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Mobile edge computing (MEC) provides physical resources closer to end users, becoming a good complement to cloud
computing. The booming MEC brings many multiobjective optimization problems. The paper proposes a multiobjective op-
timization (MOO) algorithm called SAMOACO)y, which provides a new choice for solving MOO problems of MEC. We
improve the ACOyy algorithm that is only suitable for solving mixed-variable single-objective optimization (SOO) problems and
propose a MOACOy,y algorithm suitable for solving mixed-variable MOO problems. And aiming at the dependence of
MOACOyy algorithm performance on parameter setting, we proposed the SAMOACOyy algorithm using a self-adaptive
parameter setting scheme. Furthermore, the paper also designs some mixed-variable MOO benchmark problems for the purpose
to test and compare the performance of the SAMOACOyy algorithm. The experiments indicate that the SAMOACOy\y
algorithm has excellent comprehensive performance and is an ideal choice for solving mixed-variable MOO problems.

1. Introduction

In recent years, mobile edge computing (MEC), as a
powerful computing paradigm, provides sufficient com-
puting resources for the internet of things (IoT) [1]. Edge
computing extends traditional cloud services to the edge
of the network and closer to users and is suitable for
network services with low latency requirements. There are
many multiobjective optimization (MOO) problems in
MEQC, and the research on MOO for MEC is also a hot
topic. Liu et al. [1] propose a multiobjective resource
allocation method, named MRAM, and the method is
leveraged to optimize the time cost of IoT applications,
load balance, and energy consumption of MEC servers.
Huang et al. [2] present a multiobjective whale optimi-
zation algorithm (MOWOA) based on time and energy
consumption to solve the optimal offloading mechanism
of computation offloading in MEC. Fan et al. [3] propose
an algorithm based on particle swarm optimization (PSO)
to solve the MOO of the container-based microservice
scheduling, aiming to optimize network latency among

microservices, reliability of microservice applications, and
load balancing of the cluster.

Xu et al. [4] present a multiobjective computation oft-
loading method (MOC) for internet of vehicles (IoV) in
MEC to realize the multiobjective optimization of decreasing
the load balancing rate and reduce the energy consumption
in ECDs and shorten the time during processing the
computing tasks.

This paper studies the multiobjective optimization al-
gorithm, which provides a new choice for MOO in MEC.
The classic MOO algorithm converts the multiple objective
function values into a single value according to certain rules
and then applies single-objective optimization algorithms to
solve them [5]. There are three common converting rules [6]:
weighted sum of multiple objective function values, calcu-
lating the distance between the objective function value
vector and a given decision vector and finding the maximum
value of the relative difference between the respective ob-
jective function values and their corresponding given values.
The classic MOO algorithm is essentially a single-objective
optimization algorithm, which cannot really solve the MOO
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problem. Most of the modern MOO algorithms are heuristic
algorithms that can find the Pareto solution set. Some fa-
mous algorithms are NSGA-II [7], SPEA2 [8], PAES [9], and
NSGA-III [10] based on an evolutionary algorithm; SMPSO
[11] and OMOPSO [12] based on particle swarm algorithm;
GDE3 [13], MOEAD [14], and MOEA/D-IEpsilon [15]
based on differential evolution algorithm; MOACO [16],
P-ACO [17], MACS [18], Monaco [19], and SACO [20]
based on ant colony algorithm; and so on. Other heuristic
MOO algorithms include: MOO algorithms based on
simulated annealing, tabu search and immune algorithms,
and new algorithms obtained by improving or mixing
various algorithms. According to the no free lunch (NFL)
theorems in [21], when dealing with MOO problems, the
average performance of various algorithms is the same, but
the algorithms can show different performances for different
optimization problems. Therefore, it is another hot spot for
scholars to study the applicable algorithms for specific
optimization problems or to study the applicable problems
according to the characteristics of optimization algorithms.

Refer to the literature [22] for the classification of op-
timization problems, MOO problems can be divided into
four categories according to whether their variable domains
are continuous or not:

(i) Continuous-variable (CV) MOQO: the range of all
variables is the continuous domain. These contin-
uous variables are usually mapped to real numbers

(ii) Pseudo-discrete variable (PDV) MOO: the range of
all variables is ordered discrete domain, which
means that the variable values are arranged in as-
cending or descending order according to certain
rules. The pseudo-discrete variables are usually
mapped to integers.

(iii) Real-discrete-variable (RDV) MOO: the range of all
variables is a disordered discrete domain, which
means that the variable values cannot be arranged
according to certain rules. The discrete variables are
usually called categorical variables.

(iv) Mixed-variable MOO: the range of the variables
includes continuous domain and discrete domain.

According to the NFL theorem, in order to obtain better
optimization performance, different types of MOO prob-
lems should use different types of optimization algorithms.
The research on continuous-variable MOO and pseudo-
discrete variable MOO is relatively mature. Most of the
aforementioned heuristic algorithms or their variants are
suitable for solving these two types of problems. There are a
few studies on mixed-variable MOO.

Manson et al. [23] present a novel Bayesian multiobjective
algorithm (MVMOO) capable of simultaneously optimizing
both discrete and continuous input variables. The algorithm
utilizes Gaussian processes as surrogates in combination with
a novel distance metric based upon Gower similarity.
MVMOO was able to perform competitively when compared
to NSGA-II with a substantially reduced experimental budget,
providing a viable, efficient option when optimizing expensive
mixed-variable multiobjective optimization problems.
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Li et al. [24] propose an improved version of OLAR-
PSO-d named OLAR-PSO-DE. The OLAR-PSO-DE utilizes
a modified stagnation strategy and a dynamic hybridization
strategy. The OLAR-PSO-DE is employed to optimize the
design of the engine hood, which is a high-dimensional,
multiobjective, and mixed-variable optimization problem.
The comparative study and final hood optimization results
prove that the proposed method can effectively solve
complicated engineering problems.

