
Research Article
SpotFuzzer: Static Instrument and Fuzzing Windows COTs

Yeming Gu , Hui Shu , Rongkuan Ma, Lin Yan, and Lei Zhu

State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450000, China

Correspondence should be addressed to Hui Shu; shuhui123@126.com

Received 25 January 2022; Accepted 10 August 2022; Published 30 August 2022

Academic Editor: Luigi Coppolino

Copyright © 2022 Yeming Gu et al. )is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

)e security research on Windows has received little attention in the academic circle. Most of the new methods are usually
designed for the Linux system and are difficult to transplant to Windows. Fuzzing for Windows programs always suffers from its
closed source. )erefore, we need to find an appropriate way to achieve feedback from Windows programs. To our knowledge,
there are no stable and scalable static instrumentation tools for Windows yet, and dynamic tools, such as DynamoRIO, have been
criticized for their performance. To make matters worse, dynamic instrumentation tools have very limited usage scenarios and are
impotent for many system services or large commercial software. In this paper, we proposed SpotInstr, a novel static tool for
instrumenting Windows binaries. It is lightweight and can instrument most Windows PE programs in a very short time. At the
same time, SpotInstr provides a set of filters, which can be used to select instrumentation points or restrict the target regions. Based
on these filters, we propose a novel selective instrumentation method which can speed up both instrumentation and fuzzing. After
that, we design a system called SpotFuzzer, which leverages the ability of SpotInstr and can fuzz mostWindows binaries.We tested
SpotInstr and SpotFuzzer in multiple dimensions to show their superior performance and stability.

1. Introduction

Security research and software analysis technologies on
Windows cannot match its market share. )e focus of ac-
ademic research remains on UNIX-like platforms. One of
the main reasons is that most applications software on
Windows are closed source, which requires more effort for
researchers to do a lot of reverse engineering. )ere is no
doubt that Windows is the most widely used operating
system. We should pay more attention to its software
security.

Vulnerabilities are the main threat to system security.
Security researchers use static analysis [1] or dynamic
analysis to locate vulnerabilities in software. In our expe-
rience, one of the most popular dynamic methods for
vulnerability mining is Fuzzing [2]. Especially since AFL [3]
appeared in 2013, fuzzing has made great progress. We can
find fuzzing tools for file parser [4], system kernel [5], net
protocol [6], or IoT devices [7]. )e feedback technology
introduced by AFL is still the most effective way to find
vulnerabilities. Over the years, there are a lot of AFL-like
tools [8–10] developed for different scenarios. )e key idea

of the feedback technology is leveraging the instrumentation
technology to trace the execution path. )e default instru-
mentation mode of AFL is to patch the compiler and insert
some code snippet into the target. )is compile-time in-
strumentation has minimal side effects on the target, so it is
the preferred choice for AFL. To cope with the closed source
software, AFL also supports the QEMU [11] mode, which
uses a virtual machine to dynamically trace the execution
path of the target. After 3 years of waiting, the Windows
version of AFL was finally released in 2016. WinAFL [12]
made a lot of changes to adapt to Windows. It uses
DynamoRIO [13] to instrument target dynamically instead
of QEMU mode, and drops the compile way. Finally,
WinAFL implements roughly the same feedback capabilities
as AFL.

Although many practical problems have been solved in
the field of fuzzing, there are still many shortcomings. AFL
and its successors can only be used for Linux platform.
WinAFL was designed for Windows, but it uses Dyna-
moRIO, which makes the target much slower and its ap-
plicability is limited. DynamoRIO can only run some simple
programs with acceptable overhead. If we want fuzzing

Hindawi
Security and Communication Networks
Volume 2022, Article ID 4911587, 13 pages
https://doi.org/10.1155/2022/4911587

mailto:shuhui123@126.com
https://orcid.org/0000-0002-3208-243X
https://orcid.org/0000-0002-2797-1355
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4911587


COTs on Windows, we need to come up with a new ap-
proach to overcome these problems.

In this paper, we have designed a new fuzzing system for
Windows. )e system relies on static instrumentation
against Windows binaries. )e key idea of instrumentation
is to extract memory points by reverse analysis, and in-
strument the target at these points using binary rewriting
technologies. We find that existing tools always pursue high
rate of basic block coverage and instrument as more as they
can. According to our experience, most of the regions in a
program are vulnerable free. )erefore, it is not a good idea
to instrumenting everywhere in a program, which leads to
higher overhead for analysis, instrumentation, and execu-
tion. We propose a novel method to filter the points of
instrumentation, which can make static instrumentation
more efficient, lightweight, and robust.

We developed SpotInstr as our static instrumentation
tool, which can be divided into two parts: the analysis front-
end for extracting memory points and the binary rewriting
back-end for instrumenting the target. )e analysis front-
end was designed as a plugin for IDA Pro [14]. It leverages
the advantage of IDA Pro’s disassembly capabilities and uses
its interfaces to analyze the target binary. We have done
extensive work to understand the Intel instructions [15] to
extract the basic blocks in the assembly code. We also
implemented a set of interfaces for filtering the memory
points. )e back-end is based on PeLib [16]. We have few
choices for PE file manipulation libraries. After some re-
search, we finally found the PeLib, an old and no longer
maintained Library. PeLib is not well developed and still has
many bugs in it. So, we made many patches to make it work
properly. In the process of instrumenting, we found that
both the analysis and instrumentation phases took a lot of
time when working on large binaries. We made a lot of
optimizations on the algorithms in both stages and achieved
significant performance improvements.

We developed SpotFuzzer based on SpotInstr. )e most
obvious improvement of SpotFuzzer is that it uses a new
architecture for fuzzing running processes on Windows. We
find that some programs on Windows cannot start directly
or always depend on another program, so ordinary fuzzer
cannot fuzz these targets directly. SpotFuzzer uses an agent
to inject into the target process and builds a belt within the
target and the fuzzer.

We demonstrate the applicability of SpotInstr and
SpotFuzzer by instrumenting and fuzzing more than 20
COTS software or Windows components. First, we com-
pared SpotInstr with pe-afl [17] and syzygy [18]. )en, we
compared SpotFuzzer with pe-afl and WinAFL. In con-
clusion, our instrumentation tool runs dramatically fast.
Compared to pe-afl, the average time cost of our tool is about
90% lower and the compatibility is better. )anks to Spo-
tInstr, our fuzzing tool also has better performance than pe-
afl and WinAFL, and it can find more vulnerabilities in less
time.

