
Research Article
Web-Cloud Collaborative Mobile Online 3D Rendering System

Chang Liu ,1 Huilin Song ,2 Ting Fang ,1 Qiaofeng Ou ,1 Geng Yu ,1 Tao You ,1

and Ming Ying 1

1School of Information Engineering, Nanchang Hangkong University, Nanchang, China
2School of International Economics and Trade, Jiangxi University of Finance and Economics, Nanchang, China

Correspondence should be addressed to Chang Liu; lcsszz83@gmail.com

Received 12 July 2022; Accepted 13 September 2022; Published 27 September 2022

Academic Editor: Yuanlong Cao

Copyright © 2022 Chang Liu et al. 'is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

'e collaborative online 3D rendering system proposed in this paper ensures the quality of user experience and protects online
rendering resources. In this system, the conditional generative adversarial network is used to calculate complex global illu-
mination information instead of rendering them on cloud servers. 'e web front-end generates high-frequency direct lighting
information in real-time and displays the final result which is a blend of front-end direct lighting information and back-end
indirect lighting information. Experiments show that our proposed system can improve the rendering quality of theWeb3D front-
end, ensure Web-Cloud load balance, and protect rendering resources online.

1. Introduction

In the era of the Internet+, with the development of Web3D
technology, more and more users are accustomed to the
flexibility of experiencing 3D content on various portable
devices, such as mobile phones, laptops, and head-mounted
devices. Web3D technology, which puts 3D content on Web
browsers, is supported by most mobile devices. 'is tech-
nology has a revolutionary impact on the new generation of
Web services and produces various critical applications in
the smart city, virtual tourism, virtual museums, e-com-
merce, etc.

'e advantages of Web3D are excellent cross-platform,
but its defect is limited rendering power. Web3D system
rendering capabilities are mainly determined by its core
graphics application programming interface (API)
“WebGL” and hardware configuration. 'e latest WebGL
2.0 technology version is based on OpenGL ES 3.0 designed
for embedded devices. 'erefore, it is difficult to achieve the
same rendering performance as on the personal computer
with high-level graphics API “OpenGL.” Besides, the loading
latency of three-dimensional (3D) model data on the Web
also poses a significant challenge, resulting in a long waiting

time, which significantly reduces the user’s quality of ex-
perience (QoE). In addition, the 3D model resources in the
Web3D application are directly transmitted to the Web
front-end, which brings the risk of resource leakage.

For this, the collaborative rendering system has
emerged to split the complex task of rendering the scene
between the cloud server and the Web client. As a col-
laborative rendering system, our CloudBaking [1, 2] is a
dedicated Web3D application-oriented dynamic scene
lighting and shadow rendering system intended to com-
pensate for the inadequate rendering capability of the
Web3D application. 'erefore, we design this system to
perform collaborative lighting and shadow rendering at
both the client and server for theWeb3D scene.'is system
assigns the high-complexity lighting and shadow rendering
to the cloud server, including soft shadow, global illumi-
nation, and so on. 'e web client performs the task of low-
complexity renderings, such as direct lighting and screen-
space ambient occlusion. 'erefore, the high-precision 3D
scene model is safely placed in the cloud, while the Web
front-end only needs a lightweight and encrypted low-
precision scene model, which reduces the risk of resource
leakage.

Hindawi
Security and Communication Networks
Volume 2022, Article ID 4748946, 12 pages
https://doi.org/10.1155/2022/4748946

mailto:lcsszz83@gmail.com
https://orcid.org/0000-0002-1213-9814
https://orcid.org/0000-0002-7113-5952
https://orcid.org/0000-0002-0135-819X
https://orcid.org/0000-0002-2001-1474
https://orcid.org/0000-0003-4279-6855
https://orcid.org/0000-0002-9568-5617
https://orcid.org/0000-0002-4483-0896
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4748946

2. Related Work

2.1. Web3D Technology. In 1997, the virtual reality markup
language (VRML) was officially released as an international
standard for Web3D, making it possible for 3D model files
[3] to be transferred over the Internet. In August 2004, the
X3D specification was released as an international standard
for Web3D. X3D integrated technologies such as XML, Java,
and streaming at that time in the hopes of increasing
processing power, rendering quality, and speed of trans-
mission. 'e Khronos Group released the WebGL 1.0
specification inMarch 2011.WebGL 1.0 is based onOpenGL
ES 2.0 and provides APIs for 3D graphics. 'e WebGL 2.0
specification was released in 2013, and, based on OpenGL ES
3.0, was supported for the first time in major Web browsers
such as Firefox, Chrome, and Opera [4].

In recent years, WebGL is used as a graphics engine in
many Web3D applications. Furthermore, many companies
have developed their own advanced rendering engines based
on WebGL, such as three. js and Babylon. [4]. Among these,
three. js is a 3D graphics real-time rendering library based on
JavaScript and WebGL. It has become gradually favored by
the majority of users because of its efficient and plug-in-free
Web-side rendering capabilities. Many Web3D rendering
systems use three. js, such as the Web page visualization
system proposed by Marion and Jomier [5], and the real-
time visualization and segmentation system of real-time
visual medical images developed by Jacinto et al. [6]. Sim-
ilarly, our system also uses the three. js engine.

