri)⊕Wt) � Enc(Ri, t) and MB detects the
match. ,en, for Ri’s (t + 1)-th occurrence, the encrypted
token is Enc(Ri, t + 1). On the MB side, we have REi �

F
↚

(Dup token(Ri)⊕Wt+1) � Enc(Ri, t + 1) and MB detects
the match.

,erefore, the correctness definition is held. As keys for
encryption are random, the ciphertexts of two different
tokens may be the same, which we call the case a collision.
,e probability that a token and a rule leads to a collision is
1/2m (the first type of birthday attack). For m � 64 or 128,
this probability is 1/264 or 1/2128. ,e correctness definition
(ii) is held.

4.3. Security. We first show that when one of C and S is not
honest, the honest MB can detect the case, and the honest S
can detect the dishonest C. In the rule encryption stage, MB
works out encrypted rules along with both C and S. If the two
results are not the same, MB knows that one of C or S is not
honest. S holds the session key and decrypts the SSL/TLS
traffic. S can verify whether C sends the tokens in accord
with the SSL/TLS traffic.

We prove that requirements (B), (C), (D-i), and (D-ii)
are met. Because MB does not have the session key sk to

decrypt the payloads and the threat requirement (C) has
been met.

For requirement (B), According to the oblivious transfer,
C cannot know the bit of each rule. We also hide the length
of the rules. Requirement (B) is met.

We consider requirement (D-i) and requirement (D-ii).
Since Enc(p, t) is a one-way function and ρ, σ are not known
by MB, MB cannot recover the plaintexts of encrypted to-
kens. ,e security definition (D-i) is held. For bit b � (Ri)j,
MB works out Kb

j⊕KMi,j and knows nothing about
K1−b

j ⊕KMi,j by the OT. Given (Ri′)j � b, as KMi,j and
KMi′ ,j are different random bit strings, MB cannot recover
Kb

j from KEi and KEi′ .
As the same tokens are masked with different entries of

W, the resulting encrypted tokens are different, which avoids
frequency-based attacks from MB. Likewise, an eaves-
dropping adversary cannot recover the plaintexts of
encrypted tokens and their frequencies. As OTs between C/S
and MB protect the rules from leaking, the eavesdropping
adversary cannot detect the matching of a rule. ,e security
definition (D-ii) is held.

In this approach, we have fulfilled the requirement (D).

5. Performance Evaluation

We use OpenSSL-1.1.1a to implement encryption and
message sending and Cppjieba to implement natural-
language-processing-based tokenization. ,e one-way
function we used is the Rabin function. We employ
RawCap-0.2.0 to monitor the traffic and Wireshark-3.4.5
to collect statistics on the traffic. Each test is conducted
1,000 times, and the running time is the average time of
the runs. ,e experiments use open-source rule sets and
real and random network traffic. ,e detection rules are
randomly inserted into test packets to measure the ac-
curacy of MB by checking whether the rules are matched
correctly.e conducted experiments on a PC with Intel(R)
Core(TM) i5-6300U CPU with four cores at 2.20 GHz
running 64-bit Windows 10.We use OpenSSL-1.1.1a to
implement encryption and message sending and
Cppjieba to implement natural-language-processing-
based tokenization. ,e one-way function we used is the

Input: Encrypted token series, RE, Dup token, and W

Output: Whether the encrypted token is the same as the detection rule for i � 1 to n do
REi←F

↚
(Dup token(Ri)⊕W0)

c(Ri)←1
end for
for each encrypted token Enc(p, t) do
if Enc(p, t) � REi then
report a matching of Ri

Dup token(Ri)←Dup token(Ri)⊕Wc(Ri)

c(Ri)←c(Ri) + 1
end if

end for

ALGORITHM 3: Token inspection.
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Rabin function. We employ RawCap-0.2.0 to monitor the
traffic and Wireshark-3.4.5 to collect statistics on the
traffic. Each test is conducted 1,000 times, and the
running time is the average time of the runs. ,e ex-
periments use open-source rule sets and real and random
network traffic. ,e detection rules are randomly
inserted into test packets to measure the accuracy of MB
by checking whether the rules are matched correctly.

We compare OTEPI with BlindBox and PrivDPI. ,e
three approaches have the same security and threat model
and conduct the same function. ,e existing machine
learning and deep learning approaches only inspect the
plaintext part of the traffic and perform different security
functions from OTEPI.

