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Among the network security problems, SQL injection is a common and challenging network attack means, which can cause
inestimable loop-breaking and loss to the database, and how to detect SQL injection statements is one of the current research
hotspots. Based on the data characteristics of SQL statements, a deep neural network-based SQL injection detection model
and algorithm are built. *e core method is to convert the data into word vector form by word pause method, then form a
sparse matrix and pass it into the model for training, build a multihidden layer deep neural network model containing ReLU
function, optimize the traditional loss function, and introduce Dropout method to improve the generalization ability of this
model. *e accuracy of the final model is maintained at over 96%. By comparing the experimental results with traditional
machine learning algorithms and LSTM algorithms, the proposed algorithm effectively solves the problems of overfitting in
machine learning and the need for manual screening to extract features, which greatly improves the accuracy of SQL
injection detection.

1. Introduction

*e introduction should be succinct, with no subheadings.
Limited figures may be included only if they are truly in-
troductory and contain no new results.

Among the network security issues, SQL injection is a
common and challengingmeans of network attacks, which is
listed as the top 10 web application security risks by the
Open Web Application Security Project (OWASP) and also
listed as one of the top 10 vulnerabilities by OWASP in the
past 15 years [1, 2] and network attacks caused by SQL
injection. On average, web attacks caused by SQL injection
cause nearly $10 billion loss to the US economy every year;
therefore, how to effectively detect SQL injection is one of
the current research hotspots.

However, most of the solutions proposed so far can
detect only a subset of SQL injection attacks and cannot
meet the challenge of changing attack methods. *ere-
fore, for various types of SQL injection attacks and their
countless variants, it is of considerable importance to
study and design an effective deep learning-based

detection scheme that can automatically perform feature
extraction.

In recent years, researchers have also proposed many
detection methods, which are mainly classified into three
approaches: traditional-based, machine-learning-based, and
deep neural network-based. *e traditional-based approach
scales well in traditional string matching, but nowadays,
attackers use increasingly sophisticated tools for automatic
injection attacks, and the traditional-based approach often
cannot cope well. *e machine learning-based approach
solves the problems of the traditional approach but suffers
from overfitting and the need for manual filtering to extract
features [3]. Deep neural network-based approaches do not
require manual feature extraction and do not suffer from
overfitting.

*e purpose of this study is to build a classification
model for SQL injection detection using SQLNN deep
neural networks. By analyzing a large amount of SQL in-
jection data, relevant features are extracted, and then the
neural network model is trained using a large amount of
actual data. Finally, the model training results are compared.
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LSTM, KNN, and DT algorithms are used for experimental
model comparison, and the experimental results show that
the detection effect of the deep neural network model
proposed in this article is better.

2. Related Works

2.1. SQL Injection and Its Detection Method

2.1.1. SQL Injection Methods. SQL injection is an attacker
who exploits a database vulnerability to change SQL
statements so that the changed SQL statements can bypass
the database security and enter the database and can perform
a series of operations such as adding, deleting, modifying,
and viewing the database [3]. *at is, the attacker exploits
the vulnerability by providing specially prepared input data
so that the SQL interpreter cannot distinguish between the
request command of the query and the attacker’s specially
prepared data [4]. Since the SQL language is rich and diverse
and contains different encoding methods, there is a high
probability of being attacked at any point in the dynamic
construction of SQL statements. *e developer often does
not filter the user input sufficiently, and when the attacker
splices the carefully constructed URL parameters or form
submission parameters to the predefined SQL query, the
SQL structure expected by the developer can be changed,
and the execution of the SQL statement yields results that are
no longer expected by the developer, forming a SQL in-
jection attack [5].

2.1.2. SQL Injection Detection Method

(1) Traditional Method. Traditional SQL injection mostly
uses filtering allergy characters to prevent SQL injection. In
“SQL Injection Attack and Defense”, whitelist validation and
blacklist validation are two different types of input validation
methods to defend against SQL injection [6]. Penetration
testing can make up for the deficiencies of blacklist and
whitelist filtering defense mechanisms, but it cannot fun-
damentally solve the deficiencies [7]. Halfond and Orso [8]
developed a tool, AMNESIA, based on traditional black-
listing techniques, implementing a combined dynamic and
static approach, which in its static part automatically con-
structs a model of legitimate queries that can be generated by
the application. In its dynamic part, it examines dynamically
generated queries and checks them against the statically
constructed model.Xiao et al. proposed a method to detect
SQL injection based on URL-SQL mapping to analyze user
behavior and execution responses [9]. *is method does not
incur much additional cost for web applications, but the
system execution has an uncertainty factor and the ex-
traction of invariants (normal state of the web application) is
not comprehensive, leading to the generation of a large
number of false alarms and missed alarms [5].