2.2. Web3D System. Web3D systems have been widely used
in people’s daily life for their excellent cross-platform and
easy deployment. In a Web3D system, data are transformed
into visual 3D models and presented on the Web, stimu-
lating people’s interest. Virtual heritage (VH), which dis-
plays the digitization of culturally historical artifacts for
display on the Web browser, is a very typical use of Web3D.
Currently, website presentations cannot satisfy the extensive
and intensive experience of VH users. 'e VH websites
provide narrative knowledge, annotation experience, and
mobile environment experience to adapt to the changes [7].
Building information models (BIMs) have recently become
the mainstream visualizing data in the building field. To
display such data with high volume, variety, velocity, and
value attributes on Web browsers, researchers have created
an online Web3D system based on semantic analysis and
light-weighting technology [8].

Web3D technology has been widely used to build many
educational virtual environments (EVEs). In the beginning,
EVEs were used to create visual immersion-based virtual
scene display cases, such as the Webtop system [9]. Besides,
the researchers of EVEs are also concerned about user
engagement, interaction, and collaboration, such asWeb3D-
based surgical training simulators for the treatment of tri-
geminal neuralgia [10], virtual space-time environments
online [11], and virtual war online [12]. Users of the Web3D
system can experience immersion in education, training,
and tourism without leaving home at a low cost.

2.3.Web3DRendering System. A real-time rendering system
is the critical subsystem of a Web3D system, responsible for
the 3D scene’s loading and rendering. We classify Web3D
rendering systems into three categories based on which
“side” the rendering task occurs.

2.3.1. Local Rendering System. 'is system puts the main
rendering tasks on the Web browser. 'e server is re-
sponsible for storing and transmitting the 3D scene’s data
without participating in rendering tasks. 'e VH system [7],
virtual building system [8], and Webtop systems [9] men-
tioned above employ this kind of rendering system.

2.3.2. Remote Rendering System. 'is system puts the main
rendering task on the servers and delivers the rendered
results to the Web browser in the form of image steam. 'e
web client is only used to display the rendering results
without participating in rendering.'is system is very suited
for the Web3D application with high-quality rendering
performance demand [4]. By avoiding the direct loading of
3D models on web browsers, the system can protect 3D
models from illegal downloading by users [13].

2.3.3. Hybrid Rendering System. 'is system combines the
two systems described above and allows the Web-Client side
and cloud-server side to render collaboratively. Such a
system avoids the waste of front-end rendering resources
and guarantees the execution of expensive rendering tasks.
'is kind of system is widely used to study lighting rendering
in dynamic scenes.

'e Cloud Light system first proposed allocating lighting
rendering tasks [14]. Remote Asynchronous Indirect
Lighting (RADL) implements viewpoint-independent col-
laborative lighting rendering [15]. Shading Atlas Streaming
(SAS) [16] puts all shading calculations in the cloud to
complete and uses the Shading Atlas mechanism of Virtual
Texture for storage. Also, the Cloud Baking system (CB
system) proposed by ourselves is a typical hybrid rendering
system [1, 2].

2.4. GenerativeAdversarial Networks. 'eGAN represents a
deep learningmodel based on two sets of the neural network,
generator, and discriminator, for game-based mutual
learning to generate the desired output. Since the suggestion
of Goodfellow et al. was proposed [17], GAN has achieved
remarkable results in the areas of “image to image” trans-
lation [18, 19], style transfer [20], super-resolution [21], and
3D model generation [22, 23], etc. 'e research into the
image-to-image translation field provides us with a direct
motivation to replace the image-based pre-rendering
mechanism and the real-time rendering at the cloud server
with GAN. In doing so, the images generated by the cloud
server will be saved in the cloud server for training the
relevant GAN model, and the generative model ends up
being sent to the web client to generate the global illumi-
nation map (GI map).

2 Security and Communication Networks

3. System Architecture

Based on our CloudBaking (CB) [2], we present an intel-
ligent remote rendering system called the Intelligent
CloudBaking (ICB). For completeness, we offer the whole
pipeline and workflow of the ICB system and focus on the
ICB system’s advancement compared to the CB system. As
the CB system, the ICB system also consists of two separate
rendering systems: the Web-Client system and the Cloud-
Server system. 'e protocol for connecting the two systems
is also WebSocket, as shown in Figure 1.

Similar to the CB system, our system contains two
modules: cloud server and client. But we newly proposed a
GAN-based pre-rendering module, which transfers the pre-
rendering task from the CRT-buffers manager to the GAN.
'is solves the problem of cloud storage space limitation,
and the images stored in CRT-buffers provide a large
amount of input data for GAN training. 'e 3D Warping
technology based on the prediction mechanism is used to
eliminate the hole artifacts of the generated GI map. 'e
original 3D scene is preprocessed into LMP and then
progressively streamed to the client to generate DI-map.
Finally, the mixed image of DI-map and GI map is presented
to the user on the client. In addition, the resources obtained
by the cloud of this system, such as Light-Weight 3D Scene
Steam, encoded GI-map steam, and GAN for GI maps, have
been lightweight or encoded, which further improves the
protection of rendering resources.