5.1. Client (or Server). ,e client/server’s main computation
and communication overhead are in the token encryption
step.

5.1.1. Tokens with Distinct Content. BlindBox performs AES
encryption twice for one token. OTEPI performs m bitwise
XORs and a one-way function on m-bit strings. For PrivDPI,
one exponentiation operation, one multiplication operation,
and one AES encryption operation are required. ,e
comparison of the token encryption time is shown in Fig-
ure 4. It can be seen that the token encryption time is linear
in the number of tokens in the three approaches. For the
same amount of tokens, OTEPI consumes twice as much
time as BlindBox and PrivDPI consumes 5.6 times as much
time as BlindBox.

,e token encryption is much faster than the rule en-
cryption in both OTEPI and BlindBox. In the latter,
BlindBox needs to transmit garbled circuits and encrypt and
OTEPI needs to use OTs to transfer keys. However, in the
latter, all these operations are not needed.

,e NLP-based tokenization is more flexible than fix-
length tokenization used in BlindBox and PrivDPI. For
example, for the payload “login.html?usern-ame= bob,”
NLP can yield “login” and “username= bob” instead of
“login.ht.” Most NLP tools support dictionary-based seg-
mentation, which is suitable for texts. ,e number of tokens
is greatly reduced by discarding meaningless words such as
“a” and “the” NLP-based tokenization transfers some
computation of the MB to the client-side. An MB is usually
heavy-loaded, and it is desirable for the client to share the
load.

,e sliding window based tokenization leaks informa-
tion about the payload length. Tokenization by NLP can hide
the payload length since meaningless words are not
recorded.

,e running time of the tokenization by NLP is 2.3 to 2.8
times more than that of the sliding window. ,e time used
for NLP tokenization is shown in Figure 5.

As NLP reduces the number of tokens, the time of token
encryption and matching are reduced. In Figure 6, we
compare the time of tokenization and token encryption of
the client in BlindBox, PrivDPI, and OTEPI. It shows that by

using NLP tokenization, OTEPI becomes the fastest in token
encryption.

5.1.2. Tokens with Duplicate Content. When tokens repeat,
the encryption time is different from that with unique
content. ,e client (or server) uses the recorded encrypted
tokens for acceleration in all three approaches. ,e en-
cryption method for an existing token p in BlindBox is
AESAESckey(p)(salt + t), where t is the number of occurrences
of p. ,e re-encrypting method in OTEPI can be found in
equation (12). PrivDPI uses table lookup to compute the
exponentiation and multiplication operations for duplicated
tokens, such that only one AES operation is needed.
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We evaluate the encryption time for the traffic with
different percentages of repeated tokens. Repeated tokens
are common in the real world. For example, when searching
for recipes and travel brochures online, multiple queries will
return similar results.

In Figure 7(a), We use 500 tokens, among which 10% to
100% tokens are repeated tokens. When the repetition rate of
the token is 100%, the encryption time of OTEPI and BlindBox
are the same.

In Figure 7(b), we show the computational overhead of the
server in encrypting an HTML web page accessed the second
time. In Figure 7(a), for the recurring token, our encryption is
faster than BlindBox and PrivDPI. ,e running time of
BlindBox is about 3.5x of OTEPI, and PrivDPI is about 3.8x of
OTEPI.

5.2. Middlebox

5.2.1. First Session. ForMB, the time required for encrypting
rules and the communication overhead for obtaining these
encryption rules are shown in Table 3.

,e high bandwidth consumption of BlindBox is due to
the garbled circuits. In OTEPI, bandwidth consumption is
significantly reduced compared to BlindBox, for the low
bandwidth consumption of OT in the rule setup. PrivDPI
only needs to send a few group elements per rule, which only
incurs very low bandwidth.

A comparison of the rule encryption time of the three
approaches is shown in Table 4. OTEPI has a high time
consumption because each rule requires m times OTs(64
or 128). BlindBox requires one garbled circuit per rule,
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while PrivDPI only requires one exponentiation. In
BlindBox, the communication transmission between MB
and C/S is a garbled circuit of the function F � AESckey(·),
where ckey is the key of the client-side to encrypt tokens.
Using the garbled F, MB encrypts rule Ri. ,en BlindBox
adds a random number salt and computes
AESAESckey(Ri)

(salt + t) as the ciphertext of rule Ri in its t-th
occurrence. In OTEPI, the computation costs mainly
come from the oblivious transfer. In both BlindBox and
OTEPI, the setup of encrypted rules has a high cost, so
there is a huge gap in time.

