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Federated learning (FL) has been a popular distributed learning framework to reduce privacy risks by keeping private data locally.
However, recent work (Hitaj 2017) has demonstrated that sharing model’s parameter updates still leaves FL vulnerable to internal
attacks in its training phase. Existing works cannot detect such attacks well. To address this problem, we propose a novel and
lightweight detection scheme which selects and analyzes just a few parameter updates of the last convolutional layer in the FL
model. Extensive experiments demonstrate that our proposed detection scheme can accurately and efficiently detect the malicious
participant in near real time for a scenario with a malicious participant.

1. Introduction

With the rapid development of artificial intelligence, the
availability of large amounts of high-quality data has become
an important factor restricting its further development. In
this context, the demand for data sharing and integration is
becoming stronger and stronger. However, traditional
machine learning methods need to concentrate training data
in a certain machine or a single data center, which greatly
increases the privacy risk in the data fusion process.
Therefore, federated learning came into being, and it has
received extensive research and attention from industry and
academia. Federated learning has been widely used in sce-
narios where privacy is important and sensitive, including
financial, medical, electricity, etc. Federated learning relies
on the collaboration of many participants, and each par-
ticipant can be an IoT device holding its local data.
Existing study [1] has shown that although federated
learning can significantly reduce the risk of data privacy
leakage of each participant in the distributed learning
process, attackers can still steal data from other participants
by deploying GAN locally. In addition, many researchers
have conducted research on attacks against federated

learning. For example, Wang [2] deployed a GAN on the
computing center server-side to steal the private data of a
specific user. In other work, poisoning attack is delicately
conducted on the federated learning model [3-5].

In order to resist these attacks, a large amount of work on
privacy-preserving federated learning has been produced.
Zhao et al. [6] proposed a scheme to defend against poi-
soning attacks in federated learning through GAN. Hayes
et al. [7] provide a mitigation scheme for poisoning attacks
in federated learning through adversarial training. There are
also many studies on federated learning privacy protection
based on differential privacy [8-10] and many pieces of
research on security and privacy in federated learning based
on cryptography [5, 11-15]. Mothukuri et al. [16] have done
a detailed investigation of the federated learning privacy and
security research. Although these federated learning privacy
protection efforts have yielded considerable results and the
defense effects against most attacks are obvious, the defense
against [1] is still insufficient, and the existing work [17] has a
large delay in the detection of the attack. When the detection
is completed, the attacker may have stolen the target data.
Also, their work requires collecting the updates of all the
parameters in the last fully connected layer and needs to
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train two autoencoders to extract features from the collected
data. Thus, their work has a lot of room for improvement in
terms of efficiency and real time.

In this work, we propose a new detection scheme for
client-side GAN-based attacks in federated learning, where
the attacker is one of the participants and deploys a GAN
locally to mimic the training data of other participants. This
scheme analyzes the updates of bias of the last convolutional
layer of the model, quickly detects the abnormality of the
updates during the federated learning process, and locates
the malicious participants.

Our key contributions are as follows:

(1) We find the fact that a GAN-based attack will cause
the updates of specific parameters of the model to
show general anomalous features. We not only locate
the specific parameters but also summarize the
anomalous features and provide an analysis of the
occurrence of these anomalous features.

(2) We propose an anomaly detection algorithm to
automatically identify the malicious participants by
detecting the previously found anomalous features.

(3) We empirically evaluate our detection on MNIST
and GTSRB dataset against GAN-based attacks. The
results show our detection is not only accurate but
also efficient and real time.