)is paper makes the following contributions:
First, we developed an instrumentation tool for Win-

dows binaries, called SpotInstr, which supports almost all

Windows PE files, and offers a significant performance
improvement over the state of art tools.

)en, we designed a new selective instrumentation
technique that focuses on memory-related vulnerabilities.
)is technique reduces the number of instrumentations
significantly and makes the target execution speed close to
the original one, while having the better vulnerability dis-
covery capabilities.

We also propose a new fuzzing architecture forWindows
components, called SpotFuzzer, which leverages the capa-
bilities of SpotInstr. SpotFuzzer makes the fuzzingWindows
COTs much easier and offers better performance than the
popular WinAFL.

2. Motivation

2.1. Instrument Binary-Only Programs on Windows. Most
commercial Windows software are binary-only programs,
security researchers must instrument these programs before
fuzzing them. Dynamic instrumentation is an effective way
to analyze the binary file, and it is widely used in the modern
fuzzers. WinAFL [12] leverages DynamoRIO [13] to fetch
feedback during execution. WINNIE [19] relies on Intel Pin
[20] for dynamic binary instrumentation. However, the
dynamic instrumentation introduces additional runtime
overhead.

But at present, there is no stable static instrumentation
tools for Windows yet. )e main challenge for static in-
strumentation is how to rewrite a PE file correctly and
quickly. )ere are some studies dedicated to improving
binary rewriting. However, the recent works such as e9patch
[21] and RetroWrite [22] are all designed for Linux.

2.2. Focus on Memory Issues. Fuzzing with sanitizers is the
most effective way to find memory-related vulnerabilities.
When fuzzing on Linux, there are several sanitizers to use to
detect memory issues, like AddressSanitizer, MemorySani-
tizer, and LeakSanitizer. ParmeSan [23] is a sanitizer-guided
fuzzer, which greatly reduces the time-to-exposure (TTE) of
real-world bugs. However, one must use the compiler to
recompile the target with source code.

Another way to speed up detecting memory issues is
called Selective Instrumentation. According to our experi-
ence, when we compile a simple program, the compiler will
generate hundreds of functions and thousands of basic
blocks, while the actual main function only contains several
lines. )is indicates that there always be a lot of non-
functional codes in target binary. If we want to fuzzing a
target, we would better skip these codes or focus on
memory-related areas to save instrumentation time and
approve fuzzing performance.

3. Design

As mentioned in Section 2.2, there is a big gap between
theory and practice for static instrumentation for Windows
binaries. We cannot find any static instrumentation tool for
PE64, and the on-hand tools for PE32 is just too old to fit

2 Security and Communication Networks



new PE format. By the way, we need implement a set of
interfaces for user to control where to instrument. So, we
design SpotInstr as a lightweight, robust, and efficient static
instrumentation tool for both PE32 and PE64.

When the target binary is finish instrumented, we use
SpotFuzzer to load and test it with the feedback technology.
For some Windows service-related target, we design an
agent-based fuzzing framework. All these efforts we make
are aiming to the goal: fuzzing Windows binaries with static
instrumentation easily, scalable, and efficiently.

3.1. System Overview. Our fuzzing workflow contains two
stages: instrumentation and fuzzing.When a target is chosen
for fuzzing, the font-end of SpotInstr should be used in the
instrumentation stage to analyze and extract memory points,
and the back-end of SpotInstr completes the binary in-
strumentation. In the fuzzing stage, the instrumented binary
is used as the fuzzing target for SpotFuzzer. )e top view of
our system is shown in Figure 1.

3.2. Basic Block Extract. )e purpose of static instrumen-
tation is to cooperate with the fuzzer, while SpotFuzzer reads
the feedback of execution path from the instrumented bi-
nary. So first, we need to find out all basic block in the target
binary. )e basic block is a sequence of contiguous in-
structions that contains no jumps or labels, as shown in
Figure 2.

It is easy to observe that the basic block always starts at
the function entry, the call destination, the jmp destination
or the jcc destination. And the basic block always ends with a
jmp instruction, a jcc instruction, a ret instruction or ends
before next basic block head. To extract all basic block’s
head, we should analyze all assembly codes in the text

segment. )e key point is to find all control flow transfer
instructions, which include call, jmp, jcc, and ret. And
calculate out the destination address according to the op-
erand value.

3.2.1. CALL Instruction. )e call instruction has 10 different
formats according to Intel’s Instruction Set Reference. It is
easy to identify such instructions, which always starts with
Opcode 0×E8, 0× 9A or 0× FF. In 64-bit mode, we should
take care of the REX prefixes in the instruction. It is more
complex to calculate the destination address of the call
instruction. Different calculation method should be taken
for different operant type.

3.2.2. JMP Instruction. )e jmp instruction has 11 different
formats according to Intel’s Instruction Set Reference. We
can find these instructions with Opcode 0×EB, 0×E9,
0×EA, or 0× FF. Also, we should consider the REX prefixes
in 64-bit mode. )e calculation of destination address is
similar to the one of call instruction.

3.2.3. JCC Instructions. )e jcc instructions include a set of
conditional jump instructions, which include ja, jb, and jc.
)ere are 95 different formats of opcode according to Intel’s
Instruction Set Reference. jcc instructions always start with
one byte [0× 70∼0× 7F] or two bytes 0× 0F+ [0× 80∼0× 8F].
)e calculation of destination address is similar to the one of
call instruction.

3.2.4. Jump Tables. )emost difficult situation is the special
jmp instructions which we call them jump tables. )ese
instructions always use a register as its operand (like jmp

Instrument stage

Fuzzing stage

PE

BB extract

BB filter

Auto
Detector

PE64
Instrument

PE32
Instrument

back-endfront-end

Host
Process

Agent

feedback

inject

load

testcase

pipe

target

Fuzzer

Mutator

Core engine

Storage

PE

PE

Figure 1: Top view of SpotFuzzer.

Security and Communication Networks 3



rcx). It is hard to calculate the destination address, but we
can use context before the jmp instruction to figure out the
position of jump table.With the jump table data, we can then
calculate all destination addresses. Figure 3 shows an ex-
ample of the jump table.

We design two different algorithms to detect jump tables
in PE32 and PE64. )en, we can add all destination address
in jump tables into the basic block list.

