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With the continuous development of deep learning techniques, it is now easy for anyone to swap faces in videos. Researchers find that
the abuse of these techniques threatens cyberspace security; thus, face forgery detection is a popular research topic. However, current
detection methods do not fully use the semantic features of deepfake videos. Most previous work has only divided the semantic
features, the importance of which may be unequal, by experimental experience. To solve this problem, we propose a new framework,
which is the multisemantic pathway network (MSPNN) for fake face detection. .is method comprehensively captures forged
information from the dimensions of microscopic, mesoscopic, and macroscopic features. .ese three kinds of semantic information
are given learnable weights. .e artifacts of deepfake images are more difficult to observe in a compressed video. .erefore,
preprocessing is proposed to detect low-quality deepfake videos, including multiscale detail enhancement and channel information
screening based on the compression principle. Center loss and cross-entropy loss are combined to further reduce intraclass spacing.
Experimental results show that MSPNN is superior to contrast methods, especially low-quality deepfake video detection.

1. Introduction

Automated video editing techniques have made great strides
in the past few years with the development of deep learning.
In particular, people have shown great interest in face
manipulation. It is now easy to transfer facial expressions
from one video to another based on generative adversarial
networks (GANs) and autoencoders [1]. Even those who do
not know deep learning can easily change one person’s face
to another in a few minutes [2], and a fake face is difficult for
human eyes to distinguish. It is easy to change who the
speaker is or what is said. While deepfake techniques bring
benefits, there are hidden dangers.

.ese techniques open a new window for film and
television. For example, dead movie stars can reappear
through face manipulation, and people who do not exist
in the real world can be created through GANs. More-
over, malicious attacks and revenge porn are a small part
of malicious face manipulation. .is also influences
politics, such as by tampering with speech content and
spreading fake news [3]. As a result, deepfake videos have
attracted the interest of researchers, and methods to

detect whether a face has been manipulated have become
paramount.

Deepfake videos can have at least three levels of forgery
characteristics: microscopic, mesoscopic, and macroscopic.
Microscopic features correspond to unseen differences, such
as anomalies in small regions. Macroscopic or semantic
features refer to the whole image semantics that the human
eyes can feel. Mesoscopic features are seen in between.
Afchar et al. [4] designed MesoNet to detect mesoscopic
features. Current deepfake video detection methods do not
take full advantage of these three levels of features. Usually,
authenticity discrimination has been based only on high
semantic features, and the performance needs improvement.
It is possible to design a network that can integrate the three
levels for deepfake detection. However, semantic segmen-
tationmethods that can ensure the improvement of accuracy
have not yet been proposed. Similar work was based on the
practical experience of feature hierarchy division. In addi-
tion, it is uncertain whether the weights of the three hier-
archical features are the same.

Deepfake video detection methods have achieved ac-
curacy of nearly 100% for high-quality videos, but their
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accuracy for low-quality videos with high-compression rates
needs to be improved [5]. For example, the accuracy of
Xception [6] was 99.26% for the uncompressed Face-
Forensics++ dataset [7], but 72.93% at the C40 compression
rate without pretraining. .e high-compression rate makes
the video very blurry and the forgery trace becomes unclear
and not obvious, thereby becoming more difficult to dis-
tinguish the real video from the fake. Most videos on the
Internet are compressed due to upload size limitations; thus,
low-quality video forgery detection is significant. For this
kind of video, we studied the commonly used H.264 video
compression format, which includes inter and intraframe
compression [8]. If only the original adjacent frames are
removed through interframe compression, the accuracy will
indeed be improved in theory. However, this will lead to
inconsistencies with the creation requirements of bench-
mark datasets such as FaceForensics++, so we only use
intraframe compression, which preserves the Y channel
information on the YCrCb space and compresses the CbCr
information as much as possible. Figure 1 shows the changes
of different channels in an image at different compression
rates. After comparative experimental analysis, we find that
when the Y channel of the image is used as the input, the
accuracy is higher than that when other channels are used. In
addition, to highlight the high-frequency information of
low-quality videos, multiscale detail enhancement was
performed on images before channel separation. Based on
the above two findings, we propose a deepfake detection
method integrating different semantics in the network. We
find no standard for semantic division from the aspect of
channel level, but division from the aspect of the receptive
field of the convolution kernel is reasonable.