Khokhar et al. [25] modify the continuous-variable
version of the PSP algorithm to handle mixed variables. The
performance of PSP was tested using a set of quality indi-
cators with a benchmark test suite. And the performance was
compared with the state-of-the-art multiobjective optimi-
zation algorithms. The modified PSP is found to be com-
petitive when the total number of function evaluations is
limited but faces an increased computational challenge when
the number of design variables increases.

However, there are relatively few studies on discrete
variable MOO and mixed-variable MOO, but such MOO
problems are often encountered in engineering. Therefore,
the research on these two types of MOO algorithms is of
great significance. This paper proposes the SAMOACO,,
algorithm by improving the ACOyy algorithm [26]. The
main work of the author is as follows:

(i) Improve the ACOypy algorithm used to solve
mixed-variable SOO problems to make it suitable
for solving mixed-variable MOO problems

(ii) Propose a self-adaptive parameter setting scheme
for the algorithm and verify the superiority of the
self-adaptive parameter setting scheme by com-
parison with the manual parameter adjustment
scheme

(iii) Design some mixed-variable MOO benchmark
problems to test and compare the performance of
the SAMOACO,,y algorithm

(iv) Apply SAMOACOy,y algorithm to solve spring
design engineering problems and compare the al-
gorithm performance with other well-known MOO
algorithms

2. Materials and Methods

2.1. ACOyyy Algorithm. The ACOyyy algorithm [26] is an
ant colony optimization algorithm proposed by K. Socha
and M. Dorigo for solving mixed-variable problems. The
algorithm has excellent comprehensive performance when
dealing with mixed-variable optimization problems, but for
pure continuous optimization or pure discrete optimization,
it has weaker performance than some specialized algorithms.

The basic process of the ACOyy algorithm is as follows:
the first step is to initialize the solution archive by randomly
creating some solutions and storing them in the solution
archive. In the second step, the ants construct some new
solutions based on the solution archive. Many algorithms,
such as local search, gradient descent, can be used to
construct and improve the quality of new solutions. The
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third step is to refresh the solution archive with the new
solutions, and the best solutions will be stored in the solution
archive. Repeat steps 2 and 3 until the termination criteria
are met.

2.1.1. The Structure, Initialization, and Refresh of Solution
Archive. ACOyy maintains a solution archive T, whose
dimension |T| = k can be set in advance. Assume that there is
an n-dimensional continuous optimization problem that has
k feasible solutions, ACOyy stores n variable values of each
feasible solution and its objective function value in the
solution archive. Figure 1 depicts the structure of the so-
lution archive, where s’ represents the value of the i-th
variable of the j-th solution and w; represents the weight of
the j-th solution. The solutions in the solution archive are
sorted by their quality (such as the value of the objective
function), so the position of the solution in the archive
reflects its preference (pheromone).

Before the algorithm starts, k solutions are randomly
generated and stored in the solution archive T. In each it-
eration of the algorithm, m ants generate m new solutions.
The new solutions and the solutions from the solution ar-
chive T form a solution set including k+ m solutions and
take the k solutions with the best quality (such as objective
function value) from the solution set to refresh solution
archive T. The solutions in the solution archive are always
sorted by their quality, and the best quality solution is at the
top. In this way, the search process will always tend to find
the best quality solution, so as to achieve the solution of the
optimization problem.

2.1.2. Constructing New Solutions Probabilistically. Each ant
constructs a new solution incrementally, that is, selects the
value of the solution variable one by one. First, the ants select
a solution from the solution archive based on the selection
probability. The selection probability of the j-th solution is as
follows:

P. = J X 1

! Zle w, ( )

where w; can be calculated by using various formulas. In this

paper, the Gaussian function g (g, 0) = g(1, gk) is selected,

which formula is as (2). Besides, g is the algorithm pa-

rameter, and k is the number of solutions in the solution
archive.

_ 1 (-G- 124K
w; = —qk\/ﬁe . (2)

Then, construct a new solution based on the selected
solution. According to the probability density function P(x)
for each dimension variable of the solution, the ant prob-
abilistically extracts a new value in the neighborhood of the
variable value of the solution, and these new values form a
new solution. For different types of variables, the structure of
the probability density function is different.
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FiGure 1: The structure of solution archive.
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where g (x, y, o) represents the Gaussian function with the
variable x, y is the mean value, o is the mean square error,
and & is the algorithm parameter.

The P(x) of ordered discrete variables is the same as (3),
but it needs to be modified as follows:

(i) The variable x is the index number of the ordered
discrete variable value in its range. If the variable
value range of x is {large, medium, small}, then x=1
when the variable value is “large”, x=2 when the
variable value is “medium”, and x=3 when the
variable value is “small”.

(ii) The new value obtained by probability extraction
according to P(x) needs to be rounded to the closest
value of the index number in the domain. If the
extracted value is 2.3, it needs to be rounded to 2,
which corresponds to “middle.”

The probability density function of disordered discrete
variables is as follows:

i W
Ol—

T @
where O} represents the probability of selecting the I-th
variable value from the domain D, = {v‘l, ceo V'Ci} of the i-th
variable of the solution. And w; is the weight associated with
the I-th available value; it is calculated as follows:

(0]
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where w;; is the weight corresponding to the best quality
solution in the solution archive whose value of the di-
mension variable is not empty, and it can calculate as (2). In
particular, if this dimension variable of all solutions is empty,
then wj is taken as 0. u} is the number of solutions whose
value of this dimension variable is not empty in the solution
archive. g is an algorithm parameter, which is the same as g
in (2). 7 is the number of unused values in the domain D; of
the dimension variable.