3.3. Instrument Points Filter Interfaces. With all the basic
block information, we can take some strategies to filter the
basic block. According to observation, there are a lot of non-
functional code, initializing code, and helper code in target.
Most of which have little chance to trigger critical vulner-
ability. Instrumenting on these codes increases the analysis
time and instrumentation time and slows down the exe-
cution. Even worse, more instruments also increase the

push ebp
mov ebp, esp
sub esp, 0D0h
push ebx
push esi
push edi
mov eax, [ebp+s]
jmp ds: jpt_4010AC [eax*4]

mov eax, [ebp+r]
add eax, 1
mov [ebp+r], eax
jmp short loc_4010F3

mov eax, [ebp+r]
add eax, 1
mov [ebp+r], eax
jmp short loc_4010F3

mov eax, [ebp+r]
add eax, 1
mov [ebp+r], eax
jmp short loc_4010F3

mov eax, [ebp+r]
pop edi
pop esi
pop ebx
mov esp, ebp
pop ebp
retn

Figure 3: Jump table in the program.

push ebp
mov ebp, esp
sub esp, 10 h
push ebx
push esi
push edi
mov [ebp+r], 0
cmp [ebp+v], 64 h
jle short loc_401036

mov eax, [ebp+v]
add eax, 7 Bh
mov [ebp+r], eax
jmp short loc_401045

mov eax, [ebp+v]
push eax
call Function_2
add esp, 4
mov [ebp+r], eax

mov eax, [ebp+r]
add eax, [ebp+r]
pop edi
pop esi
pop ebx
mov esp, ebp
pop ebp
retn

push ebp
mov ebp, esp
sub esp, 10 h
push ebx
push esi
push edi
mov [ebp+a], 0

cmp [ebp+n], 0
jz short loc_401096

mov eax, [ebp+a]
add eax, [ebp+n]
mov [ebp+a], eax
jmp short loc_401085

mov eax, [ebp+a]
pop edi
pop esi
pop ebx
mov esp, ebp
pop ebp
retn

Function_1 Function_2

Figure 2: Basic blocks in the program.

4 Security and Communication Networks



possibility of program errors. In this paper, we provide three
interfaces for user to include or exclude some basic blocks.

Address including: )e basic block list contains all basic
block information contains starting address, instruction size,
relative address position, etc., and the list should be sorted by
the starting address. So, it is very simple to specify an address
or address range to tag as included and then delete all other
items which is not tagged.

Address excluding: )e basic block whose address
specified to be excluded will be deleted from the basic block
list. Because the basic block list is sorted by the starting
address, the deleting should be very fast.

Function name regular matching: For some cases, we
may have the symbol file for the target or just rename a set of
functions. )en, we can filter the basic block list by the
function names. At this moment, SpotInstr supports using
regular expression to include or exclude functions, basic
blocks in which will be included or excluded.

3.4. Static Binary Rewriting for PE File. In this paper, we
support both trampoline and inline mode to instrument
code snips. )e trampoline technology to realize static bi-
nary rewriting, which means a 5-byte jump instruction will
replace origin codes and redirect the control flow to a
trampoline. )is technology has obvious advantages: sim-
pler, faster, more stable, more reliable, and lightweight.
Figure 4 shows the PE file structures for non-instrumented
and instrumented binaries.

PE structure (32 bit or 64 bit) auto detect: the SpotInstr
back-end supports both PE32 and PE64, as shown in Fig-
ure 5, and there is no need for user intervention. In order to
realize this detector, we build a PE file parser for both PE32
and PE64, with which the SpotInstr can recognize the PE
structure before doing any instrument. )is work greatly
improves the usability of the tool.

3.4.1. Building the Trampoline Segment. )e trampoline
segment is used to store all the trampoline code snippets.
According to our implementation, each memory point
should have its own trampoline code snippet. )e size of this
segment should be calculated according to account of
memory points and the flag of this segment should be set to
EXECUTE_READ.

3.4.2. Building the Feedback Segment. )e feedback segment
is used to store feedback data (e.g., execution path bitmap),
which will be used by the fuzzer. In this paper, we inherit the
feedback data structure from WinAFL. In addition to this,
the feedback segment also holds a size field which indicates
the size of the extra feedback segment. We use the extra
feedback segment for records linear basic block coverage
information when user turns it on. )e linear basic block
coverage information can be used for lighthouse in IDA Pro.

3.4.3. Building the Local Storage Segment. )e local storage
segment or TLS segment is used to isolate storage between

threads. )at means each thread will maintain a TLS seg-
ment for local data storage. We use this segment to hold the
last basic block address and the jump back address for re-
sume the origin control flow. So, even if the target is multi-
thread program, the execution paths for each thread will not
be confused.

3.4.4. Updating the Relocation Table. )e relocation table is
very important for PE file to calculate the right addresses.
)e instrumentation moves the original code to trampoline
which make the original relocation information is no longer
correct. After all memory points have been processed by the
SpotInstr, the relocation table should be updated to fix all
relative addresses in trampolines. )e trampolines locate in
the new segment, that means the virtual address may exceed
the relocation table. So, the simplest way to correct the
relocation table is to add some new entries at the end of the
table. )e old entries for addresses in replaced instructions
must be deleted to avoid relocation breaking the jump in-
structions. In summary, updating the relocation table should
have 2 processing stages: the cleaning stage and the inserting
stage.

3.4.5. Updating Global Fields and Checksum. After all the
processes above have been finished, we should update some
global fields in PE header, such as BaseRelocRva and
BaseRelocSize. Before updating the checksum, the old one
must be reset to 0.

3.5. FuzzingFrameworkwith the Static Instrument. )e latest
version of WinAFL supports instrumenting a binary via
syzygy statically, but syzygy only provides a framework able
to decompose PE32 binaries with full PDB.)at is useless for
most COTS software, even the Windows components rarely
have a private symbols file. So, we have to abandon syzygy
and replaced it with our SpotInstr.

3.5.1. General Fuzzing. If the target binary can be loaded
normally, SpotFuzzer will use the general fuzzing frame-
work. First, SpotInstr instruments the target binary stati-
cally. )en, we use a helper program to load the
instrumented module, and it collects and sends feedback to
SpotFuzzer. Finally, the fuzz engine generates new test cases
based on the feedback. )is general fuzzing framework
should be suitable for most software. Figure 6 shows the
general fuzzing framework.

3.5.2. Agent-Based Fuzzing. If the target is a service on
Windows or cannot be loaded normally, SpotFuzzer will
inject an agent into the target process. )e agent use named
pipe to communicate with SpotFuzzer, and once injected it
will register an exception handler to catch crash information.
Figure 7 shows the agent-based fuzzing framework.

Security and Communication Networks 5



4. Evaluation

In this section, we evaluate scalability of SpotInstr, speed,
and overhead compare to pe-afl. We also evaluate perfor-
mance of SpotFuzzer on some Windows COTS software.