2. Related Work
2.1. Attacks in Federated Learning

2.1.1. Poisoning Attacks. Poisoning attacks mainly refer to
malicious participants manipulating the predictions of the
machine learning model by poisoning the training set or the
model updates in the training process. In federated learning,
attackers have two ways to carry out poisoning attacks: data
poisoning and model poisoning [18]. Data poisoning means
that the attacker contaminates the samples in the training
set, such as adding wrong labels or biased data, to reduce the
quality of the data, thereby affecting the final trained model
and destroying its usability or integrity. Jiang et al. [19] make
the parameter values of the learning model close to the
values they expect and at the same time, make the model
output wrong predictions for specific test samples. Chen
et al. [20] adopt a hybrid auxiliary injection strategy by
injecting a small number of poisoned samples into the
training set to obtain more than 90% of the attack success
power. In order to increase the attack breadth, Muoz-
Gonzalez et al. [21] propose a new poisoning algorithm
based on the idea of antigradient optimization, which can
target the gradient-based training process in a wider range of
learning algorithms, including neural network (NN) and
deep learning(DL) architecture.

2.1.2. Privacy Leakage. Federated learning allows partici-
pants to conduct training on their local dataset, and one
entity’s local dataset cannot be accessed by another; thus a
certain degree of privacy and security can be guaranteed.
However, this kind of security is not absolute, and there is
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still the risk of privacy leakage. A malicious participant can
deduce the sensitive information of other participants from
the shared parameters. Wang et al.explore user-level privacy
leakage against federated learning by the attack from a
malicious server. They propose a generic and practical re-
construction attack based on Generative Adversarial Net-
work(GAN), which enables a malicious server to not only
reconstruct the actual training samples but also target a
specific client and compromise the user-level privacy [2].
Hitaj et al. propose a similar attack, where the attacker exists
in the participants [1], and our work is focused on this work.

2.2. Defenses in Federated Learning

2.2.1. Defenses against Poisoning Attacks. There are already a
variety of defense mechanisms to resist data poisoning at-
tacks. Nathalie et al. use contextual information such as
origin and transformation to detect toxic sample points in
the training set [22]. They divide the entire training set into
multiple parts and compare the training effects of each part
of the data to identify which part of the data performs the
most abnormally. Liu et al. propose a defense mechanism to
combat poisoning attacks in regression [23]. This technology
integrates improved robust low-rank matrix approximation
and robust principal component regression, providing a
powerful performance guarantee. As for model poisoning,
there are usually two detection methods for abnormal pa-
rameter updates [24]. The first one is through accuracy
testing. The server first uses the parameter updates from
participant i to calculate new parameters W, then uses the
parameter updates from all the other participants to cal-
culate new parameters W,. Next, W, and W, are used as
the model parameters, respectively, to compare the accuracy
of the two models on the validation set. If the accuracy of the
model using Wy, is significantly lower than that using W;,,
it is assumed that W, is abnormal. Another method is to
directly compare the numerical statistical differences be-
tween the parameter updates §,, 9,, . . ., §,, uploaded by each
participant. When there is a significant statistical difference
between the parameter updates §; reported by one partici-
pant and that reported by all the other participants, the
anomaly of §; is predicted.

2.2.2. Defenses against Privacy Leakage. There are a few
defense schemes against privacy leakage. Lu et al. incor-
porate LDP into gradient descent local training process to
protect the updated models of each participant [10]. Anono
Y et al. propose a new system that utilizes additively ho-
momorphic encryption to protect the gradients against the
curious server [5]. However, little work has been done about
the detection against GAN-based attacks in federated
learning. Differential privacy does not apply to this attack,
while homomorphic encryption faces the problem of effi-
ciency. Xiong et al. [17] propose a method that utilizes the
parameter updates uploaded by participants during training
to detect the malicious participant. They train two
autoencoders to extract features from the collected data.
Finally, unsupervised learning is used to cluster the data into
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normal ones and abnormal ones. Different from their work,
we only concentrate on a few parameters in the last con-
volutional layer and use a light-weighted statistic based
method to find out the malicious participant. Compared
with their work, our detection mechanism is more efficient
and real time.

3. Approach

3.1. Threat Model. Our threat model follows Hitaj et al.’s
work [1], which can be described in detail as follows.

In typical federated learning, there are some participants
and a parameter server. They agree on a common global
model, including the type and the architecture of the model.
They also agree on the data labels held by each participant.
The parameter server is authoritative and will not com-
promise with any attacker. The attacker pretends to be an
honest participant in the federated learning protocol but
tries to steal the information of a specific class, which he does
not own.