3.1. Cloud-Server Subsystem. Like the CB system, ICB
lightweight the original 3D scene for reducing the initial
loading time [24] and progressively streams the lightweight
version to the Web-Client for rendering. To reduce the
initial loading time, each 3D scene is preprocessed into LPM
[24] and stored on the rendering server. 'e rendering
server progressively streams the LPM version to the client
renderer for rendering upon request from the client.

However, the cloud-sever no longer generates the GI
maps only like the CB but renders a cloud rendering texture
buffer (CRT-buffer) for the current scene. As shown in
Table 1, the CRT-buffer contains a group of images rendered
under the current viewing frustum, which can be divided
into two categories, including: (1) images whose pixel values
store the rendered scene with lighting and shadow infor-
mation (e.g., GI map, albedo map, and direct lighting map),
called L&S-images and (2) images whose pixel values record
the rendered scene geometry information (e.g., the depth
map and normal map), called G-images. When the CRT-
buffer has been rendered in Cloud-Server, we design an
octree-based CRT-buffers manager to store them rather than
discard them as in the earlier system. 'ese images stored in
Cloud-Sever can be used as input data to pre-render the GI
map (e.g., when the CRT-buffers store the GI maps under a
similar view), or to train the GAN for GI maps offline (e.g.,
when the CRT-buffer manager store the input data enough).
After storing many images in the CRT-buffer manager of
Cloud-Server, our system pre-renders the GI map by CRT-
buffers manager searching first instead of rendering it.

3.2. Web-Client Subsystem. 'e web client with good cross-
platform and extensibility is the primary interaction me-
dium. However, despite the continued improvement to
external equipment performance that carries the Web3D
applications, a compromise on the rendering capability
remains necessary for theWeb3D technique to embed on the
Web. 'erefore, to enhance the web client’s interactivity
while reducing the pressure from rendering, we restricted
the task of direct lighting rendering to the web client and
branded the results after rendering it as a direct-lightingmap
(DL map). Many GI maps either derived from rendering at
the cloud server or generated by the neural network at the
web client will be sent here at the time of scene editing by the
user at the web client. 'is is achieved in the following steps:
(1) 'e web client checks out whether there is a generative
network locally. (2) If the generative network does not exist,
then send GI map request to the cloud server and await
rendered GI map transmitted from the cloud server. (3)
Otherwise, GI map of the current viewpoint should be
generated by the generative model at the web client.
Meanwhile, the input images of the generated model need to
be rendered on the Web client, and we call these maps the
WRT-buffer (as shown in Table 2).

Both approaches to GI map generation will contribute to
interactive latency, with the only difference being that the
latency would occur at different phases. For the former one,
it would occur during the stages, including the cloud server
rendering stage, GI map encoding stage, and transmission
stage. 'e latter one would happen when the GI map is
generated by the generative model at the web client. Limited
by the interaction delay, the rendering system with view-
point correlation is incapable of ensuring consistency be-
tween the viewpoint in the rendered DL map and that in the
generated GI map, distortion is bound to arise from
blending the two maps at the web client. In the process of
prediction, a camera with a larger range of field-of-view
(FOV) than the web client was chosen for the cloud server,
for which the GI map information rendered in the cloud
server could have a wider range than the DL map infor-
mation rendered at the web client, and thus the predicted
probability of artificial hole generated to GI map would be
reduced. As revealed in the experiment, the higher the
camera’s FOV value for the training set of rendering, the
better the quality of a map generated by the neural network.
Finally, the blending GI map and DL map at the web client
(weighed averaging for pixels) could derive the rendered
frame as output for ultimate display.

4. Prefetch Strategy for 3D Warping

'e 3D warping method is a technique of warping a ref-
erence image to an arbitrary viewpoint by projecting pixels
on the reference image plane into the 3D space and
reprojecting them to the target image plane (see the Re-
sources [2] for more details). All 3D warping methods
produce hole artifacts, and our method is no exception. 'e
hole artifacts appear in our method because 3D models’
vertex cannot find the texture coordinates on a pixel-missing
reference image (GI map), as shown in Figure 2. Ourmethod

Security and Communication Networks 3

of eliminating hole artifacts, the Prefetch method, supple-
ments missing pixels by prefetching the new GI map gen-
erated by the predicted viewpoint.

In the field of Web3D technology, the camera simulates
the human eyes and becomes the primary source of inter-
active data in the Web3D system. Our Prefetch method
predicts the view frustum of the reference camera on the
cloud-server side after a change in TIL (TIL is the length of
interactive latency in our system). Assuming the network

environment is stable, TIL is relatively fixed. We take six
general directions, including forwarding, backward, left,
right, up, and down, as the basic predicted camera move-
ment directions. Within the TIL, our system calculates the
camera view frustums after the movements.'en we set up a
new camera whose frustum includes these view frustums, as
shown in Figure 3.