*ese methods above can scale well with the traditional
string matching at that time, but nowadays, attackers use
increasingly sophisticated tools for automatic injection at-
tacks and traditional methods often do not cope well [5].

(2) Machine Learning. *e application of machine
learning in SQL injection is already a common phenome-
non. Joshi et al. [10] designed a classifier that consists of a
Näıve Bayes machine learning algorithm and a role-based
access control mechanism for detecting SQL injection at-
tacks and tested the model with three SQLIA attacks: an-
notation, union, and restatement. Kamtuo and Soomlek [11]
proposed a decision tree-based SQL injection prevention
framework and used 1100 vulnerability datasets to train the
machine learning model. Wu and Chen [12] proposed a
method called k-centers (KC) to detect SQL injection at-
tacks, which is based on k - means clustering algorithm for
hybrid data [13], and traditional machine learning algo-
rithms by adapting the number and location of different
types of attacks in KC clusters. However, machine learning-
based methods [3, 14–16] have their own limitations, such as
the inability to detect attacks using injection evasion tech-
niques [17], overfitting problems [18], and the need for
manual filtering to extract features. In addition, most of
these methods are based on raw query string analysis and
cannot take advantage of the latest machine learning
techniques and the contextual and syntactic information of
the available SQL strings [19].

(3) Deep Neural Networks. Deep neural networks, also called
deep learning (DL, Deep Learning), is a new research di-
rection in the field of machine learning (ML, Machine
Learning), which was introduced into machine learning to
bring it closer to its original goal, artificial intelligence (AI,
Artificial Intelligence) [20]. Deep learning is the process of
learning the intrinsic laws and levels of representation of
sample data, and the information obtained from these
learning processes can be of great help in the interpretation
of data such as text, images, and sounds [20]. Its ultimate
goal is to enable machines to have analytical learning ca-
pabilities like humans, capable of recognizing data such as
text, images, and sounds. Deep learning is a complex ma-
chine learning algorithm that has achieved results in speech
and image recognition that far exceed previous related
techniques [20]. Deep learning has also been successively
applied to web security detection in recent years. Sirinam
et al. [21] used fingerprinting attacks on a CNN defense
website and showed that the accuracy of CNN for finger-
printing attack detection on this website was above 98%.
Yuan et al. [22] provided a subspace spectrum integration
clustering method, called depe - ssec, that supports deep
learning for web attack detection. Selvaganapathy et al. [23]
used deep confidence networks to extract URL features and
used deep neural networks to classify normal and malicious
URLs.

3. Characterization

SQL injection detection is essentially a classification prob-
lem. In SQL injection detection, data are divided into two
main categories: SQL injection statements and non-SQL
injection statements. *e non-SQL injection statements are
further divided into the following: ordinary text statements
and ordinary SQL statements. *e data set is marked into
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two categories: SQL injection statements are marked as 1
and non-SQL injection statements are marked as 0. *e
main purpose of SQL injection detection is to identify the
aggressive SQL injection statements and the nonaggressive
non-SQL injection statements: ordinary SQL statements and
ordinary text statements can be grouped into one category.
*erefore, the model can distinguish the aggressive SQL
statements from the nonaggressive ones. Based on the re-
search in this article, the dataset used in this article has a total
of 30919 items, which are divided into the following two
categories.

3.1. SQLInjectionStatements. During the current study, SQL
injection statements typically contain the following key-
words:, ∗ ,; , _, -, (),� , {, }, @,.,, and, [, ], +, −, ?, %, !,:, \,/.
Also, SQL injection statements contain this common SQL
token, for example, where, table, like, select, update, and, or,
set, like, in, having, values, into, alter, as, create, revoke,
deny, convert, exec, concat, char, tuncat, ASCII, any, asc,
desc, check, group by, order by, delete from, insert into, drop
table, union, join. Based on the dataset used in this article,
the SQL injection statements are classified into the following
types:

(1) Repetition attack: the main purpose is to detect
whether there is an injection point by the truth or
falsity of the expression. *e SQL language contains
keywords such as where and group by, which are
generally followed by query conditions. *e attacker
inserts the true-true formula into the position of the
conditional statement so that the query condition is
always identified as true, which can bypass the page
authentication and obtain sensitive data.