When considering semantic level importance, instead of
assigning weights manually, we use channel-spatial attention to
assign them automatically. .erefore, a multichannel network
with different receptive fields is proposed to integrate the
features at different levels to capture forgery features. In
constructing the neural network, the essential information is
extracted through preprocessing and input to the network. We
connect the feature maps of multiple pathways or semantics
and automatically assign the weights to the three semantics
through the channel-spatial attention module, perform feature
fusion, and classify. We train and test our model on Face-
Forensics++ and DeepFake-TIMIT [9] and perform cross-
validation on Celeb-DFv2 [10]. Experimental results show that
our network has better accuracy than current methods, es-
pecially in low-quality deepfake video encoding.

.is work makes the following contributions:

(1) A multiscale detail enhancement method is intro-
duced in deepfake detection. Fuzzy features are
extracted from three Gaussian kernels, the residuals
are calculated with the original image, and the de-
tailed texture features of the forged image are
highlighted;

(2) Based on the study of video compression methods,
the extraction of significant channel information
assists in the detection of forged images with high-
compression rates;

(3) A multipath network for multisemantic information
fusion is proposed. .e three kinds of semantic
information are automatically assigned weights by a
channel-spatial attention module, and low, medium,
and high semantic information of forged images can
be effectively divided and interpreted;

(4) Our method is evaluated on manipulated videos
datasets. It performs well on the DeepFake-TIMIT
and FaceForensics++ datasets and generalizes sat-
isfactorily on Celeb-DFv2. .e proposed pre-
processing method can improve the detection of
low-quality counterfeit videos, and the network can
comprehensively capture different semantic infor-
mation of images.

2. Related Work

We summarize current fake video generation methods,
analyze deepfake detection methods, and introduce our
method.

2.1. Deepfake Image Generation. Image generation tech-
niques have developed rapidly over the past two decades,
and methods such as StyleGAN [11] can produce fake
images or videos that are credible to the eye. It is especially
difficult to see traces of forgery after a video is compressed.
Juefei-Xu et al. [12] produced a comprehensive report on
counterfeiting generation and detection. Deep learning
generation techniques of deepfake videos include autoen-
coders and GANs. Forgery methods can be categorized by
the generated results as entire face synthesis, attribute
manipulation, identity swap, and expression swap, as shown
in Figure 2. Entire face synthesis generates a face that does
not exist in the world. .e input of these networks is a
random vector, and the output is a realistic fake face image.
Many models can be used, such as WGAN [13], StyleGAN,
and PGGAN [14]. Attribute manipulation can modify the
attributes of a person’s head, including simple attributes
such as expression, hair color, and baldness and complex
attributes such as gender, age, and the wearing of glasses.
Classic examples are StarGAN [15] and STGAN [16].
Identity swapping, which replaces a face in a source image
with a target’s face, has attracted much interest in recent
years. Apps such as Zao [17] allow one to swap identities
with a favorite star. Moreover, there are malicious attacks.
Examples of identity swapping methods include FaceSwap
[18] and CycleGAN [19]. Also known as face reconstruction,
face-swapping is somewhat similar to identity swapping,
replacing the source image’s facial expression with that of
the target image’s facial expression, which include Face2Face
[1] and A2V [20].

Methods of forgery generation include AAMS [21] for
style transfer, SC-FEGAN [22] for image repair, and SAN
[23] for super-resolution, but most of these methods are not
the focus of face manipulation detection. According to the
risk rank, identity swapping entails the most risk, followed
by expression swap. Entire face synthesis and attribute
manipulation are not very dangerous.

2 Security and Communication Networks



2.2. Deepfake Image Detection. Methods to detect deepfake
features are based on spatial or image pixels, the frequency
domain, or biological signals. Spatial-based methods use
either conventional feature forensics or deep learning.