First, after the web front-end camera is shifted, the cloud
camera needs to include this range, and the cloud camera’s
view angle θt at any time t is shown as follows:

Original 3D Scene

Cloud Rendering
(if needed)

WebGL Rendering

3D warping based predictor

WRT-buffers Manager

Blending

GAN based GI map
Generator

Light-weighted
3D scene stream

WRT-buffer

Final frame

LI map

GI map

GAN for GI maps

Encoded
GI-map stream

GAN Trainer for GI
map

CRT-buffers Manager
based pre-renderer

(if stored the similar map)

CRT-buffers

CRT-buffer

GI map

Light-weighting
and streaming

H.264 Encoder and
streaming H.264 Decoder

GI map GI map

GI map
(if pre-render

failure)

Web-ClientCloud-Server

Figure 1: Intelligent Cloud Baking system architecture. Compared with the CB system, our system still contains two modules: cloud
rendering and web front-end rendering, but the difference is that we propose a pre-rendering module based on GAN. 'e new module
transfers the pre-rendering task from the CRT-buffers manager to GAN, which solves the problem of cloud storage space limitation and
makes full use of the image data stored in CRT-buffers for training GAN.

Table 1: CRT-buffer struct.

Attribute names Category Data type
Direct lighting map

L&S-images
Texture

Albedo map Texture
GI map Texture
Normal map G-images Texture
Depth map Texture
Direction Camera information Vector
Position Vector

Table 2: WRT-buffer struct.

Attribute names Category Data type
Direct lighting map L&S-images Texture
Albedo map Texture
Normal map G-images Texture
Depth map Texture

4 Security and Communication Networks

θt � 2π cot
max TIL ∗Vt.x

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, asp∗TIL ∗Vt.y

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯

Vt

.z⎛⎝ ⎞⎠ + α. (1)

Vt (x, y, z) refers to the moving speed vector of the front-
end viewpoint at any time t, asp refers to the aspect ratio of
the cross-sectional view of the cloud camera. 'is formula
first compares the moving distance’s influence in the hor-
izontal direction (x-direction) and the vertical direction (y-
direction) on the view angle, then gets the most significant
value and converts it into such an angle. In the same way,
after the web front-end camera is rotated, the new view angle
of the cloud camera is shown as follows:

θr � max α + TIL ∗Vr.x, arctan tan TIL ∗Vr.y + α(􏼁∗ asp(􏼁􏼈 􏼉.

(2)

Vr (x, y, z) is the Web front-end viewpoint’s rotation
speed. However, under the influence of translation and
rotation, the new view angle generated by the camera view
volume at the back end of the cloud does not need to be

superimposed simultaneously. It is only necessary to use the
largest of the two as the new viewing volume angle. 'e
maximum cannot exceed π, as shown in the following
formula:

θ � min π, max θt, θr􏼈 􏼉􏼈 􏼉. (3)

'e orientation of the viewpoint remains the same, and
the position of the viewpoint moves in the opposite direction
of the orientation, mainly to place the cloud viewpoint
behind the front viewpoint, as shown in the following
formula:

Pi.x � Po.x,

Pi.y � Po.y,

Pi.z � Po.z + Vt.z.

⎧⎪⎪⎨

⎪⎪⎩
(4)

Pi (x, y, z) refers to the position of the cloud viewpoint,
and Po (x, y, z) refers to the position of the front-end
viewpoint.

sponzagallery

Ground truthHole artifacts Hole artifacts Ground truth

Figure 2: GI map with hole artifact VS. 'e ground truth. 'e image processed by 3D Warping has many hole artifacts due to the lack of
pixel information, which is obviously different from the ground truth.

Translation

left

forward

right

back

Rotation

L R

Figure 3: Optimization strategy for 3D warping. 'is strategy uses the image of the rendered frame to infer the motion vector of the next
frame according to the corresponding position of the object in the scene in the pixel and predicts it according to the four directions of
movement and the two directions of rotation in the motion vector, which can effectively improve the accuracy of prediction.

Security and Communication Networks 5

5. GAN-based Pre-renderer

For GAN, the management of large-scale data sets for
training is very critical. 'erefore, we built the CRT-buffer
manager, which is an octree-based cloud server data
manager, as shown in Figure 4. 'e nodes of this tree
contain a set of viewpoint information in the rendered
scene and the image information rendered on these
viewpoints, as shown in Table 3. 'e depth of our octree is
determined by the scale of the scene, and we store infor-
mation in leaf nodes.

Before the construction of GAN, the pre-rendering task
mainly relied on the CRT-buffer manager, which was re-
alized on the assumption that the light source information in
the rendered scene did not change. 'e pre-rendering steps
are as follows: (1) Under the assumption that the conditions
are established, the system checks whether there is a leaf
node in the octree of themanager through the position of the
camera. (2) If the leaf node does not exist, our system will
directly request the cloud to render the GI map. (3) Oth-
erwise, the system will compare the current camera infor-
mation with all the camera information in the leaf node one
by one. (4) During the comparison process, if it is found that
there is a camera “similar” to the current camera’s position
and orientation in the leaf node, then directly take out the GI
map corresponding to the camera’s position and send it to
the Web front-end. Otherwise, the system will still request
the cloud to render the GI map. If the dot product of the
positions and directions in the two cameras are all below
threshold α (α < 0.1), we judge that the two cameras are
“similar”.