(2) Illegal comment attack: the SQL language contains
various forms of comments, such as --, #,/∗ /, whose
subsequent statements will not be executed. *e
attacker often inserts these comment characters into
the conditional SQL statement so that the legitimate
SQL statement after the comment character cannot
be executed to achieve the injection purpose.

(3) Union query attack: in SQL language, keywords such
as join, left join, and union are used for the union
implementation of one or more statements. An at-
tacker can use the union keyword to add malicious
SQL code after the legitimate code to obtain addi-
tional sensitive information by controlling the sec-
ond statement to perform illegal operations.

(4) Explicit error injection: the attacker makes the ap-
plication display default error pages by executing
illegal or logically incorrect SQL queries. *ese pages
often reveal to the attacker information such as
injectable parameters and the type of database.

(5) Boolean blind injection: the main purpose is to
submit queries with a different logic and observe
whether the page returned by the web application is
normal to determine whether there is an injection.
Boolean blinding is often used to obtain information
such as the name of the database.

(6) Time blind injection: it mainly refers to inserting a
time delay function in the URL or user input to
determine whether the injection is successful by
observing whether there is a delay in the web ap-
plication’s response.

(7) Multistatement attack: this attack generally uses
query separators to add additional queries to the
original query to extract, add, and modify data or
execute remote commands. *e DBMS receives
multiple SQL queries, the first is the normal exe-
cution of the query, and the subsequent queries are
executed to meet the attack.

SQL injection statements using the above keywords and
injection types can bypass the security defenses of the da-
tabase and enter the database with a false identity. After the
database is invaded, it does not detect such enemies by itself
and only allows such enemies to wreak havoc in the data-
base, such as adding, deleting, modifying, and viewing
tables.

3.2. Non-SQL Injection Statements

(1) Plain Text Statements. Ordinary text statement is
composed of ordinary letters, numbers, and char-
acters. *e statement is not offensive in any way and
will be recognized directly in the detection as a non-
formal statement.

(2) General SQL Statements. General SQL statements are
the SQL statements that users encounter every day
and are used in the daily maintenance of the data-
base, for example, creating, querying, and modifying
tables. *ese types of SQL statements usually contain
keywords such as rename, drop, delete, insert, create,
exec, update, union, set, alter, database, and, or,
information_schema, load_file, select, shutdown,
cmdshell, hex, ascii,etc. It will also contain some
dangerous keywords: --, #,/∗ , ‘, ”, ||, \\,� .

Example data are shown in Table 1.

3.3. Data Characterization. Analysis of the data shows that
words such as “select”,“ ∗ ”,“from” appear very frequently
in SQL injection statements and non-SQL injection
statements, and these very frequent words do not serve as
features for classification. *erefore, in this article, when
using the TF-IDF algorithm to process the data, such
words can be filtered out sufficiently to achieve dimen-
sionality reduction.

4. Model Design

Based on the data characteristics of SQL statements, a deep
neural network-based SQL injection detection model-
SQLNN is built, which can effectively detect SQL injection
statements. *e model includes data processing, model
training, and model evaluation when performing SQL in-
jection detection, as shown in Figure 1.
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4.1. IF-IDF. When training classifiers using deep neural
networks, SQL injection samples need to be digitized before
being fed into the model because the computer cannot
understand them directly. SQL injection samples, like nat-
ural language, are text with specific grammatical rules. *ere
are several text vectorization methods in natural language
processing, such as word set models, BoW, TF-IDF, and
distributed word vectors. TF- IDF algorithm can measure
the importance of words by word frequency and inverse
document rate. *erefore, the TF-IDF algorithm is used to
process the sample data in this article.