Conventional image forensics relies on specific manipula-
tion evidence [24], using frequency domain and statistical
features such as local noise analysis, illumination, and device
fingerprints to distinguish deepfakes. Nataraj et al. [25]
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Figure 2: Samples of four forgery categories. Colors at lower-right indicate risk level.

(a) (b) (c) (d) (e)

Figure 1: Changes in YCrCb channels of images with three compression ratios (declining video quality): (a) the image under the RGB
channel; (b) the result of conversion to YCrCb channels; (c), (d), and (e) Y, Cr, and Cb images, respectively. Changes of Cr and Cb channel
information are most apparent.
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extracted co-occurrence matrices on three color channels in
the pixel field and conducted classification training
according to these features. Although the conventional fo-
rensics technique is mature, several shortcomings are
present in dealing with deepfake videos because it pays more
attention to abnormal features of local images. Deepfake
videos are usually processed to avoid detection, such as by
compression methods, compression rates, and condensa-
tion..erefore, the conventional feature forensics technique
cannot be directly applied to detect deepfake videos.

Methods based on or combined with deep learning have
recently gained attention [26–29]. Sabir et al. [30] used
recurrent neural networks to capture temporal differences in
fake videos. Liu et al. [31] conducted an empirical study on
real and fake faces and obtained some important findings.
One of these findings is that the texture of a fake face is
fundamentally different from that of a real face. Deep
learning techniques and large datasets make it easier to catch
the features associated with forgery [32]. .is method can
judge the authenticity of a single-frame image and detect
video frames by a combined strategy, but it has limitations.
Most learning models rely on the same dataset with the same
data distribution for both training and testing and are weak
in the face of unknown tampering types [33]. At the same
time, the ability of deep learning models to detect highly
compressed video frames is greatly reduced.

.e method based on the frequency domain analyzes the
differences of deepfake images such as through a Fourier or
wavelet transform [34]. Durall et al. [35] proved that
standard upsampling methods lead the forged images
generated by these models to fail and to correctly reproduce
the spectral distribution of natural training data. Most
methods calculate feature maps with the differences between
true and fake images in the frequency domain, and combine
deep learning such as the support vector machine (SVM) for
classification. Because the available spectrum of high-reso-
lution images is much smaller than that of high-resolution
photos, it is challenging to identify compressed videos.

Biometric authentication techniques have developed in
recent years [36]. Detection methods based on biological
signals cannot reproduce natural physiological character-
istics by using fake videos, and the physiological charac-
teristics of fake faces are inconsistent with those of real faces.
[37]. .erefore, biological signal detection-based methods
are constantly being developed by researchers. For example,
by monitoring minimal periodic changes in skin color, Qi
et al. [38] speculated that the normal heartbeat rhythm
would be interrupted by deepfakes and proposed a dual
temporal attention network. Although detection methods
based on physiological signal characteristics can effectively
make use of the defects of deepfake techniques, these
methods gradually become invalid with the continuous
improvement of generation methods, such as the addition of
physiological characteristics (e.g., blink frequency). Besides,
methods based on hard-to-find biological signals, such as
heart rate, would be far less accurate due to video com-
pression and other processing [39].

Because conventional forensic techniques are easily
avoided by new deepfake techniques, frequency domain

feature-based statistical methods are not strong at detecting
low-resolution forged videos, and biological signal-based
methods are weak in improving generation technique. Most
current work still adopts data-driven deep learningmethods.
As far as we know, current deep learning methods do not
fully use the three semantics of images. For example,
Mesonet only used mesoscopic semantics, while later net-
works used macroscopic semantics for judgment, such as
Xception [7], FDFtnet [40], and AMTEN [41]. Zhao et al.
[42] used microscopic and macroscopic semantics. Al-
though some previous work mentioned semantics, they
could not explain the relationship between network depth
and the three types of semantics. Our work developed a
targeted solution to this problem; specifically, the three
semantics are set according to the width of the network,
which has better interpretability. Moreover, ablation ex-
periments show that the proposed method is effective and
can surpass current methods at detecting forged images,
especially in low-resolution videos. In addition, according to
the compression principle, we propose a preprocessing
method for low-resolution video.