4.1. Instrument Scalability. We evaluate SpotInstr on several
widely used software packages on Windows, such as 7z,
notepad++, WinRAR, and 010editor. We also choose some
system component additionally. Table 1 shows a list of all
successfully instrumented binaries on Windows.

Helper
program

load testcase
Fuzzer

Mutator

Core engine

Storage

data 
parse

Command pipe

feedback

Instrumented
dll

Figure 6: Framework of general fuzzing.

Target 

Agent

testcase
Fuzzer

Mutator

Core engine

Storage
loaddata 

parse
feedback

Command pipe

inject

Instrumented
dll

Figure 7: Framework of agent-based fuzzing.

D
os

H
ea

de
r

N
T 

H
ea

de
r

Se
ct

io
n 

H
ea

de
r

.te
xt

 se
ct

io
n

.d
at

a s
ec

tio
n

.rc
rc

 se
ct

io
n

.re
lo

c s
ec

tio
n

D
os

H
ea

de
r

N
T 

H
ea

de
r

Se
ct

io
n 

H
ea

de
r

.te
xt

 se
ct

io
n

.d
at

a s
ec

tio
n

.rc
rc

 se
ct

io
n

.re
lo

c s
ec

tio
n

Ab
an

do
ne

d

.te
xt

2 
se

ct
io

n
tra

m
po

lin
e c

od
e

.co
v1

 se
ct

io
n

fee
db

ac
k 

da
ta

 

.co
v2

 se
ct

io
n

lin
ea

r c
ov

er
ag

e

.re
lo

c s
ec

tio
n

ne
w

 re
lo

c d
at

a

Origin
PE file

New
PE file

Figure 4: Windows PE file structures.

50 00 4C 01 05 00 1A 6A 65 60 00 00 00 00
00

45 00
00 00 00 E0 00 02 01 0B 01 0E 1C 00 32 00 00

50 45 00 64 86 0A 00 4D 81 65 60 00 00 
00

00
00 00 00 0B 02 0E 1C 00 7C

NT header 
for PE32

NT header 
for PE64

Machine type
Image magic

F0 00 22 00
00 00
00 00

Figure 5: Flags in NT header for PE32 and PE64.

6 Security and Communication Networks



)e results show that our tool can correctly instrument
all these executable program or dynamic libraries, while pe-
afl can work on a part of them and syzygy can instrument
none of them. )e main problem for pe-afl is that it is not
reliable enough for some real-world programs. Syzygy need
private pdb file for the target. )at means syzygy supports
only targets with source code, one can recompile it and
generate the .pdb file.

Besides, we also compare some usable features, such as
instrument mode, target architecture, thread mode, .pdb file
dependence, and selective instrumentation. Jump mode is
more light weight than inline mode, it will be more stable
and efficiency to instrument a huge target with selective
Instrumentation. For programs that contain only one
parsing thread, single-thread mode can reduce runtime
overhead significantly than multi-thread mode. Selective
Instrumentation make researchers able to focus on more
interesting areas. Table 2 shows the features supported by
SpotInstr and other tools.

4.2. Instrumentation Performance. We try to compare
SpotInstr with other tools, such as pe-afl and syzygy. As
mentioned before, pe-afl supports a part of PE32 binaries,
and syzygy supports only PE32 binaries with private sym-
bols. We can hardly find COTS software that meets the
requirements. We have to remove syzygy from the perfor-
mance evaluation. In order to make the comparison more
meaningful, we only choose PE32 binaries which can be both
instrumented successfully by SpotInstr and pe-afl. Table 3
shows the binaries chosen for testing. )e smallest one is
archive.dll with about 176KB, and the biggest is mpengi-
ne.dll with about 11MB.

To evaluate the instrumentation performance, we design
three tests: output size, time cost, and execution overhead.
Before testing, we first measure the size of each binary and
write a plugin for IDA Pro to calculate the number of basic
blocks in each binary. Table 2 also lists the basic block counts
of PE binaries chosen for testing. )e smallest one named
archive.dll, which has less than 9,000 basic blocks. )e
mpengine.dll is the core engine of Microsoft Malware
Protection service, which is the biggest and contains more
than 590,000 basic blocks.

First, we compare the count of basic blocks instrumented
by SpotInstr and pe-afl. Table 4 shows the count of basic
blocks instrumented by different tools. On all test programs,
SpotInstr can instrument about 20% more basic blocks with

its inline mode than pe-afl. But for jump mode, SpotInstr
instruments a little fewer basic block than pe-afl. )at is
because jump mode supports only a basic block with more
than 5 bytes to hold the jump instruction.

Second, we compare the size of the output binaries of
SpotInstr and pe-afl. We use SpotInstr and pe-afl to in-
strument all these programs with their default setting and
collect the size of instructed binaries. Figure 8 shows the
sizes of programs instrumented by different tools or with
different mode. We find that our tool did a little better than
pe-afl on most binaries. While working on some small bi-
naries, SpotInstr and pe-afl performed almost the same. We
find that different instrumentation modes have a significant
impact on the size of the instrumented file. Jump mode
always generates smaller output files than inline mode, and
the average size reduction is about 10%. Compare to the raw
inline mode, if we turn on selective instrumentation, the
average size reduction is about 42%. For jump mode, the
same selective instrumentation will cause the reduction to
57%.

)ird, we compare the efficiency of the tools. Figure 9
shows the time of instrumentation spent by SpotInstr and
pe-afl. Obviously, SpotInstr spends much less time than pe-
afl in all tests. Pe-afl took 5x∼10x more time than SpotInstr
on some small binaries, such as archive.dll, 7za.dll, gdi32.dll,
and eqnedit32.exe. Pe-afl took 30x∼100x more time than
SpotInstr on some bigger binaries, such as rar.exe, jscrip.dll,
7za.exe, and cmake.exe. It is worth noting that pe-afl spend
more than 1 hour and finally result in an error when
instrumenting on mpengine.dll.

At last, we compare the execution time between original
programs, static instrumented ones, and dynamic instru-
mented ones. To figure out the execution overhead caused by
instrumenting, we select some typical programs for testing.

Table 1: Binaries list for the scalability test.

Binary Vender Architecture SpotInstr pe-afl syzygy
7za.exe 7-Zip PE32 ✓ ✓ 7

notepad++.exe Notepad++ PE32 ✓ 7 (crash) 7

rar.exe RarLab PE32 ✓ 7 (crash) 7

010Editor.exe SweetScape PE32 ✓ 7 (crash) 7

cmake.exe CMake PE32 ✓ ✓ 7

jscript.dll Windows PE32 ✓ ✓ 7

imagingengine.dll Windows PE32 ✓ ✓ 7

gdi32.dll Windows PE32 ✓ ✓ 7

mpengine.dll Windows PE32 ✓ 7 (failed) 7

Table 2: Instrumentation features.