*e data processing layer preprocesses the metadata,
including feature extraction, normalization, and data seg-
mentation. In the data processing, the model first tokenizes
the data using the word pause method, a token represents a
word, and the TF-IDF algorithm is used to filter out the
common words and keep the important words. A token with
an 80% occurrence rate and a token with less than 2 oc-
currences in the dataset indicates that the word occurs
equally frequently in both SQL injection and non-SQL in-
jection statements and cannot be used as a feature to dis-
tinguish between SQL injection statements and non-SQL
injection statements. A frequency of fewer than 2 occur-
rences indicates that the occurrence rate of the term in both
SQL and non-SQL statements is extremely low, and it cannot
be used as a feature to distinguish whether it is a SQL in-
jection statement or not.

TF, or word frequency, indicates how often a given word
appears in a piece of text, as in the following formula:

TF �
Number of times aword appears in the text

Total number of words in the text
. (1)

Word frequency alone cannot accurately describe the
importance of a word in a text because some words may

repeatedly appear in many texts, such as “*e” and “An” in
English and “I” and “you” in Chinese. IDF is the inverse text
frequency, which reflects the frequency of a given word in all
texts. IDF value will be lower if the word occurs in many
texts, as in the following formula:

IDFx � log
N + 1

Nx + 1
+ 1, (2)

where N denotes the total number of texts in the training set
and N(x) denotes the number of texts containing word x.

*e final result of the TF-IDF algorithm is the result of
multiplying the two values of word frequency and inverse
text frequency, which indicates the importance of a word in
the text, as in the following formula:

TF − IDFx � TF × IDFx. (3)

Using IF-IDF algorithm processing, some words that
cannot be used as feature values are filtered out, thus
achieving data dimensionality reduction. After the above
processing, the extracted token words are vectorized and
then converted into the form of a sparse matrix as the input
data for subsequent model training.

4.2. Data Preprocessing. SQL injection attack statements
have characteristics that are different from those of normal
URLs. Not only do these attacks contain SQL-related key-
words, but the form of the parameters is more complex than
normal parameters. How to extract the main keywords from
SQL injection statements as detection features is a very
important step in data processing, and the extracted key-
words must be able to distinguish whether the statement is
offensive or not, and the extracted keywords must also be
able to express the original meaning of the sentence. Tra-
ditional machine learning methods require manual
screening of the feature values, which is laborious and
difficult, and cannot select the most representative ones.
*erefore, this model filters out most of the words in the
utterance in the form of deactivated words using the TF-IDF
algorithm and then normalizes them. *e keywords left in
the utterance are encoded numerically, and the whole data
can be represented by a sparse matrix of word vectors:

D �

q1 · · · qk
0 · · · 0
⋮ ⋱ ⋮
0 · · · 0

⎛⎜⎝ ⎞⎟⎠ . q1 . . . qk denotes the k keywords (k

features) extracted, and the presence of this feature in the
sample denotes the feature as 1 (greater than 1 denotes the
number of occurrences); otherwise, it denotes 0. *e specific
algorithm steps are as follows:

(1) Input: dataset X � X1, X2, · · · , Xn􏼈 􏼉, tag y � y1, y2,􏼈

· · · , yn}}.
(2) Segment the dataset with word pauses, tokenize each

data, one token represents one word, and each data is
represented as multiple tokens.

(3) Filter out tokens with an 80% occurrence rate and
tokens with less than 2 occurrences. *e 80% oc-
currence rate means that the word appears quite

Data
source

Original
data

Data
processing

Feature
extraction

Standardization

Data
partition

SQLNN

Model
traing

Model
evaluation

Accuracy

precision

Recall

FPR

Figure 1: Schematic diagram of SQL injection detection training
process.

Table 1: SQL injection detection sample data.

Description Label
select ∗ from users where id� 1 or “ ( ]” or 1� 1 -- 1 1
select ∗ from users where id� 1 or “.@” or 1� 1 -- 1 1
15495714q 0
4ibari8a 0
Select ∗ from general where easy between 10 and 20 0
Select ∗ from case where century not between “silk” and
“guess” 0
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frequently in both SQL injection and non-SQL in-
jection statements, so it cannot be used as a feature
value to distinguish whether it is a SQL injection
statement or not. If the occurrence rate is less than 2
times, the occurrence rate of the term in both SQL
and non-SQL statements is extremely low, and it
cannot be used as a feature to distinguish whether it
is a SQL injection statement or not.