2.2. MOACOyy Algorithm. Improve the single-objective
optimization algorithm ACO,; and obtain the MOA-
COpy algorithm suitable for solving MOO problems. The
main improvement of the MOACOyy algorithm is to
introduce the Pareto set into the solution archive, which is
the non-inferior solution set [27]. The specific method is to
sort according to the Pareto characteristics of the solution
in the solution archive, and the solution with the best
quality is placed at the top of the solution archive. After
improvement, the probability of selecting a good solution is
higher so that the MOACOyy algorithm can find non-
inferior solutions.

The solutions in the solution archive are arranged
according to the following two rules:

(i) The solutions in the solution archive are sorted
according to the non-inferior order, and the solu-
tions with the smaller order value are arranged at the
top of the solution archive. Referring to reference
(28], the definition of non-inferior order of the
solution is in Definition 1.

(ii) For solutions with the same non-inferior order, they
are sorted according to the degree of congestion of
the solution, and the solution with a lower degree of
congestion is ranked at the top of the solution ar-
chive. Referring to reference [9], the definition of the
congestion degree of the solution is in Definition 2.

In the above two rules, the first rule ensures that the
algorithm can find non-inferior solutions, and the second
rule ensures that the distribution of these non-inferior so-
lutions is as uniform as possible. The MOACO,y algorithm
designed according to the above rules has excellent com-
prehensive performance.

Definition 1. Non-inferior order of one solution NIO (Sj):
In the solution set T' = {Sl,. S .Sk}, take out its non-
inferior solutions to form a solution set TU(z) whose
sequence number z=0, and the remaining solutions
refresh the solution set T; repeat the above process until
Tis an empty set, and every time it is repeated, z increases
by 1. Then the NIO (Sj) is the sequence number z of the
non-inferior solution set TU(z) in which the solution S;
is.

Definition 2. Congestion degree of the solution C D(S,): In
the solution set T = {S,,...S;.. .S}, the objective function
corresponding to the solution S; is F(Sj) = (f, (Sj)
o fi (Sj) o fy (Sj)). Calculate the distance between F (S,)
of one solution S, and F (S y) of other solutions and take out
the minimum distance d(x,T). The calculation process of
d(x,T) is as equation (1). Then the C D(S,) is d(x,T)
multiplied by the adjustment coefficient «; the calculation
process is as equation (2).

d(x,T) = yGHTI)in;x F(S) - F(sy)"2’

CD(S,) = ax d(x,T).

(7)
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2.3. SAMOACO,,y Algorithm. The ant colony algorithm
needs to set some parameters, which have a huge impact on
the performance of the algorithm. Since the convergence
speed of the algorithm and the diversity of the solution are
always contradictory, how to obtain a compromised ex-
cellent performance through proper parameter settings is
the purpose of studying parameter settings.

This paper adopts the self-adaptive parameter control
method to adjust the parameters of the MOACO,y algo-
rithm according to the quality of the solution archive and the
convergence speed of the algorithm. And we call this MOO
algorithm as SAMOCO,y algorithm.

The SAMOACOyy algorithm needs to set four pa-
rameters, which are: the convergence speed ¢, the size of
search solution archiving area g, the number of ants m, and
the solution archive size k. In this paper, to balance the
diversity and convergence abilities of SAMOACOyy, two
modifications for four parameters are proposed.

2.3.1. Set Method for Parameters & and q. 'The parameter & is
used to adjust the convergence speed of the algorithm, and
the parameter q is used to change the size of the search area.
These two parameters are in conflict. When the search area
increases or the convergence speed decreases, more Pareto
solutions can be found with higher probability, but the
calculation time becomes longer, and vice versa. In order to
obtain a good Pareto solution archive with reasonable cal-
culation time, we calculate the quality index of the solution
archive and adjust the parameter & and q according to the
value of the quality index. The set method for parameters &
and g is shown in Algorithm 1:

In Algorithm 1, the quality index P;(T) of the solution
archive for the i-th iteration is calculated firstly. The P;(T) is
the mean value of the weighted sum of each objective
function and congestion degree of all solutions in the so-
lution archive. Next, the quality index’s increment AP;(T)
and the parameters’ increment Ae;, Aq; is calculated. Finally,
the new parameter values are set by subtracting the product
of A&, A g;, step size constant B, and random number r from
the old parameter values.

2.3.2. Set Method for Parameters m and k. The parameter m
is the number of ants, and the parameter k is the solution
archive size. The larger the values of these two parameters
are, the higher the probability of obtaining more Pareto
solutions is, but the larger parameters’ value will also bring
more calculations and increase time-consuming. We set the
expected number of Pareto solutions according to the
complexity of the problem and then adjust these two pa-
rameters in real time according to the difference between
ENUM and the actual number of Pareto solutions. ENUM is
the number of non-inferior solutions expected from the
solution archive. The set method for parameters m and k is
shown in Algorithm 2.

In Algorithm 2, count the number of solutions whose
non-inferior order NIO; (S ]-) are zero in the solution archive.
Then calculate the ratio factors rateArchive and rateAnt,
which represent the size of the solution archive and the
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(3) A&:Ei—fid
(4) Agqi=qi—q-;

Input: F;(S;), CD;(S)), & gy whereie (1,1-1), je (1,k);
(1) Pi(T) = (1K) Y je 1 1y (B~ Fi (S) + yCD; (S;))
(2) A P{(T)=P(T)—P;— (T)

(5) & 1=8&—rx Bx AP(T)* A¢;
(6) qi+1=qi—T* B+ A P(T) % Ag;

ALGORITHM 1: Set method for parameters & and g.