The attacker will attack as follows. First, he downloads
the global parameters from the parameter server to update
his local model. Then he trains a GAN locally to generate
samples of target labels. The GAN consists of a generator and
a discriminator. The goal of the generator is to fool the
discriminator into believing that the generated samples are
drawn from the target label, while the goal of the dis-
criminator is to distinguish whether the samples are fake and
classify the real samples as accurately as possible. The
downloaded model is used as the discriminator while the
generator is defined by the attacker. After the training of
GAN is finished in the current round, the attacker will
deliberately mislabel the samples generated by the generator
as a label that only he owns. Then the global model will get
confused and has to try harder to improve the accuracy on
the target label, so more details about the target label will be
revealed in the following training process, which will help
the attacker generate samples that looks more similar to
those of target label. In this paper, we consider a more clever
attacker who starts the attack only when the global model’s
accuracy is over a threshold such as 0.85. Delaying the attack
will help the attacker learn information about target label
faster and thus evade being detected easier.

3.2. Overview. We propose a novel, accurate and efficient
method to detect the potential malicious participant almost
in real time. The intuition is that if there is a malicious
participant in the federated learning system, the parameter
updates uploaded by the attacker should be quite different
from those uploaded by normal participants since the
malicious participant injects some fake samples into his local
training set and mislabels the fake samples deliberately.
However, there are often millions of parameters in a ma-
chine learning model, and it is not practical to observe all the
parameter updates during training. So we use some strategy
to pick out a few typical parameters for each local model and
only observe updates of these parameters in the following
training process. Our method only utilizes a very tiny

portion of parameter updates uploaded by each participant,
saving a lot of computing overhead and making the fol-
lowing data analysis easier. Overall, our method can be
divided into feature selection and anomaly detection.

3.2.1. Feature Selection. Considering that the collected
parameter updates are too large to analyze, we managed to
pick out the critical updates to reduce the size of data.
Although Xiong et al. [17] also managed to reduce the size
of collected data, the processed data is still very large and
needs to be analyzed through deep neural networks. Dif-
ferent from their work, we select the biases in the last
convolutional layer as the critical parameters and con-
centrate on the updates of the biases. One may wonder why
not consider other parameters such as the weights and
parameters from other layers, and here is the reason.
Theoretically, compared with other layers, the last con-
volutional layer contains the most abundant features except
the full-connected layers. However, the number of pa-
rameters in the full-connected layers is much more than
that of convolutional layers, and it means more compu-
tational overhead. As for weights vs. biases, according to
the rules of backpropagation, the updates of weights rely
more on the input of the current layer, causing the updates
to be more unstable and harder to analyze. In fact, we
tentatively tried both weights and biases from all the layers
and found biases from the last convolutional layer perform
best. Generally, the parameters in a convolutional layer are
composed of weights and bias, and the number of biases is
equal to the number of filters in this layer, which is usually
less than one thousand. The number of parameters we
utilized is less than one percent of that of Xiong et al. [17];
thus, data can be analyzed without deep neural networks,
saving a lot of computing overhead. To further reduce the
size of data, we proposed a metric called parameter change
rate, which is a very important feature for the following
anomaly detection.

3.2.2. Anomaly Detection. First, we analyze the reduced data
with Python and manage to find out the anomalous features.
Then an anomaly detection algorithm is proposed to au-
tomatically detect the anomalous features. The detection
algorithm is run by the parameter server each round and it is
based on statistics of the reduced data. There are some
hyperparameters in the algorithm and they may vary by
scenario and dataset. The details of the anomaly detection
algorithm will be described in the following section.