Binary SpotInstr pe-afl syzygy
Inline mode ✓ ✓ ✓
Jump mode ✓ 7 7

Support 32 bit ✓ ✓ ✓
Support 64 bit ✓ 7 7

Single-thread mode ✓ ✓ 7

Multi-thread mode ✓ ✓ ✓
PDB file independent ✓ ✓ 7

Selective instrumentation ✓ 7 7

Security and Communication Networks 7



For the convenience of comparison, we try to make the
baseline parsing time of input data close to each other. So, we
choose the appropriate input data to feed to the instru-
mented software. In this test, we also add DynamoRIO to
show the dynamic instrumentation’s overhead. Figure 10
shows the average execution time of 10 runs with different
instrumentation type. According to the result, the overhead
of the static instrumentation is much less than the dynamic
one. Specifically, the average execution overhead of Spo-
tInstr-inline is about 17%, whereas the overhead of pe-afl is
about 13%. )e main reason for this small gap is that
SpotInstr-inline instrument more basic blocks than pe-afl.
When we use selective instrumentation, as shown by Spo-
tInstr-inline-select in the picture, the overhead reduces to
2.6%.

Since static instrumentation avoids the translation of
instructions, the runtime overhead is significantly lower
than dynamic instrumentation. )e runtime overhead for
static instrumentation depends mainly on the number of
instrumented basic blocks. As a result, SpotInstr-inline,
which instruments more points, has a slightly higher run-
time overhead than pe-alf. However, SpotInstr-inline-select,
which instruments fewer basic blocks by selective instru-
mentation, has a significantly lower runtime overhead.

4.3. Fuzzing Performance. We measured the fuzzing per-
formance from three aspects, including fuzzing speed, ex-
ecution paths, and unique crashes. )eWinAFL was used as
our baseline method. )e SpotFuzzer leverages SpotInstr to
make instrumentation on target program. To look closely at
the effect of different instrumentation options on fuzzing, we
built SpotFuzzer with different instrumentation modes. As a
result, we got four tools, namely SpotFuzzer-inline, Spot-
Fuzzer-inline-select, SpotFuzzer-jump, and SpotFuzzer-
jump-select. In which, “inline” and “jump” stand for the
instrumentation modes, “select” means the tool uses se-
lective instrumentation.

As the use of WinAFL with syzygy is limited, it cannot
work onmost COTS software.We use the dynamic mode for
WinAFL instead. In order to test WinAFL, we choose 7za.dll
as the fuzzing target, which can run correctly under all these
fuzzers.

To compare the fuzzing speed between the fuzzers, we
observe the number of execution samples within a certain
period. Figure 11 shows the total samples tested over time
and fuzzing speed for SpotFuzzer and WinAFL. )ere is no
doubt that all the static instrumentation methods have better
performance than WinAFL. We can see that target instru-
mented with inline mode run much faster than jump mode

Table 4: Basic blocks instrumented by different tools.

Binary
Basic blocks count

pe-afl SpotInstr -select -jump -jump-select
archive.dll 7660 8652(↑13%) 880 6645 826
7za.dll 9452 11951(↑26%) 2117 8454 1953
gdi32.dll 14003 16781(↑20%) 1202 12569 1154
eqnedit32.exe 10040 14448(↑44%) 947 12255 920
rar.exe 21744 25455(↑17%) 2816 18731 2701
jscript.dll 29444 34988(↑19%) 4964 27421 4856
7za.exe 30946 38326(↑24%) 6531 26892 6137
imagingengine.dll 70224 81110(↑16%) 8738 62914 8479
winrar.exe 54317 64553(↑19%) 7311 48382 6972
notepad++.exe 64147 82095(↑28%) 7594 61113 7214
jscript9.dll 138731 172194(↑24%) 26519 130506 24301
cmake.exe 261180 312399(↑20%) 28683 234899 27510
mpengine.dll 346443 594481(↑72%) 43284 315238 40766

Table 3: Binaries list for performance test.

Binary Size (KB) Architecture GUI Description
archive.dll 176 PE32 No Library for libarchive
7za.dll 269 PE32 No Library for 7-zip
gdi32.dll 304 PE32 No Library for Windows GDI
eqnedit32.exe 524 PE32 Yes Formula editor used by MS Word
rar.exe 568 PE32 No Command line tool for WinRAR
jscript.dll 670 PE32 No Microsoft javascript engine
7za.exe 723 PE32 No Command line tool for 7-zip
imagingengine.dll 1810 PE32 No Microsoft image engine
winrar.exe 2433 PE32 Yes WinRAR GUI program
notepad++.exe 3005 PE32 Yes Notepad++ GUI program
jscript9.dll 3779 PE32 No Microsoft javascript engine
cmake.exe 7865 PE32 No Command line tool for CMake
mpengine.dll 11281 PE32 No Microsoft malware protection engine

8 Security and Communication Networks



as expected, which is because jump mode introduces a large
number of additional call instructions. However, the in-
teresting thing is that the combination of jump mode and
selective instrumentation makes the target surprisingly fast.

Figure 12 shows the total paths and unique crashes
discovered by the fuzzers. As we can see, all SpotFuzzers
discovered more paths than WinAFL profit from its high

instrumentation rate and fast fuzzing speed. Not surpris-
ingly, tools use selective instrumentation discover less paths
than full instrumentation, that is because fewer basic blocks
mean fewer paths.

)emost important performance for a fuzzer is its ability
to discover vulnerabilities. Figure 12 shows that all Spot-
Fuzzers find more crashes than WinAFL, especially in the

0 M

5 M

10 M

15 M

20 M

25 M

30 M

35 M

40 M

45 M

origin
pe-afl
SpotInstr-inline

SpotInstr-jump
SpotInstr-inline-select
SpotInstr-jump-select

ar
ch

iv
e.d

ll

7z
a.d

ll

gd
i3

2.
dl

l

eq
ne

di
t3

2.
ex

e

jsc
rip

t.d
ll

ra
r.e

xe

7z
a.e

xe

im
ag

in
ge

ng
in

e.d
ll

no
te

pa
d+

+.
ex

e

w
in

ra
r.e

xe

jsc
rip

t9
.d

ll

cm
ak

e.e
xe

m
pe

ng
in

e.d
ll

Figure 8: Size of original and instrumented binaries.