(1) for j=1 to k do

num++;
(2) rateArchive = k;/num;
(3) rateAnt =m;/num;

Input: NIOi(Sj), m;, k;, where i € (1,1-1), j e (1,k);

if NIO,»(S]») == Othen

(4) k;, ;=C * rateArchive x ENUM;
(5) m;,;=C = rateAnt *+ ENUM;

ALGORITHM 2: Set method for parameters m and k.

number of ants needed to produce one non-inferior solu-
tion, respectively. Finally, set the new parameters’ value to
the product of the old parameters’ value, the ratio factors,
adjustment coefficient C, and expected number ENUM.

3. Experiment Results and Discussion

The application field and performance of the algorithm are
usually studied by comparing the performance of different
MOO algorithms when solving benchmark problems. Re-
ferring to some existing mixed-variable MOO algorithms
[29-33], this paper designs some problems for algorithm
experiments, besides comparing with other well-
known MOO algorithms to verify the performance of the
algorithm.

3.1. Experimental Environment. The operating environment
of the experiment is as follows: Thinkpad T470p computer;
Core i7-7700HQ CPU (4cores) * 2; 24 GB memory; 512 GB
solid hard disk; and equipped with Windows 10 operating
system. The programming tool is Microsoft Visual Studio
2017, and the programming language is C#.

3.2. Benchmark Problem. In this paper, we select eight well-
known benchmark problems to evaluate MOO algorithms,
that is, Schaffer, Fonseca, Kursawe, ZDT problems, Vien-
net2, and Viennet3 [34]. These benchmark problems have
two (Schaffer, Fonseca, Kursawe, and ZDT family) or three
objectives (Viennet2 and Viennet3), and they occupy dif-
ferent properties: separability, unimodality multimodality,
convexity, linearity, non-convexity, continuity, discontinu-
ity, bias, Pareto many-to-one, and so on.

The problem name, variable count(N), variable bounds,
designed variables, and objective functions are shown in
Table 1.

The variables of the eight benchmark problems are all
continuous variables. In order to test MOO algorithms with
mixed variables, we modify the problems to make some
variables as PDV and some variables as RDV; then the
continuous problems become mixed problems. PDV and
RDV are calculated by the following equations:

Xppy € {xlxMIN+I* w, I:O,...,N}, (8)

Xppy € {x|xMIN +1 % w,z = RND(N)},

(9)

where N is the number of equal divisions of the value range.
In order to make the variable a value of 0, N takes a positive
even number. RND(N) is a random nonnegative integer not
greater than N. In order to make the distribution range of
xppy larger, we need to take every number in {0,...,N}
once. The domain of xpp is a set of N+ 1 ordered discrete
variables increasing from xyy to xpax, and the domain of
Xppy is a set of N+ 1 disordered discrete variables between
XN and Xpax-

If N is large enough, the Pareto set of the mixed problems
is similar to the Pareto set of the continuous problems.

3.3. Performance Metrics. Convergence and diversity are
usually the two most important criteria for the evaluation of
MOO algorithms. The convergence refers to the distance
from the non-dominated front generated by the



6 Security and Communication Networks
TaBLE 1: Test benchmark problems.
Problem Variable count ~ Variable Designed " .
name (N) bounds variables Objective functions
Schaffer 1 [-10% 10°] x, is RDV fi=x% f,= (x-2)?
. 1 _y3 _ 2

Fonseca 3 [-4, 4] X 18 PDV Jr=1-exp( Z’;l (x; (1/\/3))2)

x5 is RDV fz=1—€XP(—Zi=1 (xi+(1/\/§)))

x, is PDV
Kursawe 3 (=53] x; SRDV  S1= 20 (10exp (=0.2  \x? +x2,1)) £, = Y, (x| + 5(sin x;)*)

x5 is PDV
ZDTI1 4 [0,1] xz < RDV fr=x1, f2=9(x) 1 -Fi7gx), g(x) =1+ 9/ (N-1) IV, x;

x; is PDV
ZDT2 4 [0.1] CiRrpy  fime f= 9@ (g g0 = 1+ (N - DT, %
7DT3 4 (0.1] x3 is PDV fi=xp fo=9x)Q-+/fi/g(x) - fi/g(x)sin(107f,),

> : _ N
x4 is RDV gx)=1+9/(N-1)Y., x
f1=1/2(x, =2 +1/13(x, + 1)* + 3
Viennet2 ) [—4,4] x, is PDV fa=1/36(x; +x,-3)" +1/8(x, —x, +2)" - 17
f3=1175(x; + 2%, — 1)2 + 1/17(2x, — x,)* - 13
fi= 1/2(x§ + x%) + sin(xf + xi),

Viennet3 2 [-3,3] x, is PDV fr=1/8(x; —2x, +4)" + 1/27(x, — x, + 1)° + 15

s =1/ (2 +x2+1) - L1e” ()

optimization algorithm to the true Pareto front; the diversity
involves coverage area and uniformity; and a front with wide
coverage and good uniformity is always pursued.

We have used generational distance (GD) [35] and
inverted generational distance plus (IGD") [36] for mea-
suring convergence and spread for measuring coverage.

GD: let T* = {F;‘, .. FF L F|*T|} be a set of uniformly
distributed Pareto optimal points in the true PF(TPF), and
T= {Fl,...Fi...F|T|} be a non-dominated front of the
problems. The GD of T is the average distance from each
solution in T to the nearest reference point:

IT|
* _ 1 . *®
GD(T".T) = ]-2:1 min dap(F; F,), (10)

where F; is the objective function corresponding to the
solution S; and F = (f,(S;)... f;(S)... f,(S)). dg p (F},
F;) is the Euclidean distance between F i and F;.