(4) Vectorize the filtered token to form a vector matrix.
(5) Transform the vector matrix into a sparse matrix,

denoted as D �

q1 . . . qk
0 · · · 0
⋮ ⋱ ⋮
0 · · · 0

⎛⎜⎝ ⎞⎟⎠ s. q1...qk denotes k

keywords extracted (k features), and the presence of
this feature in the sample is represented as 1 (greater
than 1 indicates the number of occurrences); oth-
erwise, it is represented as 0.

It can be seen that when using this model for SQL in-
jection detection, the feature values that facilitate the dis-
tinction between SQL injection statements and non-SQL
injection statements can be effectively selected, thus
achieving data dimensionality reduction and solving the
difficulty of manually extracting feature values in machine
learning. *is model introduces word vectors into SQL
injection detection, which facilitates the calculation in neural
network training and is conducive to improving the per-
formance analysis index at a later stage.

4.3. Deep Neural Network Model-SQLNN Model. *e
SQLNN deep neural network constructed in this article
includes an input layer, an output layer, and three hidden
layers, where both the hidden layer and the output layer have
processing capabilities. *e deep neural network with a
single hidden layer can be regarded as a special kind of
logistic regression classifier, which first performs a nonlinear
transformation on the input data and then uses the result as
the input for logistic regression. *e nonlinear transfor-
mation maps the input samples to a linearly separable space.
In this model, the input layer reduces the incoming data to
64 dimensions, and it consists of multiple input nodes that
pass the transformed information to the hidden nodes. *e
hidden layer consists of multiple hidden nodes with no
external connections. *e output of the hidden nodes de-
pends on the output of the input layer and the weights
attached to the connections and passes the result to the next
hidden layer or output layer. *e output layer consists of
multiple output nodes that take data from the hidden layer
and perform similar calculations as the hidden layer. *e
final result is the output of this model.

4.3.1. Nonlinear Transformation of Data in Forward
Propagation. *e input data of the model starts from the
input layer and is computed layer by layer and propagated
backward sequentially through the network parameters and
activation functions. In the whole model, the output of the
previous layer of the network is used as the input of the next

layer of the network up to the output layer of the model. In
SQL injection detection, since the sample data are not all
linearly separable, problems such as data scattering and
network gradient disappearance will occur during the
propagation process, so it is necessary to introduce an ac-
tivation function in the implicit layer to transform the data
nonlinearly during the specific implementation of both
sides. Here, the Rectified Linear Unit (ReLU) function [24] is
applied to complete the nonlinear transformation of the
data, and the ReLU function does not activate all neurons,
making the neural network efficient and easy to compute.

As shown in Figure 2, the input layer data in the model is
the feature data ofX � [x1, x2, · · · , xN]T processed by the IF-
IDF algorithm, and its data dimension is N. *e activation
functions of the three hidden layers are chosen as ReLU,
which is denoted as f(x) � max(0, x). *e output vectors of
the three hidden layers are denoted as H1, H2, and H3,
respectively, and the data dimensions are, respectively, n1,
n2, n3n3:

H1 � f W1X + b1( 􏼁,

H2 � f W2H1 + b2( 􏼁,

H3 � f W3H2 + b3( 􏼁.

(4)

W1, W2, and W3 denote the weights of the three hidden
layers, respectively.*e weights are the connections between
neurons, which calculate an output from the data input and
then compare it with the actual output, the error is back-
propagated, and the weights are continuously adjusted,
which in turn reduces the error.

*e sigmoid function selected for the output layer [25],
the output of the sigmoid function is between 0 and 1. *e
output of the output layer of this model is the probability of
the classified event, which is classified when certain prob-
ability conditions are satisfied. So the sigmoid function is
suitable as the output layer of this model.

4.3.2. Optimization of Loss Function. *e output error of the
model is obtained by comparing the model output pre-
diction with the target true category. In training the model,
we use Cross-Entropy [26] (Cross-Entropy Loss) as the loss
function to describe this error between the model predicted
value and the known true value, noted as follows:

L � −
1
N

􏽘

N

i�1
yi · log pi( 􏼁 + 1 − yi( 􏼁 · log 1 − pi( 􏼁􏼂 􏼃, (5)

where N is the number of training samples and
y � [y1, y2 . . . yn]T; yi represents the expected output value
of the ith sample, i.e., the true label of the sample. pi denotes
the probability that the ith sample is predicted to be a
positive case.