1

10

100

1000

10000

SpotInstr
pe-afl

ar
ch
iv
e.d

ll

7z
a.d

ll

gd
i3
2.
dl
l

eq
ne
di
t3
2.
ex
e

jsc
rip

t.d
ll

ra
r.e

xe

7z
a.e

xe

im
ag
in
ge
ng

in
e.d

ll

no
te
pa
d+

+.
ex
e

w
in
ra
r.e

xe

jsc
rip

t9
.d
ll

cm
ak
e.e

xe

m
pe
ng

in
e.d

ll

Figure 9: Time cost of instrumentation.

Security and Communication Networks 9



early time of fuzzing.)emain reason is that SpotFuzzer has
faster execution speed than WinAFL and discovers more
execution paths. Although selective instrumentation has
much fewer instrumented basic blocks than full instru-
mentation, it still achieved good fuzzing performance thanks
to the faster execution speed and the memory-related se-
lective instrumentation.

)e unique crashes are not equal to unique vulnera-
bilities. After some analyze, we find that a high proportion of
the unique crashes cause by the same vulnerable. )is
problem becomes more serious when more basic blocks
selected for instrumentation. As shown in Table 5, all fuzzers
can find a lot of unique crashes, but among which only a few
are unique vulnerabilities. Despite this, our tools foundmore
unique crashes than WinAFL.

5. Discussion

5.1. Instrument Basic Block Coverage. In this paper, when
SpotInstr works on trampoline mode, a 5-byte jump in-
struction is chosen to fill the memory point for instru-
mentation, which means the points contains room less than
5 bytes will not be instrumented. According to our test data,
we find such points will less than 10% of the total. We use the
neighbor instruction to expand the point’s room, which
alleviates the problem to a certain degree. But there are still
several ones left and cannot be instrumented. We notice that
e9patch [21] try to reuse the instruction’s origin bytes to
construct a valid jump instruction. But that may cause a high
virtual memory usage and make the process of instru-
mentation much more complex.

6

10

14

18

22

26

30

origin
spotInstr-inline
spotInstr-inline-select
spotInstr-jump

spotinstr-jump-select
pe-afl
dynamorio

ar
ch
iv
e.d

ll

7z
a.d

ll

jsc
rip

t.d
ll

7z
a.e

xe

tu
rb
oj
pe
g.
dl
l

cm
ak
e.e

xe

Figure 10: Execution time with different instrumentation types.

0 M

2 M

4 M

6 M

8 M

10 M

12 M

14 M

spotFuzzer-inline
spotFuzzer-inline
-select
spotFuzzer-jump

spotFuzzer-jump
-select
WinAFL-
DynamoRIO

Sa
m

pl
es

Time (h)

0

200

400

600

800

1000

1200

1400

1600

spotFuzzer-line
spotFuzzer-line-
select
spotFuzzer-jump

spotFuzzer-jump
-select
WinAFL-
DynamoRIO

Sp
ee

d 
(r

/s
)

Time (h)
0 2 4 0 2 4 6

Figure 11: Number of total samples and fuzzing speed.

10 Security and Communication Networks



5.2. Static Instrumentation on Windows Kernel. )e static
instrumentation technology introduced in this paper should
work with all Windows binaries. In theory, SpotInstr can
instrument the Windows kernels, with the help of which,
researchers can analyze or fuzzing theWindows kernel more
efficiently.

5.3. Expanding the Usage of Static Instrument. Lots of re-
searches [24, 25] have indicated that program instrumen-
tation plays a very important role in program analysis.
Program instrumentation can be used to memory access
analysis [26], program behavior analysis [27], data structure
recovery [28], and vulnerability mining [22], etc. But most of
them are target to Linux or open-source software, there is
little research on Windows binaries. We believe that a
simple, stable, and usable static instrumentation tool is a
good start for Windows binary analysis.

SpotFuzzer suffers from several limitations. First, it is
currently restricted to Windows since we have only
implemented the PE parsing module. Second, as the static
instrumentation is designed for x86 binaries, SpotFuzzer is
not applicable for across architectures. )ird, the static
instrumentation can only be used for binary fuzzing for now.

6. Related Works

In this section, we discuss the related work that are both
complementary and orthogonal to our efforts in binary
rewriting and fuzzing.

6.1. Binary Rewriting. )e rewriting technology can be
traced back to 1990s. At that time, the binary rewriting was
mainly used to analyze or optimize the performance of
programs, and almost all the tools like ATOM [29], QPT
[30], EEL [31], and Etch [32] relied on static rewriting. After
2000, dynamic rewriting has become the mainstream re-
search direction. A lot of successful tools appeared one by
one: Dyninst [33], Vulcan [34], Vulgrind [35], DynamoRIO,
PIN [35], QEMU, etc. Static rewriting has become a hot
research direction again since 2010. At that time, new
technology like reassembling was used to regenerate a bi-
nary. Tools like PEBIL [36], SecondWrite [37], BISTRO [38],
Uroboros [39], Ramblr [40], Multiverse [41], RetroWrite,
and E9Patch did a lot of work in theory and observation of
static rewriting. )roughout all the static rewriting tools, we
find that most of them are for Linux or Unix-like system.
Only Etch are designed for Windows binaries, but it is too
old for the modem operating system.

6.2. Fuzzing. Fuzzing is currently the most popular vul-
nerability discovery technique. Fuzzing was first proposed
by Barton Miller at the University of Wisconsin in 1990s
[42]. We find that AFL made Coverage-based grey-box
fuzzing so popular and almost created a new fuzzing area.
Lots of fuzzing tools developed upon AFL like AFL++ [43],
AFLGo [9], AFLPIN [44], AFLSmart [45], FastAFLGo [10],
and StFuzzer [46]. But for Windows the picture was very
different: AFL first released in 2013, while WinAFL released
in 2016. WinAFL use DynamoRIO to fetch feedback during

0

200

400

600

800

1000

1200

1400

Pa
th

s

0
5

10
15
20
25
30
35
40
45
50

Cr
as

he
s

spotFuzzer-inline
spotFuzzer-inline
-select
spotFuzzer-jump

spotFuzzer-jump
-select
WinAFL-
DynamoRIO

Time (h)

spotFuzzer-line
spotFuzzer-line-
select
spotFuzzer-jump

spotFuzzer-jump
-select
WinAFL-
DynamoRIO

Time (h)
0 2 4 6 0 2 4 6

Figure 12: Number of total paths and unique crashes.

Table 5: Unique crashes versus unique vulnerabilities.