With the accumulation of data in the CRT-buffer
manager, the limitation of cloud storage space has become a
bottleneck problem for pre-rendering based on the CRT-
buffer manager. 'erefore, we built a GAN-based Pre-

Renderer mechanism, which uses the image generation
capabilities of GAN to pre-render, instead of pre-rendering
based on the CRT-buffer manager. Meanwhile, a large
number of images stored in the CRT-buffer manager provide
input data for the construction of GAN.

Our GAN-based Pre-Renderer is derived from our
proposed GIGAN system for the rendering of human organs
[25]. As shown in Figure 5, the GAN-based Pre-Renderer
consists of a Web client and a cloud server and employs
WebSocket for network communication. 'e cloud server
trains a conditional generative adversarial network (GAN)
to generate a global illumination map (GI map) using a
CRT-buffer rendered by the cloud renderer. After training
the network, our pre-rendering system sends the generated
model to theWeb client and then uses it to generate GI maps
on the Web client in real-time. Like the GIGAN system, the
GAN generator network in our pre-rendering system uses
the traditional U-net-based encoder-decoder framework
[26]. 'e discriminator network uses the Markovian patch
GAN structure [20]. 'eir input data is the image dataset in
our CRT-buffer, and we prove the validity of these data in
the subsequent chapter. In addition, multipath TCP
(MPTCP) is considered to be the most potential trans-
mission mechanism to meet the specific requirements of

Cloud rendering textures buffer (CRT-buffer)

Albedo map Direct lighting map Normal map Depth map GI map

C

C

Figure 4: Octree-based CRT-buffers manager. 'is management method has a positive effect on data access in large-scale scene datasets,
using the octagonal tree structure to manage the data in the entire scene, divide the scene data, and store the CRT-buffer data (Albedo maps,
Direct lighting map, Normal map, Depth map, and Gl map) in the scene to each leaf node, which can effectively improve the system
operation efficiency.

Table 3: Node struct of octree in CRT-buffer manager.

Attribute
names Category Data type

CRT-buffers L&S-images and camera
information

CRT-
buffer

Adjacent CRT-
buffer

Position Node information Vector
Index Int

6 Security and Communication Networks

multimedia transmission in a multi-homed wireless network
environment, which is the main reference for the future
transmission mechanism of our system [27].

However, the scene rendered by our system is uni-
versal, and the complexity and scale of the 3D models in
the scene exceed that of the human organ models rendered
in the GIGAN system. 'erefore, we optimized GAN to
improve the quality of generated images and shorten the
training time. 'e loss function of our GAN is shown as
follows:

L � La + Lc + Lp. (5)

Similar to the loss function of GIGAN, we employ the
adversarial loss function (La) based on the conditional
Wasserstein GAN [28] with gradient penalty to measure the
basic information’s difference between generated image and
ground truth in adversarial processing, as shown in the
following formula:

La(G, D) � Ec,y pdata(dg, y)[D(c, y)]

− Ec Pdata(c), z Pz(z)[D(c, G(z))]

+ λGPEc Pdata(dg),y pGP .

(6)

In this formula, we refer to the algorithm of WGAN-GP.
G is a generator, D is a discriminator, z∼pz (z) is a random
noise from a certain distribution (such as normal distri-
bution and uniform distribution), c, y∼pdata (c, y) are
images, respectively, from the source domain and the cor-
responding target domain, y∼pgp represents the distribu-
tion after linear interpolation between the real data
distribution and the generated data distribution. λ GP is a
hyperparameter. K represents the expected close value of the
gradient during training, and k� 1 here.
Ａnd we use the contention loss (Lc) to measure the

difference of each pixel between the generated image and the
ground truth (for details, please refer to the literature [25]),
as shown in the following formula:

Lc(G) � Ec,y∼pdata(c,y) ‖y − G(c, z)‖1􏼂 􏼃. (7)

In addition, we added a new perceptual loss function Lp
to the original loss function. We employ the perceptual loss
(Lp) to measure the contextual and structural information
between generated image and ground truth and apply a pre-
trained VGG19 network [29] to achieve this. 'e perceptual
loss can be formulated as follows:

LP(y, 􏽢y) �
1

CiHiWi

E
y∼pdata,􏽢y ∼ pgp

θi(y) − θi(􏽢y)
����

����2􏽨 􏽩. (8)

In formula 8, Ci, Hi, and Wi, respectively, represent the
channel number, width and height of the image features.
θi(y) indicates the i-th layer of the VGG19 network (after
activation). 'e new loss function plays an effective role in
ensuring the quality of the output GI map.

As shown in Figure 6, the image data set in the CRT-
buffer is collected as the input of the generator with skip
connections and then passes 5 downsampling layers and 5
upsampling layers before generating the GI map. Lea-
kyReLu is used as the activation function in the entire
downsampling process, while ReLu and tanh (the last
layer only) are used as the activation function in the
upsampling process. 'e discriminator is composed of 4
encoders and uses LeakyReLU as the activation function.
During training, the network randomly reads data from
the data set in batch size to 4, and G-D alternately uses
mini-batch stochastic gradient descent and Adam opti-
mizer with learning rate � 0.0001 to update the weight of
the network. Compared with GIGAN, the GAN training
time of our pre-rendering system is shortened by 20%–
30%.