When performing SQL injection detection, the loss
function is continuously reduced to achieve a higher rec-
ognition rate during training. However, the reduction of the
loss function using the traditional Stochastic Gradient De-
cent (SGD) [27] makes the optimized DNN converge slowly
and easily fall into local optimal solutions. For this reason,
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the Adaptive Moment Estimation (Adam) algorithm [28] is
used instead of the traditional SGD method to update the
model parameters. *e obtained model training errors are
used to calculate the updated values of the weights and bias
vectors using the backpropagation algorithm, and the weight
parameters and bias vectors of the network model are
readjusted according to the obtained results. Assuming that
the small batch random gradient of parameter δ in the
training round is gt, mt is the first-order moment estimate of
the gradient, vt is the second-order moment estimate of the
gradient, and β1, β2 corresponds to the exponential decay
rate of mt, vt; then,

mt � β1mt−1 + 1 − β1( 􏼁gt,

vt � β2vt−1 + 1 − β2( 􏼁g
2
t .

(6)

*en the deviation correction is made for mt and vt,
which are written as follows:

􏽢mt �
mt

1 − βt
1
,

􏽢vt �
vt

1 − βt
2
.

(7)

*e final parameter is updated to θt+1 � θt − η · 􏽢Mt/
(

�
􏽢v

√
+ ε), where η is the learning rate and ε is the smoothing

term.
Adam’s algorithm can iteratively update the neural

network weights based on SQL injection training samples for
more effective learning and can correct the problems of
disappearing learning rate and large fluctuations in the loss
function during the training process [28]. *us, it achieves
higher recognition rates by minimizing the loss function to
the maximum extent while accelerating convergence and
learning correctly.

4.3.3. Using Dropout [29] to Prevent Overfitting. For deep
neural network models, the training difficulty of the network
increases gradually as the depth of the network increases,
and the overfitting problem is prone to occur when the
training samples of SQL injection detection features are
small [16]. *erefore, the Dropout method is introduced in

the training process of the proposed deep neural network in
this article, which improves the generalization ability of the
model while alleviating the model overfitting problem. In
this article, the neural network contains three hidden layers,
and after introducing the Dropout method, some neurons
will be discarded with a certain probability during the
training process of the neural network by setting different
discard probabilities. *rough this operation, the general-
ization performance of the model is effectively improved
after enough iterations of the neural network, and the risk of
the model falling into a state of overfitting during the
training process is effectively reduced [29]. In the testing
phase, Dropout restores the connections between all neu-
rons to ensure that the best recognition performance is
obtained when the model is tested.

5. Results and Discussion

In order to verify the effectiveness of the proposed algo-
rithm, the results of SQL injection detection by traditional
machine learning algorithms (KNN algorithm and DT al-
gorithm) and LSTM algorithm are compared and analyzed
with the deep neural network model algorithm proposed in
this paper. *e algorithms developed in this study were
developed using the Python programming language using
the Keras and TensorFlow libraries. *e hardware platform
is a computer with an i7 9900 HQ CPU and 16 GB of RAM.

5.1. Datasets. *e dataset in this article is from the dataset
published on https://www.kaggle.com/sajid576/sql-
injection-dataset, which has a total of 30,919 data items
and basically meets the experimental requirements. *e
training set is 70% of the dataset and the test set is 30%. *e
dataset is shown in Table 2.

5.2. Evaluation Indicators. During the training of a deep
learning model, we can get multiple classifiers, and we need
to evaluate the performance of each classifier using ap-
propriate evaluation metrics, from which the best one is
selected. *e samples can be combined according to the real
target category and the category predicted by the classifi-
cationmodel to obtain the following four cases: True Positive
(TP), True Negative (TN), False Positive (FP), and False
Negative (FN). Let TP, TN, FN, and FP denote their cor-
responding sample numbers, then obviously
TP +TN+FN+FP� total number of samples. *e confu-
sion matrix of the classification results by taking each class as
positive samples separately is shown in Table 3.