3.3. Detection Workflow Details

3.3.1. Implementation of Feature Selection. We start col-
lecting data from the beginning of training and try to find
out the malicious participant with the collected data in real
time. We only focus on updates of all the biases in the last
convolutional layer from each participant in each round. Set
m as the number of participants, p as the number of filters in
the last convolutional layer. Suppose the biases for



participant i in round j before training is B;; = {by, b,
...,b,}, after training is BiJ'- = {bl',b', . ,b;}. Then the
updates of biases collected from participant i in round j can
be repressnted as AB;;=B;;-B;= {b,-b, b,-b,,

..»b, — b,}. However, we do not care about the update of
every single bias. Instead, we focus on the overall update of
all the p biases. Thus, we propose a metric called parameter
change rate to measure the overall magnitude of update of
the p biases, which is defined as follows:

A L v
G I R Y

It is proved to be a critical feature to indicate the
anomalous features of abnormal updates. For each partic-
ipant i, we will get a sequence s; = ﬁ’ip Tigs-- s riq}, where g
is the number of training rounds. The m sequences
S=5,,8...,5, will be the final data to analyze. The final
data is a two-dimensional matrix of size m by g, which can be
plotted in the same figure as m curves.

1

3.3.2. Implementation of Anomaly Detection. First, we an-
alyze the final data on different datasets and different sce-
narios with Python and manage to find some general
anomalous features. For each dataset, we conduct repeated
experiments on scenarios with and without a malicious
participant. For the data collected in each experiment, we plot
the sequence corresponding to participant i as a curve in the
rectangular plane coordinate system, with the x-axis being the
index of training rounds and the y-axis being the parameter
change rate. For the convenience of comparison, we plot m
curves in the same figure. Figures 1 and 2 show the com-
parison of interested parameter updates with/without a
malicious participant on the MNIST dataset and GTSRB
dataset, respectively. It is worth mentioning that these figures
do not show the experimental results. Instead, their role is to
show the type of anomalous features and to make the de-
tection algorithm to be proposed next easier to understand.
Through a large number of observations and analyses, we
draw the following conclusions. Fisrt, in the scenario without
any malicious participant, the trend of all the m curves are
very similar. They all descend sharply from the same initial
value 1 and then converge gradually to close to 0, with many
overlaps among the curves. Second, in the scenario with a
malicious participant, the curves corresponding to normal
participants keep the same regular as the scenario without any
malicious participant, while the curve corresponding to the
malicious participant behaves differently. To be specific, there
are two kinds of anomalous features shown from the figures.
The first anomalous feature is that the anomalous curve is
significantly higher than other curves. The second anomalous
feature is a sudden spike in the mid of one curve, while the
curve behaves the same as other normal curves at other times.
Next, we present our explanation about the occurrence of
these two anomalous features.

As for the first anomalous feature, it lasts from the
beginning of the attack to the end of the training. This is
because the attacker keeps generating new fake samples
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and adding them to his training set, the convergence speed
of parameters is affected, leading the parameter change
rate of the attacker obviously higher than others since the
attack begins. As for the second anomalous feature, the
spike occurs in the early rounds of the attack. This is
because the attacker mixed his training set with some
mislabeled fake samples which are unseen in the previous
training. The loss of the attacker’s local model will surge,
which is shown in Figures 3 and 4. As a result, the pa-
rameter updates of the attacker become abnormally large
in the early rounds of the attack to bring the loss back to
normal. However, the above two anomalous features do
not usually appear together. The complexity of the target
data may decide which kind of anomalous features will
appear. If the target data is complex, such as GTSRB used
in our work, the attacker will have a hard time teaching his
local model to classify the generated fake samples cor-
rectly; thus, the parameter change rate of the attacker will
always be much higher than others. On the contrary, if the
target data is simple, such as MNIST used in our work, the
attacker’s model will adjust itself to the generated fake
samples quickly; thus, the parameter change rate will just
be obviously higher than others in the first several rounds
since the attack begins.