3. Proposed Method

Based on the above analysis, we design a multisemantic path
neural network (MSPNN) for deepfake detection to capture
deepfake features under different semantics, as shown in
Figure 3.

3.1. Multiscale Detail Enhancement. We use a multiscale
approach to enhance the details of the source image. We first
define three Gaussian filters:

G1 �

0.0030 0.0133 0.0219 0.0133 0.0030

0.0133 0.0596 0.0983 0.0596 0.0133

0.0219 0.0983 0.1621 0.0983 0.0219

0.0133 0.0596 0.0983 0.0596 0.0133

0.0030 0.0133 0.0219 0.0133 0.0030

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G2 � g2 ∗g
T
2 ,

(1)

where g2 � [0.02760.06630.12380.18020.20420.18020.

12380.06630.0276] and

G3 � g3 ∗g
T
3 , (2)

where g3 � [0.00810.01370.02200.03300.04650.06160.

07660.09000.10150.09000.07660.06160.04650.04650.

03300.02200.01370.0081].
.en, we obtain three fuzzy images using Gaussian

image filters

B1 � G1 ⊗ Iin,

B2 � G2 ⊗ Iin,

B3 � G3 ⊗ Iin,

(3)

where G1, G2, and G3 are Gaussian kernels with respective
kernel sizes of 5 × 5, 9 × 9, and 19 × 19 and standard
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deviations σ1 � 1.0, σ2 � 2.0, and σ3 � 4.0; ⊗ represents
convolution; and B1, B2, and B3 are the three filtered images.
.e fine, intermediate, and coarse details are, respectively,
extracted as

D1 � Iin − B1,

D2 � B1 − B2,

D3 � B2 − B3.

(4)

We combine the three layers to generate a detailed image
of the whole:

D
∗

� 1 − w1 × sgn D1( (  × D1 + w2 × D2 + w3 × D3 + Iin.

(5)

According to experience, ω1, ω2, and ω3 are fixed as 0.5,
0.5, and 0.25, respectively. Figure 4 shows the process of
image detail enhancement. Figure 5 shows the effect of
multiscale detail enhancement. Faces at the top in Figure 5
are slightly blurred, while at the bottom, detail enhancement
makes the visual perception of local details clearer, which
aids in the detection of forged images with high
compression.

3.2. CompressedVideos Analysis. According to our research,
the detection accuracy of high- and medium-quality deep-
fake videos, i.e., uncompressed and medium-compressed,
respectively, is close to 100%, while that of high-compression
videos is much worse, especially for some videos with more
realistic tampering effects. .erefore, research on high-
compression forged video must be improved. Since human
eyes are not sensitive to the chromaticity of an image but are
sensitive to its brightness, during image compression, it is
desirable to retain as much chromaticity information as
possible and compress brightness information to save
storage space. Since the chrominance information of the
compressed video hardly changes, the definition of the video
does not change significantly. Since compression is carried
out in YCrCb color space and our datasets are RGB images,
spatial conversion is first required, given as follows:

Y

Cr

Cb

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

0.299 0.578 0.114

0.500 −0.4187 −0.0813

−0.1687 −0.3313 0.500

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ×

R

G

B

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +

0

128

128

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(6)

where R, G, and B are the gray values of the three com-
ponents of RGB.

Figure 1 shows images with different compression rates.
.e compression rate increases gradually from the first to
the third row. .e first line is the original image, and the
image that is almost visually lossless in the second row is
slightly compressed. .e third row is a low-quality image.
Column (a) shows images in RGB color space, and column
(b) shows images under the YCrCb channels. Column c,
column d, and column e show separate images using the
YCrCb channels, such as the Y channel, the Cr channel, and
the Cb channel, respectively. .e change in the Y channel is
the least obvious, and the change in the Cr and Cb channels
is the most obvious. Inspired by the above observations, we
extract the image information of the RGB channel into two
types of luminance information and one type of chromi-
nance information, i.e., the YCrCb channel. .en, we
conducted four experiments using the Y channel, the Cr
channel, the Cr channel, and the original image separately to
verify our idea. Experimental results show that using only Y
channel information can improve the accuracy of highly
compressed video and has little effect on slightly compressed
video.