6. Experimental Results and Analysis

'e test environment of our system is as follows: Our cloud
server is equipped with two Intel Xeon Silver 4114 2.2GHz
CPUs, one Nvidia Quadro P5000 GPU, and 128GB of RAM,
and the server is running Windows Server 2012. For the web
client, we use a laptop with an Intel Core i7-7700HQ
2.8GHz CPU, an Nvidia GeForce GTX1060M GPU, and

albedo map depth map GI map

normal mapDL map

Cloud Server Web

WEB
SOCKET

generated
GI map

DL map

WebGL rendererCloud renderer Generative network (only once)

train network

Le�:Blend DL with GI Right:only DL

GAN for rendering

GI map (every frame)

a�er training

Figure 5: GAN-based Pre-Renderer mechanism. 'e cloud server transmits the generative model to the web client only once, which
changes the previous model in which the cloud server needs to render the GImap and transmit it to the web client every frame.'en the web
client can generate the GI map locally in real-time.

Security and Communication Networks 7

8GB of RAM.'e laptop runsWindows 10 and uses Google
Chrome version 71 as a web browser.

For verifying the rationality of the input of our GAN and
the effectiveness of this system, we conducted the following
test: (1) First, we enumerate a combination of multiple types
of image data as the input data of the generative confron-
tation network. (2) In the cloud back-end, we generate
various GANs based on these different sets of input data. (3)

We pass these GANs to theWeb front-end and generate new
GI maps based on them on this end. (4) Finally, we test the
image quality of these GI maps generated by different GANs
and compare them.

Direct lighting information is part of global illumination,
and the albedo is directly involved in the calculation of
global illumination. 'erefore, we use the DL map and
albedo map data storing these two information as the most

32

512

512 512

Generative Network G

32
2

16
2

64
2

12
82

32
2

16
2

82

64
2

12
82

25
62

25
62 (w

id
th

 x
 h

ei
gh

t)

512

512

256

256

128

128

64

channel)

512

12

generated GI

conditional input

12

conv_transpose,ReLU copy and concatenate
conv_transpose,tanhconv,leakyReLU

64
2

64
2

12
82

25
62

256

output

1
128

64

Discriminative Network D

ground truth generated GI

conditional input

or

conv, leakyReLU
conv

Figure 6: Overall conditional generative adversarial network architecture. 'e generator network adopts a 5-layer U-NET structure, in
which the convolution and deconvolution operations can be regarded as the process of encoding and decoding. And the discriminant
network adopts a 4-layer full convolutional network.

8 Security and Communication Networks

important GAN input data to generate the final GI map. In
addition, we also selected position map, depth map, nor-
malWorld map (normal map in world space), and nor-
amlView map (normal map in view space) from the
G-buffers data. We take the random combination of the
pictures elected in G-buffers and the previous two pictures as
GAN’s input configuration, as shown in the dotted box in
Figure 7. In the end, we get multiple sets of generative
adversarial network models.

We judge the pros and cons of our GANs’ model by
testing the quality of the final generated GI map. 'is paper
uses structural similarity (SSIM) and mean square error
(MSE) to evaluate the similarity between the generated
image and the real image.'e formermeasures the similarity
by comparing the brightness, contrast, and structure of the
two images, while the latter measures it from the error
between the corresponding pixels of the two images. Zinner
et al. proposed that the image quality is acceptable when
SSIM is greater than 0.88 [22], so our paper uses 0.88 as the
image quality threshold and sets both SSIM and MSE to be
calculated in the image’s RGB color space (range 0–255). In
addition, we make the cameras in the test set move along a

different path from the training set to test the generalization
of the model. In Figure 7, different colors represent different
input configurations. 'e horizontal axis represents the
number of iterations of the network, and the vertical axis
represents the SSIM (higher is better) or the MSE (lower is
better) between the generated image and the real image.

As shown in Figure 7, most GANs obtained after a small
number of training iterations can make the generated im-
age’s quality exceed the basic threshold. We judge the direct
illumination information occupies a higher ratio in the
global illumination image, which enables GAN to quickly fit
and generate a high-quality GI map, and all our input
configurations include this information. After 20,000
training iterations, the changes of SSIM and MSE between
the real image and the image generated by most GANs have
stabilized. 'erefore, we consider 20,000 times is the ideal
threshold for our GAN training times.

In addition, based on the viewpoint correlation of our
system, we use the normal map of the view space as the input
data of GAN. But the experimental results prove that using
the normal map of world space as the input data of GAN can
make the final generated image quality higher, which means

5

80

60

140

120

gallery

M
SE 100

10 15
Iterations (x 1000)

20 25 30 5

100

175

150

sponza
M

SE 125

10 15
Iterations (x 1000)

20 25 30

5

0.94

0.97

0.96

gallery

SS
IM

0.95

10 15
Iterations (x 1000)

20 25 30 5

0.90

0.94

sponza

SS
IM 0.92

10 15
Iterations (x 1000)

20 25 30 5

0.90

0.88

0.92

0.94
fireplace

SS
IM

10 15
Iterations (x 1000)

20 25 30

5

100

250

200

fireplace

M
SE

150

10 15
Iterations (x 1000)

20 25 30

albedo,DL,position
albedo,DL,normalWorld,position
albedo,DL,normalWorld,depth,position
albedo,DL,normalWorld,depth

albedo,DL,normalWorld
albedo,DL,normalView,position
albedo,DL,normalView,depth,position
albedo,DL,normalView,depth

albedo,DL,normalView
albedo,DL,depth,position
albedo,DL,depth
albedo,DLA

B
C
D

E
F
G
H

I
J
K
L

Figure 7: Network iterations VS. SSIM and MSE in different input configurations (test scene is sponza). We can compare the difference
between GI map generated by different GANs and Ground truth under the same number of iterations.