Finally, we propose an anomaly detection algorithm to
detect the anomalous features analyzed above. It only utilizes
the comparison of parameter change rate and its related
statistical information. The detection of the second anom-
alous feature is very similar to outlier detection in time
series, although the data we collected is quite different from
time series. There is a lot of related work on anomaly de-
tection for time-series data [25-27]. Inspired by the idea of
employing a window-based forecasting model for time-se-
ries data [27], we develop our anomaly detection algorithm
with a sliding window used. However, different from the
sliding window in [27], which is used to predict future
values, our sliding window is used to calculate a statistic in it.
Our malicious participant detection algorithm works as
shown in Algorithm 1. First, we try to detect the first
anomalous feature by directly comparing each participant’s
parameter change rate with others. If the parameter change
rate of participant j is much higher than others, i.e., higher
than Gt-Thrl times the mean of others’ parameter change
rate, and this situation lasts for consecutive Rd-Thr rounds,
then participant j will be judged as malicious. If we fail to
detect the first anomalous feature at the current round, we
will immediately start to detect the second anomalous
feature by comparing the maximum fitted slope of points in
the sliding window of participant j with others. If the
maximum fitted slope of participant j is greater than Gt-
Thr2 times the mean of others’ maximum fitted slope, then
we conclude that participant j is malicious. The reason why
we divide the detection algorithm into two parts is that there
are two different anomalous features found from the col-
lected parameter change rate. They are so different that it is
hard to find a unified method to detect two anomalous
features simultaneously. So we divide the detection algo-
rithm into two parts to detect two anomalous features,
respectively. One may worry that it will cause false positives
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FiGure 1: Comparison of interested parameter updates with/without a malicious participant on MNIST dataset. (a) with a malicious

participant, (b) without a malicious participant.
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F1GUre 2: Comparison of interested parameter updates with/without a malicious participant on the GTSRB dataset. (a) With a malicious

participant, (b) without a malicious participant.

easily. However, as long as the second part is designed well
and the hyperparameters are chosen appropriately, few false
positives will be caused. In fact, the second part eliminates
false negatives rather than causing false positives. It is worth
mentioning that there are 6 hyperparameters in the algo-
rithm and we introduce them brifely in Table 1. One may
doubt whether these hyperparameters are necessary, and
here is the explanation. If we remove either Rd-Thr or Gt-
Thrl, the algorithm will become too radical and cause lots of
false positives. As for Win-Size and SI-Step, they are in-
dispensable parameters for a sliding window. Gt-Thr2 and

Sp-Thr control the allowed steepening in the curve and
removing them will also cause many false positives.

4. Evaluation

4.1. Experimental Setup

4.1.1. Datasets. We conducted an experiment on two widely
used datasets, MNIST and GTSRB. MNIST is a large collection
of handwritten digits. It has a training set of 60,000 examples
and a test set of 10,000 examples. Each example is a 28 x 28
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FIGURE 3: Comparison of local training loss with/without malicious participant on MNIST dataset. (a) With a malicious participant, (b)

without a malicious participant.
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F1GURE 4: Comparison of local training loss with/without a malicious participant on the GTSRB dataset. (a) With a malicious participant, (b)

without a malicious participant.

grayscale image. German Traffic Sign Recognition Dataset
(GTSRB) is an image classification dataset consisting of
photos of traffic signs. The images are classified into 43 classes.
The training set contains 39209 labeled images and the test set
contains 12630 images. The image size is 64 x 64 x 3.

4.1.2. Scenario Settings. We consider both scenarios with a
malicious participant and without any malicious participant
on MNIST and GTSRB datasets; thus, our experiments can
be divided into four parts. For each part, we generate 100

samples and run the detection algorithm on each sample.
Here, sample means the parameter change rate of every
participant during each round. For scenarios without any
malicious participant, we run the same code 100 times to
generate 100 samples. Due to the randomness during
training, the 100 samples are not exactly the same. For
scenarios with a malicious participant, we take each par-
ticipant in turn as malicious and generate 10 samples for the
malicious participant. As there are 10 participants in our
settings, it leads to 100 samples in total. The settings of the
two scenarios are all the same, except that in the scenario
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input: m: number of participants;
R: number of training rounds;

output: a list of malicious participants;
(1) suspects «—J;