3.3. Multisemantic Path. MSPNN can output feature maps
with multiple semantics through different receptive fields
and network depths..e features of these different layers are
finally connected, and a learnable weight is added to the
three feature layers for fusion classification. .e final clas-
sification relies on the deep feature map and considers the
shallow and middle feature maps. .e overall framework is
shown in Figure 3.

.e network has three parts. First is simple image
preprocessing to generate 32 feature maps. Different feature
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maps are generated through three semantic channels. .e
network details are shown in Figure 6. Since low semantics
can be understood as microscopic images, all filters in the
semantic channel adopt a 3× 3 window. .e high semantics
are the macroscopic features of the image, and the corre-
sponding receptive field is more extensive, so the filter size of
the semantic channel is 7× 7. Inspired by Inception [43], we
replace a 7× 7 convolutional kernel with three 3× 3 con-
volutional kernels, which can reduce computation without
reducing the receptive field and can have more nonlinear
transformations, as shown in Figure 6. Mesoscopic se-
mantics is between mesoscopic and macro semantics. .e
receptive field of this channel is 5× 5, and we use two 3× 3
convolution kernels. Considering the influence of network
depth semantics, the three semantic depths are also
increased.

3.4. Semantic Integration. Although the microscopic,
mesoscopic, and macroscopic semantics of images are
juxtaposed, their importance is not the same. Hence, we
apply a weight to each of the semantics instead of feeding
back directly to the discriminator. In our model, these
weights are learnable, which we accomplish through a
channel-attention module to combine space and channels;
this can achieve better results than SENet [44], which only
pays attention to the channel. .e first one is the channel-
attention module of the image given as follows:

Mc(F) � σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))

� σ W1 W0 F
c
avg   + W1 W0 F

c
max( (  ,

(7)

where σ denotes the sigmoid function, W0 ∈ RC/r×C and
W1 ∈ RC/r×C. Note that MLP weights W0 and W1 are shared
for both inputs, and ReLU activation is followed by W0.
.en the spatial attention is

Ms(F) � σ f
7×7

([AvgPool(F); MaxPool(F)]) 

� σ f
7×7

F
s
avg; F

s
max   ,

(8)

where f7×7 represents convolution with a 7 × 7 filter, and
AvgPool() and MaxPool() are average and maximum
pooling, respectively..e fused feature map is fed to the final
classifier.

3.5. Loss Function. According to our investigation, the
center loss function, while used in many face recognition
tasks [45], does not improve performance in tasks such as
handwritten number recognition. We conclude that the
center loss function is more suitable for fine-grained clas-
sification tasks. To this end, we introduce a center loss
function to our model as

Lc �
1
2



m

i�1
xi − cyi

�����

�����
2

2
, (9)

where cyi
∈ Rd represents the distribution center of yi

category data; that is, the feature center of true or fake faces,

xi represents the feature before the full connection layer, and
m is the batch size. We use this loss to continually decrease
the sum of squares of the distance between the feature maps
of each sample and the feature, i.e., to make the in-class
distance as small as possible.