Target
SpotFuzzer

WinAFL
inline inline + select jump jump+ select

Instrument BBs 11951 2117 8454 1953 -
Execution paths 1127 993 1271 894 813
Unique crashes 32 25 46 28 17
Unique vulns 3 4 3 4 2

Security and Communication Networks 11



execution, and its static mode based on syzygy almost un-
usable. )en, pe-afl was released for fuzzing Windows bi-
naries, but only for PE32. In our experiments, pe-afl may
cause some problem errors and made the target crash ab-
normally. We can hardly find a tool that can fuzzing
Windows COTS software with static instrument.

7. Conclusion and Future Work

In this paper, we design two handy tools for instrumentation
and fuzzing Windows binaries. )e SpotInstr is a static
instrumentation tool for Windows binaries without source
code. It provides trampoline and inline mode for different
usage scenario, and supported both PE32 and PE64. In other
words, SpotInstr can instrument almost any binary on
Windows. )e SpotFuzzer was designed for fuzzing Win-
dows COTS software. For general program, SpotFuzzer
provides general fuzzing mode just like WinAFL. But for
abnormal targets, like system service or kernel module,
SpotFuzzer can switch to agent mode, and inject an agent to
the target for fuzzing. What is more, we develop a memory-
related selective instrumentation method for SpotInstr,
which can reduce execution overhead and locate vulnera-
bilities faster.

All the algorithms used in SpotInstr are also applicable
for other platforms such as Linux. In the future, we will try to
support other platforms. As SpotInstr can instrument ar-
bitrary code into the target binary, we plan to investigate the
possibility of applying SpotInstr to different analysis works
such as taint analysis, binary debugging, and software be-
havior identification for binaries.

Data Availability

)e binaries used for testing in this paper are open-source
software, commercial software, or operating systemmodules
that are available from public sources.

Conflicts of Interest

)e authors declare that they have no conflicts of interest
regarding the present study.

Acknowledgments

)is work was supported by the National Key Research and
Development Project (2019QY1305).

References

[1] L. Chen, C. Yang, F. Liu, D. Gong, and S. Ding, “Automatic
mining of security-sensitive functions from source code,”
Computers, Materials & Continua, vol. 56, no. 2, pp. 199–210,
2018.

[2] V. J. Manès, H. Han, C. Han et al., “)e art, science, and
engineering of fuzzing: a survey,” 2018, https://arxiv.org/abs/
1812.00140.

[3] M. Zalewski, “American fuzzy lop,” 2013, http://lcamtuf.
coredump.cx/afl/.

[4] Peach.tech, “Peach fuzzer platform,” 2015, https://www.
peach.tech/wp-content/uploads/Peach-Fuzzer-Platform-
Primer-DataSheet-Oct2015.pdf.

[5] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and
T. Holz, “KAFL: hardware-assisted feedback fuzzing for OS
kernels,” in Proceedings of the USENIX Security Symposium
2017, pp. 167–182, Vancouver, BC, Canada, August 2017.

[6] V. Pham, M. Böhme, and A. Roychoudhury, “AFLNET: a
greybox fuzzer for network protocols,” in Proceedings of the
2020 IEEE 13th International Conference on Software Testing,
Validation and Verification ICST, pp. 460–465, Porto, Por-
tugal, October 2020.

[7] X. Li, X. Pan, and Y. Sun, “Ps-fuzz: efficient graybox firmware
fuzzing based on protocol state,” Journal of Artificial Intel-
ligence, vol. 3, no. 1, pp. 21–31, 2021.

[8] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun,
“FIRM-AFL: high-throughput greybox fuzzing of IoT firm-
ware via augmented process emulation,” in Proceedings of the
USENIX Security Symposium 2019, pp. 1099–1114, Santa
Clara, CA, USA, August 2019.

[9] M. Böhme, V. T. Pham,M. D. Nguyen, and A. Roychoudhury,
“Directed greybox fuzzing,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security, Dallas TX USA, November 2017.

[10] C. Du, T. Jin, Y. Guo, B. Jia, and B. Li, “FastAFLGo: toward a
directed greybox fuzzing,” Computers, Materials & Continua,
vol. 69, no. 3, pp. 3845–3855, 2021, 3.

[11] F. Bellard, “QEMU, a fast and portable dynamic translator,” in
Proceedings of the USENIX Annual Technical Conference,
FREENIX Track, Anaheim, CA, USA, April 2005.

[12] I. Fratric, “WinAFL,” 2016, https://github.com/googleprojectzero/
winafl.

[13] D. L. Bruening, “Efficient, transparent, and comprehensive
runtime code manipulation,” 2004, https://github.com/
DynamoRIO/dynamorio.

[14] Hex-rays, “IDAPro,” 2021, https://hex-rays.com/ida-pro/.
[15] Intel, “Intel® 64 and IA-32 architectures software developer’s

manual,” 2021, https://www.intel.com/content/dam/.
[16] S. Porst, “PeLib,” 2004, https://github.com/sporst/PeLib.
[17] L. Leong, “Pe-afl,” 2018, https://github.com/wmliang/pe-afl.
[18] C. Hamilton, S. Ásgeirsson, and S. Marchand, “Syzygy,” 2014,

https://github.com/google/syzygy.
[19] J. Jung, S. Tong, H. Hu, J. Lim, Y. Jin, and T. Kim, “WINNIE:

fuzzing Windows applications with harness synthesis and fast
cloning,” in Proceedings of the Network and Distributed
System Security Symposium (NDSS) 2021, February 2021.

[20] H. Patil, R. S. Cohn, M. Charney, R. Kapoor, A. Sun, and
A. Karunanidhi, “Pinpointing representative portions of large
intel® itanium® programs with dynamic instrumentation,” in
Proceedings of the 37th Annual International Symposium on
Microarchitecture (MICRO-37 2004), pp. 81–92, IEEE Com-
puter Society, Portland, OR, USA, December 2004.

[21] G. J. Duck, X. Gao, and A. Roychoudhury, “Binary rewriting
without control flow recovery,” in Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and
Implementation, London UK, June 2020.

[22] D. Sushant, N. Burow, D. Xu, and M. Payer, “RetroWrite:
statically instrumenting COTS binaries for fuzzing and san-
itization,” in IEEE Symposium on Security and Privacy,
pp. 1497–1511, San Francisco, CA, USA, May 2020.

[23] S. Österlund, K. Razavi, H. Bos, and C. Giuffrida, “ParmeSan:
sanitizer-guided greybox fuzzing,” in Proceedings of the
USENIX Security Symposium, Boston, MA, USA, August
2020.