(2) ent — [] "m;

(3) fori = 1toRdo

(4) forj = ltomdo

(5) avg < mean of W except for W;
(6) ifW;; > Gt-ThrI*avg then

(24) return suspects

: updates of our interested parameters, whose size is R x m;

(7) cnt[j] « entfjl+1;

(8) if cnt[j] > Rd-Thr then

9) suspects « suspects U {j};

(10) break;

@11 else

12) cntfj] « 0;

(13) if suspects isthen

(14) max_slope « [-inf] *m;

15) fori = Win — Sizeji < = Rji+ = Sl — Stepdo

(16) forj = 0;j <m;j + +do

17) kb « slope and intercept fitted with the least squares method on W;_yiy_gize: 155
(18) max_slope[j] « max(max_slope[j], k)

(19) forj = 0;j <m;j + +do

(20) avg < mean of max_slope except for max_slopelj];

(21) if max_slopes[j] > Sp-Thr and max_slopes[j] > Gt-Thr2* avg then
(22) suspects — suspects U {j};

(23) break;

ALGorITHM 1: Malicious participant detection.

with a malicious participant, the attacker will additionally
train a GAN locally and inject the generated fake data into
the original training set.

The attack part of our experiment follows the setup of
[1], while we consider a more clever attacker who starts the
attack only when the accuracy of the global model reaches
some threshold. The threshold is 0.85 for MNIST and 0.6 for
GTSRB. The detection algorithm is run by the parameter
server each round before it aggregates all the parameters
update from all the participants.

4.1.3. Hyperparameter Configurations. We use different
hyperparameter configurations on different datasets. As for
the attack part of the MNIST dataset, we set the global epoch
as 300, the local epoch as 1, and the batch size as 2048. As for
the training of GAN, the epoch is set as 1 and the batch size is
set as 2048. The number of samples merged with the training
set is 500. The attack starts as soon as the accuracy of the
global model on the validation set reaches 0.85. There are 10
participants and participant i owns the data of label i. We
have each participant taking turns as a malicious participant
and generate a target label for him randomly. We apply the
Adam optimizer and set the learning rate to be 0.001. In the
detection part, to show the impact of the input parameters of
our detection algorithm, we try some combinations of Rd-
Thr, Gt-Thrl, Win-Size, and SI-Step, Gt-Thr2 and Sp-Thr.
As for the attack part of the GTSRB dataset, the global
epoch is 200, the local epoch is 1, and the batch size is 512.

With regard to the training of GAN, we set the epoch as 3 and
batch size as 256. There are 300 samples merged with the
training set. The threshold of accuracy to start an attack is 0.6.
There are 10 participants and we distribute the total 43 labels
as evenly as possible. First, we distribute 4 labels to each
participant,; then, the left 3 labels are distributed to the first 3
participants. Each participant takes turns as the malicious
participant and randomly picks a target label. Adam opti-
mizer is applied and the learning rate is set as 0.001. As for
detection, different combinations of Rd-Thr, Gt-Thrl, Win-
Size and SI-Step, Gt-Thr2, and Sp-Thr are tried.

4.1.4. Evaluation Metrics. As for scenario with a malicious
participant, we use the following two metrics: (1) Recall: The
number of samples where the malicious participant is found,
divided by the number of total samples. The higher the recall
rate, the less the algorithm misses the malicious participant.
Thus, the recall rate measures the ability of the algorithm to
cover the malicious participant. When finding out the
malicious participant, the algorithm may judge normal
participants as malicious at the same time. This case also
contributes to the recall rate. Thus, we use another metric
called error rate to measure the accuracy of the algorithm.
(2) error rate: The number of samples where a normal
participant is judged as malicious, divided by the number of
total samples. The lower the error rate, the less the algorithm
causes false positives. Thus, it measures how correct the
detection results are. As for the scenario without any
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TaBLE 1: Hyperparameters used in the detection algorithm.