IGD": the IGD" of T is the average distance from each
reference point in T* to the nearest solution.
p Il
Fo1 & mindiop (FLE). (D)

IGD" (T",T) =

In IGD", the distance between a reference point F* =
(fi>f5>-.-»f;) and a solution F= (f,f,....f,) is
calculated in the objective space for the v-objective mini-
mization problem as follows:

14

digp (F,F) = \|Y (max{f, - f1,00%  (12)

i=1

Generalized Spread (see [36]). The generalized spread is
an indicator that measures the distribution and spread of the
obtained non-dominated front of the problems with two or
more objectives:

A (T* T) — 22';1 d(ei’ T) + ZX&T* |d(X’ T) B a'
’ S d(e,T)+|T*|d

., €,} are m extreme solutions in T* and

) (13)

where {e}, e, ..
. 2
d(X,T) = min [F(X)-F)],

1 (14)
i 2, 6.

XeT*

3:

3.4. Performance Improvement of SAMOACO,,y. In order to
test the performance of SAMOACO,,y, some experiments
are carried out under the same conditions, for example,
when the problem is the modified Fonseca problem, the
maximum number of algorithm iterations is the same.
Table 2 lists the setting schemes of the algorithm parameters
in the six experiments. The first five experiments test the
performance of the MOACO,,y algorithm that have dif-
ferent parameter values of £ and g and the same values of m
and k. The sixth experiment tests the performance of the
SAMOCO,,y algorithm.

Table 3 shows the performance of the 6 experiments for
the Fonseca test problem. For each major cell of Table 3, the
first column indicates the mean of 25 runs, the second
column indicates the standard deviation, and the third
column indicates the rank.

Figure 2 shows the Pareto points obtained with reference
to the true Pareto frontier graphically using results from 1 of
the 25 runs. MOACOy,vs generates only a few Pareto points,
so it is not shown in the figure.

It can be seen from the figure and the table:

(i) The figure shows that the Pareto points generated by
the SAMOACOyy algorithm are right on TPF, and
the table shows the overall rank value of the
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TaBLE 2: Deployment of algorithms’ parameters.
m k ¢ q
MOACOpy1 50 200 0.001 0.001
MOACOyy2 50 200 0.01 0.01
MOACO\y3 50 200 0.1 0.1
MOACOpv4 50 200 1 1
MOACO,y5 50 200 10 10
SAMOACO\y Self-adaptive control
TaBLE 3: The performance of six experiments for the Fonseca problem.
Generational distance Inverted. generational Generalized spread
Fonseca distance Sum of ranks  Overall rank
Mean Stdev Rank Mean  Stdev Rank Mean  Stdev  Rank
MOACOpy1 0.0167 0.0118 5 0.2153  0.0893 5 1.1378  0.1869 6 16 6
MOACOpMy2 0.0031 0.0014 4 0.1545  0.0872 4 0.9836  0.0605 5 13 4
MOACOwmy3 0.0001 1.1788 2 0.0096  0.0103 3 0.6524  0.0561 2 7 3
MOACOp\v4 0.0002 1.32E-05 3 0.0035  0.0004 2 0.5147  0.0282 1 6 1
MOACOMmy5 0.0815 0.0323 6 0.246  0.0788 6 0.6905 0.2014 3 15 5
SAMOACOyy  9.45E-05 1.24E-05 1 0.0026  0.0003 1 0.7064 0.0384 4 6 1
3.5. Performance Comparison Using Benchmark Problems.
109 ey In order to test the performance of the algorithm, this paper
wc"ﬁ!g;g S compares the SAMOCO)y algorithms with the well-known
0.8 1 Ny ’ MOO algorithm NSGAII, SPEA2, SMPSO, MOEAD,
) NSGAIIL, and MOEA/D-IEpsilon. These algorithm pro-
0.6 1 N v grams come from jMetal [30], and the two algorithms can
& N only be used to deal with CV MOO.
0.4 4 B3 In order to compare the multiobjective optimization
“{"» algorithms, each algorithm is allowed to run for the test
024 ‘%s\ problems for a constant number of function evaluations. The
\ performance metrics are calculated for each algorithm run.
0.0 1 . This procedure is repeated for 20 runs, and the mean and

T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0

= TPF + MOACOMV3
+ MOACOMV1 MOACOMV4
v MOACOMV2 SAMOACOMV

FIGURE 2: Pareto front for Fonseca problem.

SAMOACOyy algorithm is minimum, that is, the
performance of the SAMOACO,,y algorithm is the
best in all experiments.

(ii) When the MOACO,y algorithm adopts setting
schemes 3 and 4, the algorithm performance is
basically the same as that of the SAMOCO,y al-
gorithm, but when other schemes are used, the al-
gorithm performance is very poor, which shows that
the performance of the MOACOy,y algorithm relies
heavily on parameter settings.

More experiments show that the performance of the
SAMOCO,,y algorithm is better than that of the MOA-
COyv algorithm; especially, this advantage is more obvious
when the values of m and k are small.

standard deviation of the performance metrics are recorded
for each algorithm.

3.5.1. Results Based on Schaffer, Fonseca, and Kursawe
Problems. Tables 4-6 show the mean and standard deviation
of generational distance, inverted generational distance plus,
and generalized spread for different algorithms, respectively.
The SAMOACO)y fetches good performance metric values
in terms of the Schaffer problem, while other algorithms
cannot obtain or only obtain a few Pareto points. It may be
because the only variable of Schaffer problem is changed to a
discrete variable, and other algorithms cannot solve the pure
discrete variable problem. For the Fonseca and Kursawe
problems, compared with other techniques, SAMOACO vy
obtains excellent GD and IGD" values, only slightly weaker
than MOEA/D-IEpsilon, but obtains relatively poor gen-
eralized spread value.