12 Security and Communication Networks

https://arxiv.org/abs/1812.00140
https://arxiv.org/abs/1812.00140
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://www.peach.tech/wp-content/uploads/Peach-Fuzzer-Platform-Primer-DataSheet-Oct2015.pdf
https://www.peach.tech/wp-content/uploads/Peach-Fuzzer-Platform-Primer-DataSheet-Oct2015.pdf
https://www.peach.tech/wp-content/uploads/Peach-Fuzzer-Platform-Primer-DataSheet-Oct2015.pdf
https://github.com/googleprojectzero/winafl
https://github.com/googleprojectzero/winafl
https://github.com/DynamoRIO/dynamorio
https://github.com/DynamoRIO/dynamorio
https://hex-rays.com/ida-pro/
https://www.intel.com/content/dam/
https://github.com/sporst/PeLib
https://github.com/wmliang/pe-afl
https://github.com/google/syzygy


[24] A. Ashish and J. Aghav, “Automated techniques and tools for
program analysis: Survey,” in Proceedings of the Fourth In-
ternational Conference on Computing, Communications and
Networking Technologies (ICCCNT), pp. 1–7, Tiruchengode,
India, July 2013.

[25] A. Gosain and G. Sharma, “A survey of dynamic program
analysis techniques and tools,” in Proceedings of the 3rd In-
ternational Conference on Frontiers of Intelligent Computing:
Beory and Applications FICTA, Bhubaneswar, Odisa, India,
November 2014.

[26] P. Godefroid and J. Kinder, “Proving memory safety of
floating-point computations by combining static and dynamic
program analysis,” in Proceedings of the 19th international
symposium on Software testing and analysis ISSTA ‘10, Trento
Italy, July 2010.

[27] D. Boardman, G. Greene, V. Khandelwal, and A. P. Mathur,
“LISTEN: a tool to investigate the use of sound for the analysis
of program behavior,” in Proceedings of the Nineteenth An-
nual International Computer Software and Applications
Conference, pp. 184–189, Dallas, TX, USA, August 1995.

[28] A. Slowinska, T. Stancescu, and H. Bo, “Howard: a dynamic
excavator for reverse engineering data structures,” in Pro-
ceedings of the Network and Distributed System Security
Symposium NDSS, San Diego, CA, USA, February 2011.

[29] A. Srivastava and A. Eustace, “Atom: a system for building
customized program analysis tools,” in Proceedings of the
ACM SIGPLAN 94 Conference on Programming Language
Design and Implementation, pp. 196–205, Orlando Fl USA,
June 1994.

[30] J. R. Larus and T. Ball, “Rewriting executable files to measure
program behavior,” Software: Practice and Experience, vol. 24,
no. 2, pp. 197–218, 1994.

[31] J. R. Larus and E. Schnarr, “EEL: machine-independent ex-
ecutable editing,” ACM SIGPLAN Notices, vol. 30, no. 6,
pp. 291–300, 1995.

[32] T. Romer, G. Voelker, D. Lee et al., “Instrumentation and
optimization of win32/intel executables using Etch,” in Pro-
ceedings of the USENIX Windows NT Workshop, pp. 1–7,
Seattle, WA, USA, August 1997.

[33] B. R. Buck and J. K. Hollingsworth, “An api for runtime code
patching,” International Journal of High Performance Com-
puting Applications, vol. 14, no. 4, pp. 317–329, 2000.

[34] A. Srivastava, A. Edwards, and H. Vo, “Vulcan: binary
transformation in a distributed environment,” Technical
Report MSR-TR-2001-50, Microsoft Research, Redmond,
Washington, 2001.

[35] N. Nethercote and J. Seward, “Valgrind: a framework for
heavyweight dynamic binary instrumentation,” in Proceedings
of the ACM SIGPLAN 2007 Conference on Programming
Language Design and Implementation PLDI, San Diego, CA,
USA, June 2007.

[36] M. A. Laurenzano, M.M. Tikir, L. Carrington, and A. Snavely,
“PEBIL: efficient static binary instrumentation for Linux,” in
Proceedings of the 2010 IEEE International Symposium on
Performance Analysis of Systems & Software (ISPASS),
pp. 175–183, White Plains, NY, USA, March 2010.

[37] P. O’Sullivan, K. Anand, A. Kotha, M. Smithson, R. Barua, and
A. D. Keromytis, “Retrofitting security in COTS software with
binary rewriting,” in Proceedings of the 26th IFIP TC Inter-
national Information Security Conference. (SEC), pp. 154–172,
Copenhagen, Denmark, June 2011.

[38] Z. Deng, X. Zhang, and D. Xu, “BISTRO: binary component
extraction and embedding for software security applications,”

in Proceedings of the 18th European Symposium on Research in
Computer Security, Egham U.K, September 2013.

[39] S. Wang, P. Wang, and D. Wu, “Reassembleable disassem-
bling,” in Proceedings of the USENIX Security Symposium
2015, pp. 627–642, Austin, TX.USA, August 2015.

[40] R.Wang, Y. Shoshitaishvili, A. Bianchi et al., “Ramblr: making
reassembly great again,” in Proceedings of the 24th Annual
Network and Distributed System Security Symposium, NDSS
2017, San Diego, CA, USA, March 2017.

[41] E. Bauman, Z. Lin, and K. W. Hamlen, “Superset disassembly:
statically rewriting x86 binaries without heuristics,” in Pro-
ceedings of the 25th Annual Network and Distributed System
Security Symposium, NDSS 2018, Diego, CA, USA, February
2018.

[42] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of
the reliability of UNIX utilities,”Communications of the ACM,
vol. 33, no. 12, pp. 32–44, 1990.

[43] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++:
combining incremental steps of fuzzing research,” in Pro-
ceedings of the 14th USENIX Workshop on Offensive Tech-
nologies (WOOT 20), USENIX Association, Boston, MA,
USA, August 2020.

[44] Mothran, “Aflpin,” 2015, https://github.com/mothran/aflpin.
[45] V. Pham, M. Böhme, A. E. Santosa, A. R. Caciulescu, and

A. Roychoudhury, “Smart greybox fuzzing,” IEEE Transac-
tions on Software Engineering, vol. 47, pp. 1980–1997, 2019.

[46] J. Yang, X. Zhang, H. Lu, M. Shafiq, and Z. Tian, “StFuzzer:
contribution-aware coverage-guided fuzzing for smart de-
vices,” Security and Communication Networks, vol. 2021,
Article ID 1987844, 15 pages, 2021.

Security and Communication Networks 13

https://github.com/mothran/aflpin