Full name Abbreviation Meaning

roundsThreshold Rd-thr Number of consecutive rounds threshold used to detect the first anomalous feature

greaterThresholdl Gt-Thrl Multiple thresholds used to detect the first anomalous feature

windowSize Win-size Size of sliding-window used to detect the second anomalous feature

slidingStep Sl-step Sliding step of the sliding window used to detect the second anomalous feature

slopeThreshold Sp-thr Slope threshold used to detect the second anomalous feature

greaterThreshold2 Gt-Thr2 Multiple thresholds used to detect the second anomalous feature

malicious participant, since recall is meaningless for this
scenario, we only use error rate as the metric to measure the
correctness of our detection results. Actually, the error rate
in this scenario is equal to the false-positive rate and we will
call it a false-positive rate in the following sections.

4.2. Detection Results

4.2.1. Result MNIST. Table 2 shows the recall, ER, and FPR
on MNIST corresponding to different Rd-Thr and Gt-Thrl,
where Win-Size, Sl-Step, Gt-Thr2, Sp-Thr are fixed as 5, 2,
100, 0.002, respectively. We can see that the recall decreases as
Rd-Thr increases and increases as the Gt-Thr1 increases, while
both the ER and FPR decrease as Rd-Thr or Gt-Thr1 increases.
Table 3 shows the recall, ER, and FPR on MNIST corre-
sponding to different Win-Size and SI-Step, where Rd-Thr,
Gt-Thrl, Sp-Thr, and Gt-Thrl are fixed as 3, 2, 100, 0.002,
respectively. Since we always set SI-Step as half of Win-Size,
we only consider the effect of Win-Size. Conclusions can be
drawn that the recall decreases as the Win-Size increases. Both
the ER and FPR are not affected by Win-Size as they always
keep zero. It is worth mentioning that the smaller the Win-
Size is, the sooner the attacker is detected. The Win-Size can
be regarded as the delay of our detection algorithm. Under the
best hyperparameters setting, the recall is 0.99, and both ER
and FPR are zero. It means in the scenario with a malicious
participant, we only miss the attacker once in 100 samples.
While in the scenario without any malicious participant, our
detection algorithm does not make any mistake in 100
samples. The best Rd-Thr is 3, which means we can detect the
attacker with a delay of 3 rounds.

4.2.2. Result GTSRB. Table 4 shows the recall, ER, and FPR
on GTSRB corresponding to different Rd-Thr and Gt-Thrl,
where Win-Size, Sl-Step, Gt-Thr2, and Sp-Thr are fixed as
10, 5, 100, 0.005, respectively. We can see that the recall
slightly decreases as the Rd-Thr or Gt-Thrl increases, while
both the ER and FPR decline relatively largely as the Rd-Thr
increases and decline sharply as the Gt-Thrl increases.
Table 5 shows the recall, ER, and FPR on GTSRB corre-
sponding to different Win-Size and SI-Step, where Rd-Thr,
Gt-Thrl, Sp-Thr, and Gt-Thrl are fixed as 4, 2, 100, 0.005,
respectively. It is easy to see that the recall first increases and
then decreases as the Win-Size increases. While the error
rate is not affected by the Win-Size and keeps as 0.01, the
FPR decreases as the Win-Size increases. Under the best
hyperparameters setting, the recall is 0.97, the ER is 0.01, and
the FPR is 0.02. It means in the scenario with a malicious

TABLE 2: Recall, error rate (ER), and false positive rate (FPR) on
MNIST corresponding to different roundsThreshold (Rd-Thr) and
greaterThresholdl (Gt-Thrl). The windowSize (Win-Size), sli-
dingStep (SI-Step), greaterThreshold2 (Gt-Thr2), and slopeThres-
hold (Sp-Thr) are fixed as 5, 2, 100, 0.002, respectively.