Security and Communication Networks 9

that the normal map of world space has more effective
information than the normal map of view space. Note that
the data between the three pairs of different input config-
urations in Figure 7 illustrate the above results, including E
and H, F and I, G and J.

Finally, we found that among all input configurations,
the generated image obtained by the GAN obtained by the Ith
input configuration (albedo, DL, normal, and depth) has the
highest SSIM and the lowest MSE value, and the entire
training process is relatively stable.'erefore, we use the I-th
input configuration, the final results are shown in Figure 8.
'ese results show that the GI maps generated by this GAN
are very close to the real GI maps.

7. Conclusion

'is paper attempts to combine cloud rendering technology
with artificial intelligence technology. We propose a

complete architecture of a smart cloud rendering system for
Web3D based on the CloudBaking system and GAN. Our
system uses a trained neural network to generate rendered
images and eventually partially replaces the hardware’s
rendering capabilities. Experimental results prove that the
GAN-based intelligent rendering system for Web3D can
complete rendering tasks while saving and protecting ren-
dering resources.

Although the use of GAN effectively improves the speed
of real-time rendering, neural network cannot completely
solve the inevitable delay. In order to reduce latency, the
architectural optimization of cloud rendering systems is
usually considered. At present, 5G network and edge
computing technology are fully utilized to optimize the
architecture of cloud rendering system, which reduces the
interaction delay of the system. In addition, the training
process relies on the accumulation of a large number of pre-
rendered images, which is also a challenge to storage space.

Generated GI map Real GI map Differences

Gallery

Sponza

Fireplace

Scene name

Figure 8: Generated GI map VS. Real GI map.'e difference between the differential GI map and the Real GI map pixel-by-pixel difference
operation can be more intuitively recognized.'e darker the color, the smaller the difference between the corresponding pixels'ese results
show that the generated GI maps are very close to the real GI maps.

10 Security and Communication Networks

And the use of different neural network structures has a
crucial impact on the result. 'ese are the areas that can be
improved in our future work.

Data Availability

'e data used to support the findings of this study can be
obtained from the corresponding author upon request.

Conflicts of Interest

'e authors declare that they have no conflicts of interest.

Acknowledgments

'is work was part of the research supported by the Science
and Technology Program of Educational Commission of
Jiangxi Province, China (DA202104172), the Innovation and
Entrepreneurship Course Program of Nanchang Hangkong
University (KCPY1910), and the Teaching Reform Research
Program of Nanchang Hangkong University (JY21040).

References

[1] C. Liu, J. Jia, Q. Zhang, and L. Zhao, “Lightweight websim
rendering framework based on cloud-baking,” in Proceedings
of the 2017 ACM SIGSIM Conference on Principles of Ad-
vanced Discrete Simulation, pp. 221–229, Singapore, May
2017.

[2] C. Liu, W. T. Ooi, J. Jia, and L. Zhao, “Cloud baking: col-
laborative scene illumination for dynamic Web3D scenes,”
ACM Transactions on Multimedia Computing, Communica-
tions, and Applications, vol. 14, no. 3, pp. 1–20, 2018.

[3] L. Chittaro and R. Ranon, “Web3D technologies in learning,
education and training: Web3D technologies in learning,
education and training: Motivations, issues, opportunitieso-
tivations, issues, opportunities,” Computers & Education,
vol. 49, no. 1, pp. 3–18, 2007.

[4] A. Evans, M. Romeo, A. Bahrehmand, J. Agenjo, and J. Blat,
“3D graphics on the web: 3D graphics on the web: A survey
survey,” Computers & Graphics, vol. 41, pp. 43–61, 2014.

[5] C. Marion and J. Jomier, “Real-time collaborative scientific
WebGL visualization with WebSocket,” in Proceedings of the
17th International Conference on 3D Web Technology,
pp. 47–50, California, CL, USA, July 2012.

[6] H. Jacinto, R. Kéchichian, M. Desvignes, R. Prost, and
S. Valette, “A web interface for 3D visualization and inter-
active segmentation of medical images,” in Proceedings of the
17th International Conference on 3D Web Technology,
pp. 51–58, California, CL, USA, Auguest 2012.

[7] H. Rahaman and B. K. Tan, “Interpreting digital heritage: a
conceptual model with end-users’ perspective,” International
Journal of Architectural Computing, vol. 9, no. 1, pp. 99–113,
2011.

[8] X. Liu, N. Xie, K. Tang, and J. Jia, “Lightweighting for Web3D
visualization of large-scale BIM scenes in real-time,”
Graphical Models, vol. 88, pp. 40–56, 2016.