For classification models, the evaluation criteria are
Accuracy, Recall, ROC, etc. Since positive and negative
sample imbalance is very common in the field of SQL in-
jection attack detection, it is unreasonable to use only ac-
curacy rate as the evaluation metric, so the evaluation metric
used is F1-Score as the detection classifier performance in
addition to detection accuracy (Accuracy), check-all rate
(Recall), and check-accuracy rate (Precision). *e F1-Score
is used as a comprehensive evaluation criterion for classifier
performance.

input output

y

x1 h1
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Figure 2: Schematic diagram of the neural network training
process.
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Accuracy �
TP + TN

TP + TN + FN + FP
,

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

F1 � 2∗
Precision∗Recall
Precision + Recall

.

(8)

5.3. Comparative Analysis. *e larger the percentage of TP
and TN values in the confusion matrix, the higher the
Accuracy, Recall, Precision, and F1 indexes of the model, the
better the classification effect of the model. *e KNN, DT,
and LSTM methods are compared with the present model
for the test. *e confusion matrix of the four methods is
obtained as shown in Tables 4–7.

*e comparative analysis of SQL injection attack studies
is shown in Table 8, where we compare LSTM, KNN, DT,
and our own proposed model using four metrics, Accuracy,
Precision, Recall, and F1. *e model proposed in this article
outperforms other existing models in these four metrics and
has a lower error rate, indicating that the method proposed
in this article can effectively detect SQL injection statements.
*e approach in this article focuses on as many features as
possible and uses deep neural networks to make the pro-
posed model more robust, so it can effectively detect all types
of SQL injection attack queries. *e comparison results are
shown in Table 8.

KNN and DT algorithms suffer from the inability to
detect attacks using injection evasion techniques [17],
overfitting problems [18], and the need for manual filtering
to extract features. In addition, most of these methods are
based on raw query string analysis and cannot take ad-
vantage of the latest machine learning techniques and the
contextual and syntactic information of the available SQL
strings [19]. LSTM, although solving the gradient problem of
RNN to some extent, still seems tricky when dealing with
long sequences. Also, LSTM is a time-consuming algorithm.
*e SQLNN model proposed in this article, which is based
on a deep neural network, can effectively solve the problems
of the above algorithms.

6. Conclusions

In this article, we propose a SQLNN deep neural network
model. *e core method is to convert the data into word
vector form by word pause and then form a sparse matrix
and pass it into the model for training to build a multi-
hidden layer deep neural network model containing ReLU
function, which optimizes the traditional loss function
and introduces the Dropout method to improve the
generalization ability of this model. In the comparison of
KNN, DT, LSTM models, and the SQLNN model pro-
posed in this article, the model in this article outperforms
the other three models in four indexes, Accuracy, Pre-
cision, Recall, and F1, and effectively solves the problems
of overfitting and the need for manual screening to extract
features in machine learning. *e accuracy rate of this
model can be maintained above 96%, indicating that this

Table 2: Data situation of SQL injection detection.

Label Description Count Ratio (%)
1 SQL injection statement 11330 36.64
0 Non-SQL injection statement 19589 63.36

Table 3: Confusion matrix schematic table.

True
Forecast

Positive Counter
Positive TP FN
Counter FP TN

Table 4: Confusion matrix for SQLNN model.

SQLNN

True
Forecast

Positive Counter
Positive TP (62.41%) FN (0.53%)
Counter FP (3.26%) TN (33.80%)

Table 5: Confusion matrix for KNN model.

KNN

True
Forecast

Positive Counter
Positive TP (49.88%) FN (13.06%)
Counter FP (4.23%) TN (32.83%)

Table 6: Confusion matrix for DT model.

DT

True
Forecast

Positive Counter
Positive TP (58.97%) FN (3.97%)
Counter FP (3.84%) TN (33.22%)

Table 7: Confusion matrix for LSTM model.

LSTM

True
Forecast

Positive Counter
Positive TP (37.39%) FN (19.34%)
Counter FP (23.95%) TN (19.32%)

Table 8: Model comparison results.

Models Accuracy
(%) Precision (%) Recall (%) F1 (%)

LSTM 62.32 66.23 65.16 64.23
KNN 82.69 71.51 88.56 79.13
DT 92.33 89.58 89.74 89.66
SQLNN 96.16 97.28 92.23 94.68
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model outperforms the other three models in SQL in-
jection detection.

Data Availability

*e dataset of this article was obtained from the dataset
published on https://www.kaggle.com/sajid576/sql-
injection-dataset, which has a total set of 30919 data, ba-
sically meeting the experimental requirements.
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