Figures 3-5 provide a graphical visualization of the
Pareto points obtained for Schaffer, Fonseca, and Kursawe
problems, respectively. For the Schaffer problem, none of the
other algorithms apart from SAMOACO,y was able to
produce any Pareto points close to the TPF. For the Fonseca
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TABLE 4: Mean and standard deviation of generational distance.

Schaffer Fonseca Kursawe ZDTI1 ZDT2 ZDT3 Viennet2 Viennet3 Sum of Overall
ranks rank
Mean — 0.0004 0.0005 0.0017 0.0029  0.0008 0.0008 0.0002
NSGAIIL Stdev — 3.51E-05 8'%95}:_ 0.0003  0.0006 0.0002  0.0003 3.72E-05 29 4
Rank 2 4 2 5 5 3 4 4
Mean — 0.0004 0.0005 0.0021 0.0036 0.0017 0.0008 0.0003
SPEA2 Stdev — 4'%2513_ 0.0001 0.001 0.0022  0.0018  0.0001 0.0001 39 6
Rank 2 4 2 7 7 7 4 6
Mean — 0.0004 0.0012 0.0011 0.0019 0.0009 0.001 0.0002
SMPSO Stdev — 3'%?3_ 0.0004 0.0001 0.0003  0.0002 0.0003  9.86E-05 32 5
Rank 2 4 6 3 3 4 6 4
Mean — 0.0003  0.0015 0.0014 0.0024 0.0011 — —
MOEAD Stdev — 4'(())(;E- 0.0007 0.0002  0.0003  0.0002 — — 39 6
Rank 2 3 7 4 4 5 7 7
Mean — 0.0004  0.0005 0.0019 0.0032 0.0012 1.77E-05 1.15E-05
NSGAIII Stdev — 3'?)25]3_ 0.0001 0.0007  0.0009 0.0008 4.61E-06 4.77E-07 28 3
Rank 2 4 2 6 6 6 1 1
9.93E-
Mean  — 0.0002  0.0005 0.0004 0.0001  0.0003 4.37E-05
MOEA/D- 05
. 2.76E-  1.79E-  828E- 3.33E- 1.23E- 17 2
IEpsilon Stdev — 06 05 05 05 05 7.56E-05 7.48E-06
Rank 2 2 1 2 2 2 3 3
5.38E- 9.68E- 8.25E-
Mean 05 05 0.0005 0.0001 0.0002 05 3.21E-05 2.12E-05
SAMOACOp\y 3.23E- 7.08E- 6.29E- 6.63E- 4.86E- 11 1
Stdev 9.01E-05 06 05 06 06 06 1.54E-06 3.03E-06
Rank 1 1 2 1 1 1 2 2
TaBLE 5: Mean and standard deviation of inverted generational distance plus.
Schaffer Fonseca Kursawe ZDT1 ZDT2 ZDT3 Viennet2 Viennet3 Sum of ranks Overall rank
Mean — 0.0048  0.0044 0.0156 0.0418 0.0078 0.0141 0.0052
NSGAII Stdev — 0.0005 0.0005 0.0055 0.0674 0.003 0.0026 0.0006 37 5
Rank 2 6 3 7 5 4 6 4
Mean — 0.0049  0.0048 0.0150 0.0696 0.0086 0.0066 0.0041
SPEA2 Stdev — 0.0004 0.0005 0.0017 0.1054 0.0011 0.0005 0.0004 39 6
Rank 2 7 4 6 7 6 4 3
Mean — 0.0046 0.0123 0.0098 0.0128 0.0074 0.0135 0.0053
SMPSO Stdev — 0.0002  0.0021  0.0008 0.0013 0.0010 0.0024 0.0006 32 4
Rank 2 4 7 3 3 3 5 5
Mean — 0.0042 0.008 0.0131 0.0188 0.0101 — —
MOEAD Stdev — 0.0004  0.0009 0.0016 0.0022 0.0019 — — 39 6
Rank 2 3 5 4 4 7 7 7
Mean — 0.0046  0.0089  0.0149 0.0622 0.0079 0.0005 0.0005
NSGAIII Stdev — 0.0004 0.003 0.0049 0.0944 0.0040 9.83E-06 3.64E-05 30 3
Rank 2 4 6 5 6 5 1 1
Mean — 0.0015  0.0031  0.0097 0.0058 0.0030 0.0062 0.0064
MOEA/D-IEpsilon Stdev — 5.32E-05 0.0003 0.0017 0.0004 0.0002 0.0006 0.0007 19 2
Rank 2 1 1 2 2 2 3 6
Mean 5.32E-06 0.0017 0.0040 0.0021  0.0029 0.0016 0.0007 0.0005
SAMOACOy\y Stdev 2.38E-06 7.78E-05 0.0003 6.90E-05 0.0001 0.0001 7.19E-06 4.73E-05 11 1

Rank 1 2 2 1 1 1 2 1
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TABLE 6: Mean and standard deviation of generalized spread.