5.2.2. Subsequent Sessions. We compare the bandwidth
usages between OTEPI and BlindBox in case of multi-ses-
sions. We still use 3000 rules in the tests. ,e results are
shown in Table 5.

In subsequent sessions, OTEPI consumes less bandwidth
than BlindBox. BlindBox needs to generate a garbled circuit
for each rule in each session. PrivDPI transmits rules en-
cryption parameters in the first session. PrivDPI can reuse
the obfuscated rules set up in the first session in subsequent
sessions, and only sends one group element in each followed
session.

In terms of bandwidth consumption of multiple sessions,
though not as efficient as PrivDPI, OTEPI significantly
reduces the bandwidth consumption of establishing en-
cryption rules compared with BlindBox. Meanwhile, OTEPI
also achieves the reusable obfuscated rule as PrivDPI.

5.2.3. Accuracy of Tokenization. ,e accuracy of tokeniza-
tion impacts the recognition accuracy of the system. OTEPI,
BlindBox, and PrivDPI detect the matching when the token

matches a rule. In this set of experiments, rules from dif-
ferent rule sets are randomly inserted into the traffic, and the
accuracy of MBs using different tokenization methods in
matching is tested.

We use three rule sets in the accuracy test. ,e testfil-
ter(cn) [29] is a pure Chinese ruleset, and parentfilter [30] is
a parent filter ruleset, and testfilter(cn-en) [31] is a ruleset
mixed with Chinese and English rules. As shown in Figure 8,
for the parents-filtering rules, BlindBox has a higher accu-
racy rate than OTEPI. ,is is because parents-filtering rules
are long, and NLP tools divide a rule into several words, e.g.,
“zippyvideos” is divided into “zippy” and “videos,” which
affects the accuracy. For testfilter(cn) and testfilter(cn-en),
each Chinese character occupies 2-3 bytes under UTF-8
encoding. In BlindBox, rules shorter than the sliding win-
dow may be missed. As an example, the first token of text
“adult check” is “adult ch” under 8 byte window. ,e rule
“adult” will be missed.,e fixed-length tokenization is not as
accurate as NLP tokenization because sensitive words are
always short. ,e famous anonymous website 4chan, for
example, does not have any board with a name longer than
four characters and uses the shortened form of multisyllabic
words.

5.3. Summary. Compared with BlindBox, we significantly
reduced the communication bandwidth from 50GB to 82MB
in the rule encryption. Although our bandwidth consumption
is higher than PrivDPI, the rule encryption is faster than
PrivDPI. Without NLP tokenization, our token encryption is
2.6 times faster than PrivDPI. When NLP tokenization is used
for HTML or other plaintext data, OTEPI achieves 1.7x
speedup onBlindBox and 7.6x speedup onPrivDPI. In terms of
accuracy, OTEPI has a higher recognition rate than BlindBox
and PrivDPI for short rules and a slightly lower recognition rate
than BlindBox for parent-filtered URL rules.

Table 3: MB: bandwidth (first session).

Number of rules (8 bytes)
Bandwidth

BlindBox OTEPI PrivDPI
1 16.72MB 28.88KB 57.16 B
3000 50.16GB [13] 82.51MB 172.83KB

Table 4: MB: time (first session).

Number of rules (8 bytes)
Time

BlindBox (s) OTEPI (s) PrivDPI (s)
1 0.956 0.928 0.223
3000 294.495 267.249 1.021

Table 5: Session bandwidth.

Number of
sessions

BlindBox
(GB)

OTEPI
(MB) PrivDPI

1 50.16 82.51 49 B
5 250.845 82.526 0.291MB
10 501.69 82.542 0.292MB
20 1003.38 82.558 0.293MB [13]
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6. Discussion

Many directions can be developed in the future under the
scheme proposed in this paper. Advances in NLP technology
that produce fewer, more accurate, and fewer tokens can
improve the accuracy and computational performance of
OTEPI. ,e bandwidth overhead of oblivious transfer is still
more significant than that of PrivDPI when encrypting rules.
Finding or optimizing an oblivious transfer algorithm that
saves more communication traffic can bring better band-
width performance to OTEPI. OTEPI currently supports
middleboxes for DPI filtering only. ,e machine learning
approaches can also benefit from the multi-party security
computing. We believe that the general blueprint OTEPI
provides can extend the machine learning approach to
process the encrypted payloads.
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