[9] T. Mzoughi, S. D. Herring, J. T. Foley, M. J. Morris, and
P. J. Gilbert, “WebTOP: a 3D interactive system for teaching
and learning optics,” Computers & Education, vol. 49, no. 1,
pp. 110–129, 2007.

[10] Y. Li, K. Brodlie, and N. Phillips, “Web-based VR training
simulator for percutaneous rhizotomy,” in Medicine Meets
Virtual Reality 2000, pp. 175–181, IOS Press, Amsterdam,
Netherlands, 2000.

[11] V. Ramasundaram, S. Grunwald, A. Mangeot,
N. B. Comerford, and C. Bliss, “Development of an envi-
ronmental virtual field laboratory,” Computers & Education,
vol. 45, no. 1, pp. 21–34, 2005.

[12] C. Liu, J. Jia, Y. Ge, and N. Xie, “Web3D online virtual ed-
ucation platform for touring huangyangjie battlefield scenario
over internet,” in Proceedings of the International Conference
on Technologies for E-Learning and Digital Entertainment,
pp. 63–76, Springer, 2016.

[13] D. Koller, M. Turitzin, M. Levoy et al., “Protected interactive
3D graphics via remote rendering,” ACM Transactions on
Graphics, vol. 23, no. 3, pp. 695–703, 2004.

[14] C. Crassin, D. Luebke, M. Mara et al., “CloudLight: a system
for amortizing indirect lighting in real-time rendering,”
Journal of Computer Graphics Techniques, vol. 4, no. 4,
pp. 1–27, Hangzhou, China, April 2015.

[15] K. Bugeja, K. Debattista, and S. Spina, “An asynchronous
method for cloud-based rendering,” :e Visual Computer,
vol. 35, no. 12, pp. 1827–1840, 2019.

[16] J. H. Mueller, P. Voglreiter, M. Dokter et al., “Shading atlas
streaming,” ACM Transactions on Graphics, vol. 37, no. 6,
pp. 1–16, 2018.

[17] I. Goodfellow, J. Pouget-Abadie, M. Mirza et al., “Generative
adversarial nets,” Advances in Neural Information Processing
Systems, vol. 27, 2014.

[18] P. Isola, J. Y. Zhu, T. Zhou, and A. Efros, “A Image-to-image
translation with conditional adversarial networks,” in Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1125–1134, Honolulu, HI, USA, July
2017.

[19] Z. Yi, H. Zhang, P. Tan, andM. Gong, “Dualgan: unsupervised
dual learning for image-to-image translation,” in Proceedings
of the IEEE International Conference on Computer Vision,
pp. 2849–2857, Venice, Italy, October 2017.

[20] C. Li and M.Wand, “Precomputed real-time texture synthesis
with Markovian generative adversarial networks,” in Pro-
ceedings of the European Conference on Computer Vision,
pp. 702–716, Springer, Amsterdam,'e Netherlands, October
2016.

[21] C. Ledig, L. 'eis, F. Huszár et al., “Photo-realistic single
image super-resolution using a generative adversarial net-
work,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4681–4690, Honolulu, HI,
USA, July 2017.

[22] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum,
“Learning a probabilistic latent space of object shapes via 3d
generative-adversarial modeling,” Advances in Neural Infor-
mation Processing Systems, vol. 29, 2016.

[23] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y. G. Jiang,
“Pixel2mesh: generating 3d mesh models from single rgb
images,” in Proceedings of the European Conference on
Computer Vision (ECCV), pp. 52–67, Munich, Germany,
September 2018.

[24] L. Wen, J. Jia, and S. Liang, “LPM: lightweight progressive
meshes towards smooth transmission of Web3D media over
internet,” in Proceedings of the 13th ACM SIGGRAPH In-
ternational Conference on Virtual-Reality Continuum and its

Security and Communication Networks 11

Applications in Industry, pp. 95–103, Shenzhen China, No-
vember 2014.

[25] N. Xie, Y. Lu, and C. Liu, “Web3D client-enhanced global
illumination via GAN for health visualization,” IEEE Access,
vol. 8, Article ID 13281, 2019.

[26] O. Ronneberger, P. Fischer, and T. Brox, “U-net: convolu-
tional networks for biomedical image segmentation,” in
Proceedings of the International Conference on Medical Image
Computing and Computer-Assisted Intervention, pp. 234–241,
Springer, Munich, Germany, October 2015.

[27] Y. Cao, L. Zeng, Q. Liu, G. Lei, M. Huang, and H. Wang,
“Receiver-assisted partial-reliable multimedia multipathing
over multi-homed wireless networks,” IEEE Access, vol. 7,
Article ID 177689, 2019.

[28] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gen-
erative adversarial networks,” in Proceedings of the Interna-
tional Conference on Machine Learning, pp. 214–223, Sydney,
Australia, August 2017.

[29] C. Ledig, L. 'eis, F. Huszár et al., “Photo-realistic single
image super-resolution using a generative adversarial net-
work,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4681–4690, Honolulu, HI,
USA, July 2017.

12 Security and Communication Networks