Schaffer Fonseca Kursawe ZDT1 ZDT2 ZDT3 Viennet2 Viennet3 Sum of ranks Overall rank
Mean — 0.2297  0.3980 0.5673 0.6321 0.5606 0.4579 0.4094
NSGAII Stdev — 0.0311 0.0383 0.0649 0.1363 0.0703 0.0356 0.0335 22 1
Rank 2 3 1 4 5 2 3 2
Mean  — 01948 04531 0.6467 0.7259 0.7707 02058  0.5898
SPEA2 Stdev = — 0.0184  0.0529 0.0637 0.1715 01301 0.0247  0.0207 31 4
Rank 2 1 2 6 7 7 1 5
Mean — 02306 0.8257 0.4907 05718 0.5416 03143  0.2296
SMPSO Stdev. —  0.0156  0.0610 0.0437 0.0966 0.0528 0.0276  0.0269 22 1
Rank 2 4 6 2 4 1 2 1
Mean  — 02958 0.5525 0.4562 04961 0.6611  — —
MOEAD Stdev.  —  0.0416 0.0561 0.0465 0.0540 0.0484  — — 33 6
Rank 2 5 4 1 1 6 7 7
Mean — 0.3346  0.8579 0.5899 0.7028 0.626  0.6129 0.9181
NSGAIII Stdev. —  0.0355 0.0783 00729 0.1438 0.1078 0.0146  1.23E-02 42 7
Rank 2 6 7 5 6 5 5 6
Mean — 02166 05719 0.8105 0.5029 0.5857 0.8131  0.5781
MOEA/D-IEpsilon  Stdev — 0.0107  0.0527 0.0957 0.0440 0.0470 0.0583 0.0934 32 5
Rank 2 2 5 7 2 4 6 4
Mean 0.0958  0.4827 0.4747 0.5028 0.5278 0.5607  0.5403 0.4938
SAMOACOp\y Stdev  0.0006 0.0254 0.0447 0.0203 0.0166 0.0207 0.0099 0.0093 27 3
Rank 1 7 3 3 3 3 4 3
4 1.0 -
5] 0.8
0.6
) 24 Ix]
0.4
1_
0.2
07 0.0
T T T T T T T T T T T
0 1 2 3 4 0.0 0.2 0.4 0.6 0.8 1.0
f1 f1
s TPF = TPF + SMPSO
v SAMOACOmY * SAMOACOmv MOEAD
4 NSGAII » NSGAIII
FIGURE 3: Pareto front for the Schaffer problem. v SPEA2 ¢ MOEA/D-IEpsilon

problem, the performance of each algorithm is very good,
and the generated Pareto points right on TPE. For the
Kursawe problem, the performance of each algorithm is also
very good, except that some Pareto points generated by
SMPSO and MOEAD deviate slightly from TPF.

3.5.2. Results Based on ZDT (ZDTI1-ZDT3) Problems.
From Tables 4 and 5, SAMOACOyy ranks 1 for ZDT
problems, which means that the SAMOACOyy outper-
forms other algorithms on the performance metrics GD and
IGD*. From Table 6, SAMOACO,y, performed slightly
worse on generalized spread for ZDT problems, ranking 3.

FIGURE 4: Pareto front for the Fonseca problem.

From Figures 6-8, all the algorithms have good per-
formance, and the obtained Pareto front is basically con-
sistent with the TPF. Some algorithms do not perform well
on certain problems, such as SPEA2 and MOEAD produce
some points that deviate slightly from the TPF for ZDTI and
ZDT?2 problems.

3.5.3. Results Based on Viennet2 and Viennet3 Problems.
As shown in Table 4, the mean of GD of SAMOACO,y for
Viennet2 and Viennet3 problems are about 0.000032 and
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FIGURE 6: Pareto front for the ZDT1 problem.

0.000021, respectively, which are only slightly worse than the
mean values of NSGAIII but far better than the corre-
sponding performance metric values of other algorithms. It
can be seen from Table 5 that similar to GD, the
SAMOACO,y has almost the best IGD" mean for Viennet2
and Viennet3 problems, around 0.0007 and 0.0005, re-
spectively, only slightly worse than the mean of NSGAIIIL.
From Table 6, SAMOACOy,y performed worse on gener-
alized spread for Viennet2 and Viennet3 problems, ranking
4 and 3, respectively.

In Figures 9 and 10, the approximated Viennet2 and
Viennet3 fronts of each algorithm are shown. It is clear that
SAMOACO)y obtained much more Pareto points, they
converge well to the TPF, and they widely and uniformly
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FIGURE 7: Pareto front for the ZDT2 problem.
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FIGURE 8: Pareto front for the ZDT3 problem.

distribute along the TPF, which illustrates that it has better
convergence and diversity compared with the other
algorithms.

In summary, with GD, IGD", and generalized spread
taken into consideration, SAMOACO,y is quite a com-
petitive algorithm in terms of the convergence of the gen-
erated Pareto solution set; the overall rank is 1. But
SAMOACO)y is slightly weaker than other algorithms in
the coverage performance; the overall rank is 3.

4. Experiment Results on Spring
Design Problem

The spring design problem is a common engineering
practice problem and widely used MOO algorithm
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performance verification example [37, 38], and it is a
mixed-variable MOO problem containing continuous and
discrete variables. We use the spring design problem to
test the performance of the SAMOACO),y algorithm in
this paper.

4.1. Problem Description. The spring design problem con-
sists of two discrete variables and one continuous variable.
The objectives are to minimize the volume of the spring and
minimize the stress developed by applying a load. Variables
are the diameter of the wire (d), the diameter of the spring
(D), and the number of turns (N). Denoting the variable
vector X =(x,, X,, x3)=(N, d, D), formulation of this
problem with two objectives and eight constraints is as
follows [38]:

minimize f, (X) = 0.257°x5x; (x, +2)

8KP X
maximizef, (¥) = — 222

X3

9, (%) =L — P'“Ta" —1.05(x; +2)x,>0

9> (?) =X = dmin >0,
93 (7) = Dmax - (xZ + XS) 20,

(15)
g4 (X)=C-320,

Subjectto
g5(X)=0,,-0,20,
p . .—-P
ge(X) =22 _§,>0,
k
8KP
g, (%) =§-—malis g
nx,

Gs (%) = Vo — 0.257°x3x5 (3, +2) >0,

wherex, is an integer, x, is a discrete variable, and x; is a
continuous variable.
The parameters used are as follows:

13
i1 0615y,
4C -4 X3
P = 300Ib,
Gt
Dy = 3in,k = —2,
8x,x3
P,... = 1000Ib,
. p
d, = 1.25in,6, = ©
(16)
I = l4in,
(Spm = 6in,
S = 189 ksi,
din = 0.2in,
c=2
X,
b
G = 11,500,000 —, V . = 30in’.
in
The 42 discrete values of d are given below:
0.009, 0.0095, 0.0104, 0.0118, 0.0128, 0.0132,
0.014, 0.015, 0.0162, 0.0173, 0.018, 0.020,
0.023, 0.025, 0.028, 0.032, 0.035, 0.041,

d =] 0.047, 0.054, 0.063, 0.072, 0.080, 0.092,
0.105, 0.120, 0.135, 0.148, 0.162, 0.177,
0.192, 0.207, 0.225, 0244, 0.263, 0.283,
0.307, 0.331, 0.362, 0.394, 0.4375, 0.5.

(17)

5. Experiment Results

From Table 7, the mean of GD, IGD™, and generalized spread
of SAMOACO,,y for the spring design problem are about
0.0014, 0.064, and 0.3532, respectively, much smaller than
other algorithms. The values of the three performance
metrics of SAMOACOy,y for the spring design problem are
all ranked first, and its overall rank is also the first, which
shows that SAMOACOy,y is optimal in convergence and
coverage.
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TaBLE 7: The performance for spring design problem.

Inverted generational

Generational distance Generalized spread

Spring design distance Sum of ranks  Overall rank
Mean Stdevn.  Rank  Mean Stdevn.  Rank  Mean Stdev  Rank
NSGAIIL 0.0119 0.0157 3 0.0225  0.0802 4 0.9629 0.1547 4 11 4
SPEA2 0.0043 0.0027 2 0.0173 0.0399 3 0.9742 0.1291 5 10 2
SMPSO 0.0161 0.0154 4 0.2132  0.1329 5 0.8366  0.1505 2 11 4
GDE3 0.0885 0.1489 5 0.0068  0.0053 2 0.8876 0.1654 3 10 2
SAMOACOyy 0.0014 0.0007 1 0.0064  0.0027 1 0.3532  0.0338 1 3 1
TaBLE 8: Pareto points for spring design problem.
. ) Number of archive points ~ Number of Pareto points Percgntage of Pe.ireto
Spring design points in archive Sum of ranks  Overall rank
Mean Stdev Rank  Mean Stdev.  Rank  Mean Stdev  Rank
NSGAIIL 43.95 30.1531 3 4.5 5.3852 3 0.0775 0.0656 3 9 3
SPEA2 100 0 1 8.15 7.6796 1 0.0815  0.0768 2 4 1
SMPSO 9.7 0.0897 5 0.15 0.4894 5 0.0131 0.0403 5 15 5
GDE3 16.3 13.0307 4 0.45 0.887 4 0.0254 0.0513 4 12 4
SAMOACO\y 55.65 6.483 2 6.35 7.4288 2 0.1044 0.1099 1 5 2
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FIGURE 11: Pareto front for the spring design problem.
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As shown in Table 8, for the spring design problem, the
number of archive points and the number of Pareto points of
SAMOACO)y rank 2, and the percentage of Pareto points
in archive ranks 1, which means that SAMOACO,,y has the
highest comprehensive efficiency in finding Pareto points.

The obtained Pareto frontier is plotted in Figure 11. The
TPF represents the set of non-inferior solutions obtained by
merging all experimental results from all independent runs
of all algorithms and removing the inferior solution. SMPSO
can only obtain a few Pareto points, so it is not shown by the
figure. It can be seen from Figure 11 that many points of
NSGA-II, SPEA2, and GDE3 do not converge to the TPF,
and some points of SPEA2 and GDES3 are far away from TPF.
The Pareto points of NSGA-II, SPEA2, and GDE3 have poor
distributions, and SPEA2 and GDE3 only cover part of TPF.
In contrast, the Pareto points obtained by SAMOACOy
widely and uniformly distributed along the TPF, which il-
lustrates that it has better convergence and diversity com-
pared with the other algorithms.

6. Conclusion

In this work, we have modified the single-objective opti-
mization algorithm ACO,sy to handle mixed-variable MOO
problems and proposed a self-adaptive parameter-setting
scheme. Then the performance of SAMOACO, was
thoroughly tested using a set of performance metrics with a
well-designed benchmark test suite. Its performance was
compared with the state-of-the-art multiobjective optimi-
zation algorithms. For all benchmark problems, the
SAMOACO)y algorithm has good convergence perfor-
mance, and its GD and IGD™ are almost the best. However,
the generalized spread of SAMOACOyy is slightly worse,
which means that the coverage performance of SAMOA-
COpy is slightly weaker than other algorithms. For spring
design problem, the SAMOACO,,y algorithm can get widely
and uniformly distributed Pareto front, and it has the best
convergence and coverage performance.

In general, the SAMOACO),y algorithm is an excellent
MOO algorithm, which adds a new choice for solving MOO
problems.

Data Availability
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The approach proposed in this paper has been published at
the 2020 IEEE International Congress on Cybermatics
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2020) [39]. Based on the conference paper, this paper mainly
expands as follows: a new congestion degree of the solution
is defined to rank the solutions in the archive, modified the
self-adaptive strategy to set the parameters m and k of the
SAMOACO,,y algorithm, and designed some new mixed-
variable MOO benchmark problems to test and compare the
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performance of the SAMOACO)y algorithm. New per-
formance metrics such as GD, IGD", and Generalized Spread
are used to evaluate the performance of the algorithms. All
experiments are redone, and the corresponding described
text, figure, and table of experimental results are updated.
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