Rd-Thr Gt-Thrl recall ER FPR
3 1.2 0.91 0.59 0.79
3 1.5 0.99 0 0
5 1.2 0.88 0.56 0.79
5 1.5 0.99 0 0
7 1.2 0.84 0.51 0.74
7 1.5 0.99 0 0

TaBLE 3: Recall, error rate (ER), and false positive rate (FPR) on
MNIST corresponding to different windowSize (Win-Size) and
slidingStep (Sl-Step). The roundsThreshold (Rd-Thr), great-
erThresholdl (Gt-Thrl), greaterThreshold2(Gt-Thr2), and slo-
peThreshold (Sp-Thr) are fixed as 3, 2, 100, 0.002, respectively.

Win-Size S1-Step recall ER FPR
3 1 0.99 0 0
5 2 0.99 0 0
7 3 0.95 0 0
9 4 0.82 0 0
11 5 0.66 0 0
13 6 0.52 0 0

TABLE 4: Recall, error rate (ER), and false positive rate (FPR) on
GTSRB corresponding to different roundsThreshold (Rd-Thr) and
greaterThresholdl (Gt-Thrl). The windowSize (Win-Size), sli-
dingStep (SI-Step), greaterThreshold2 (Gt-Thr2),and slopeThres-
hold (Sp-Thr) are fixed as 10, 5, 100, 0.005, respectively.

Rd-Thr Gt-Thrl recall ER FPR
2 1.5 1 0.86 1

2 2 0.98 0.11 0.31
4 1.5 1 0.63 0.94
4 2 0.97 0.01 0.02
6 1.5 0.98 0.34 0.75
6 2 0.96 0.01 0.01

participant, we only miss the attacker 3 times and misjudge a
benign participant as an attacker once in 100 samples. While
in the scenario without any malicious participant, our de-
tection algorithm only makes a mistake twice in 100 samples.

4.2.3. Discussion. The experiments are conducted under the
assumption that the attacker starts the attack after the model
begins to converge. In this case, the attack is more effective
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TaBLE 5: Recall, error rate (ER), and false positive rate (FPR) on
GTSRB corresponding to different windowSize (Win-Size) and
slidingStep (SI-Step). The roundsThreshold (Rd-Thr), great-
erThresholdl (Gt-Thrl), greaterThreshold2 (Gt-Thr2), and slo-
peThreshold (Sp-Thr) are fixed as 4, 2, 100, 0.005, respectively.

Win-Size S1-Step recall ER FPR
4 2 0.94 0.01 0.58
6 3 0.94 0.01 0.1

8 4 0.96 0.01 0.04
10 5 0.97 0.01 0.02
12 6 0.95 0.01 0.02
14 7 0.96 0.01 0.02

and stealthy since the model about to converge contains
enough information about the training set, and there is not
much time left to detect the attacker. However, the chances
are that the attacker may start the attack from the beginning,
which deserves some discussion. In this case, different
anomalous features may show, and traditional secure ag-
gregation methods such as Krum [28] and trimmed mean
[29] may work, with the cost of slowing the model’s
convergence.

5. Conclusion

In this work, we present a scheme to detect the GAN-based
information leakage attack in FL, where the attacker is one
of the participants in the FL system. We aim to detect the
malicious participant accurately with a small computa-
tional overhead in real time. We only utilize the biases in
the last convolutional layer and manage to find general
anomalous features from updates of these biases. Then an
anomalous detection algorithm based on statistics is pro-
posed to detect the previously found anomalous features.
We conduct extensive experiments to evaluate the effec-
tiveness of our detection scheme. The results demonstrate
that our proposed detection scheme can detect the mali-
cious participant accurately and efficiently in near real
time. [30-32].

Data Availability

The MNIST dataset used to support the findings of this study
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findings of this study have been deposited in the website
https://www.kaggle.com/meowmeowmeowmeowmeow/
gtsrb-german-traffic-sign?select = Train.
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