Normally, cyi
should be updated as the depth features

change. .e choice of feature centers should consider the
entire training set and average the features of each class in
each iteration. Specifically, cyi

is updated in small batches,
and the centers are calculated by averaging the character-
istics of the corresponding classes in each iteration. Second,
to avoid large disturbances caused by a small number of
mislabeled samples, we use the scalar α, which is limited to
the range [0, 1], to control the learning rate of the center..e
updated equation of cyi

is

Δcj �


m
i�1 δ yi � j(  · cj − xi 

1 + 
m
i�1 δ yi � j( 

, (10)

where if yi � j is satisfied, then δ(yi � j) � 1; otherwise,
δ(yi � j) � 0; that is, when the tags yi and Cj are of different
categories j, then Cj does not require updating. We use a
cross-entropy loss function and central loss joint supervision
to train the network to learn true and fake features. .e
equation of the final loss function is given as follows:

L � LS + λLC. (11)

We first consider Ls and Lc of equation (11) equally
important, so we set λ as 1. Values can have different effects
on the result, and we believe that multiple attempts can find
a more suitable value. We compute

Ls � −
1
N



N

i�1
yilog S yi( (  + log 1 − yi( log 1 − S yi( (  ,

(12)

where yi is the score of the i-th face, and yi ∈ 0, 1 is the
related face label, where the label 0 is associated with faces
from real, original videos, and 1 is associated with fake
videos. N is the total number of faces used to train each
batch, and S(·) is the sigmoid function.

4. Experimental Results and Analysis

We describe popular datasets, video segmentation methods,
and their implementation, describe pretreatment ablation
experiments and comparative experiments with other
methods, and discuss verification of generalization.

4.1. Datasets. Our experiments use the FaceForensics++,
DeepFake-TIMIT, and Celeb-DFv2 datasets. Face-
Forensics++ is one of the largest and most diverse deepfake
datasets. It is a prominent face forgery dataset widely used in
deepfake detection, with 1,000 YouTube videos. .e authors
of FaceForensics++ used four types of face tampering to
create fake videos, including FaceSwap, DeepFakes, Face2-
Face, and NeuralTextures. A total of 1000 deepfake videos
are generated with each tampering method, including videos
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compressed with the original compression rate (C0), videos
compressed with the micro compression rate (C23), and
low-quality videos (C40). FaceForensics++ datasets have
1000 fake videos and 1000 real videos for each compression
rate. When detecting forged videos, we divided the datasets
into training, validation, and test sets according to the
standard of FaceForensics++. .ere are 720 training sets,
140 validation sets, and 140 test sets.

DeepFake-TIMIT is generated by the face exchange al-
gorithm based on the VidTIMIT dataset, which was de-
veloped using the faceswap-GAN method. Furthermore,
Deepfake-TIMIT is the first deepfake dataset generated by
GAN. .e 640 generated fake videos are available in high
(128 × 128) and low (64 × 64) quality. .e production
quality is better than that of Faceforensic++, but the video
resolution is not high. We divided the dataset according to
the settings of FaceForensics++. .ere are 320 videos of the
two qualities, 230 training sets, 45 verification sets, and 45
test sets.

Celeb-DFv2 is a challenging deepfake video dataset that
improves upon some weaknesses of other datasets. For
example, UADFV, Faceforensic++, and Deepfake-TIMIT
have low image resolution, poor quality of synthesized
videos, rough tampering traces, and excessive flicker of video
faces. .e dataset consists of 590 real videos and 5,639

deepfake videos. Real videos from YouTube show celebrities
of different genders, ages, and races.

For a fair comparison, we processed the video according
to the clipping of FaceForensics++. All videos were framed,
and dlib [46] was used to extract the feature points of each
frame of the face to help locate and clip the face area, which
was expanded by 1.3 times. Each video of the cropped face
was taken in 30 frames. For data preparation of frame-level
streams, we used OpenCV to extract frames. Since the
datasets only operate on the faces in the video, not all frame
information is helpful for deepfake detection from this
perspective [7]. We focused our analysis on the area of the
subject’s face, and therefore on human faces, using dlib for
face detection, which further reduced the amount of data
processing. When extracting a face, dlib sometimes fails to
recognize the face in a video frame, in whose case we skipped
the frame and kept a constant number of faces captured in
each video.

Figure7 shows the input image samples and output
feature maps in the three experiments. .e first line uses the
low-compressed DeepFakes datasets in FF++ for training
and testing. .e generation method of forged image in the
second line is the same as in the first line, with a higher
compression rate. .e third line uses the DeepFakes datasets
with low compression in FF++ for training and Celeb-DFv2
for testing so as to verify the generalization performance.
.e output feature maps are the result of the fusion of the
three paths. It can be seen from Figure 7 that the real image
with higher brightness is concentrated in the center of the
featuremap, while the forged image with higher brightness is
concentrated in the lower part.

4.2. Implementation. All experiments were performed on
RTX 3090. .e baseline [7] has a high accuracy in
uncompressed datasets, and we only evaluated our model on
low- and high-compressed data. We implemented MSPNN
using the PyTorch deep learning library. For more details, we
selected cross-entropy as the loss function in the training
phase. .e output of the network was distributed between 0
and 1, and we adopted the autoadaptive algorithm Adam in
the optimization process. .e initial learning rate was 1e-4,
and the policies of cosine annealing LR were both used. .e
center loss function used the SGD optimizer. Batch nor-
malization was used in each convolution to reduce the
impact of overfitting. Dropout was introduced in the final
full connection, with a ratio of 0.5..e batch size of the input
data was 32. We trained our models with 100 epochs. .e
graph of the learning rate with each epoch was similar to a
cosine function. .e rest of the model settings were default
values, the random seed was 43, and the input image was
224× 224.

4.3. Preprocessing Analysis. Preprocessing had two steps.
Multiscale detail enhancement highlights face textures, es-
pecially low-quality images, which are so blurred that it is
difficult to see forged traces. In this process, three filters of
different sizes,G1,G2, andG3, were used to filter the image to
obtain fuzzy images B1, B2, and B3. .e original image was

Iin

D1=Iin−B1 D2=B1−B2 D3=B2−B3

B1 B2 B3

D*1 - ω1 * sgn (D1) 

Iin

Figure 4: B1, B2, and B3 are results of the three Gaussian filters. D1,
D2, and D3 are details of calculation of the original image and
filtered results. .e final image D∗ is enhanced by incorporating
details in the original image.

Security and Communication Networks 7



Figure 5: Effect of multiscale detail enhancement. .e top part shows the original images and the bottom part shows images with clear
texture after multiscale detail enhancement.
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Figure 6: Network details of MSPNN. All receptive fields in micro semantic pathway are 3 × 3. Superposition of two 3 × 3 convolution
kernels replaces 5 × 5 receptive fields in the mesoscopic semantic path, and skip connection is used in the second block. Two 5 × 5
convolution kernels replace 7 × 7 receptive fields in the macroscopic semantic path. In the third and fourth blocks, skip connections reduce
loss of information. Finally, the output of each path is aligned with other semantic feature maps through downsampling.

8 Security and Communication Networks



subtracted from B1 to obtain detail image D1. .e detail
image D2 was obtained by combining detail image D1 and
fuzzy image B2, and the detail image D3 was obtained by
combining detail image D2 and fuzzy image B3. .e three
detail images were fused with the original image to enhance
the detail images. .e improved results are shown in Fig-
ure 5. Ablation experiments were performed on the datasets
of FaceForensics++ with compression rates C23 and C40, as
shown in Table 1, from which we can see that the detection
performance of the high-compression dataset was effectively
improved compared with the low-compression dataset,
which shows the effectiveness of the proposed preprocessing
method for low-quality datasets. It is worth noting that the
proposed detection was improved at any compression rate
on the most challenging NeuralTextures dataset. .e pro-
posed method only modifies the facial expression corre-
sponding to the mouth, leaving the eye area unchanged, and
requiring more subtle detection methods.

.e second preprocessing step was channel separation for
high-compression images with low detection accuracy. We
investigated the video compression standard H.264 and found
that the measure keeps the information of the Y channel as
much as possible while compressing the other two channels. In
Figure 1, we can see the changes in the knowledge of the three
channels after compression. So we converted the RGB image to
a YCrCb image, and the images of Y, Cr, and Cb channels were
taken out for training.We found that the accuracy of the image

containing the brightness information channel is much higher
than that containing the chroma information channel. .e
accuracy of the chromaticity information channel is much
lower than of that of the ordinary RGB channel, as shown in
Table 2, according to which most subset accuracy can be
improved by using only Y channel information on the Face-
Forensics++ dataset, especially on the highly compressed C40
dataset. .e experimental effect on some datasets becomes
worse, but this change is not very large. We believe that the
forged image with a low compression rate is close to the
original image, so the effect is not apparent.

4.4. ExperimentalResults. Most detection methods are based
on macroscopic semantics, i.e., the final feature maps of the
network. .e difference between a natural face and a fake is
often subtle and occurs in the local area. Minor artifacts
caused by the deepfake method are usually stored in the
shallow characteristic of texture information. We believe
that the microscopic semantic or superficial semantic fea-
tures cannot be ignored. Focusing only on details is also
flawed. A microscopic analysis based on image noise cannot
be applied to the compressed video environment, where the
image noise is strongly reduced. It is difficult for the human
eye to distinguish the forged images at the same higher
semantic level, especially in fine-grained analyzes, such as
face discrimination. .erefore, our work takes into account
the three kinds of semantic information, which receptive

Training Datasets Test Datasets Test Feature MapsTraining Feature Maps

FF- Real (C23) FF- Real (C23)FF- Fake (C23)FF- Real (C23) FF- Real (C23)FF- Fake (C23) FF- Fake (C23) FF- Fake (C23)

FF- Real (C40) FF- Real (C40)FF- Fake (C40) FF- Fake (C40) FF- Real (C40) FF- Fake (C40) FF- Real (C40) FF- Fake (C40)

FF- Real (C23) FF- Fake (C23) FF- Real (C23) FF- Fake (C23) Celeb- Real Celeb- Fake Celeb- Real Celeb- Fake

Train 1: FF-DF (C23)
Test 1: FF-DF (C23)

Train 2: FF-DF (C40)
Test 2: FF-DF (C40)

Train 3: FF-DF (C23)
Test 3: Celeb-DFv2

Figure 7: Training set, test set, and output feature maps. Red boxes indicate differences between real and fake images. It can be seen that the
real image with higher brightness is concentrated in the center of the feature map, while the forged image with higher brightness is
concentrated in the lower part of the feature map.

Table 1: Accuracy comparison of multiscale detail enhancement methods for datasets with different compression rates before and after
introduction.

Acc (%) on FF++(HQ) Acc (%) on FF++(LQ)
DeepFakes Face2Face FaceSwap NeuralTextures DeepFakes Face2Face FaceSwap NeuralTextures

Without detail enhancement 99.73 99.09 99.17 91.2 93.83 91.15 92.47 74.41
With detail enhancement 99.54 98.92 98.86 91.3 94.25 91.25 91.74 74.52
.e bold values indicate the better results in the two experiments.
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fields of various sizes can also capture, and which are more
explanatory, as shown in Figure 8.

Gradient-weighted class activation mapping is used to
visually display the details of the attention of the three
pathways, and it is evident that the microscopic semantic
pathway pays more attention to details and the mesoscopic
semantic path to multiple blocks. Macro semantics focus
more on areas that are difficult to forge, such as the eyes,
nose, and mouth because these are the most difficult to
reproduce during the generation of forged images. In ad-
dition, small convolution kernels are used to map large
convolution kernels, which reduces the computation of

convolution, while increasing multiple nonlinear activa-
tions, and the receptive field is unchanged. We add residual
blocks to the mesoscopic and macroscopic semantic path-
ways to ensure that information is not lost when the network
depth increases. In Table 3, we can observe that much of the
accuracy of the datasets is improved under the three
pathways. .ey have a poor effect on some datasets, in
particular the NeuralTextures dataset, which only tampers
with parts of the images, whereas our microscopic semantic
pathway captures much information that is not helpful to the
detection of these datasets. Our addition of preprocessing
makes up for this problem, as shown in Table 1. We also

3*3 Receptive Field

Microscopic Semantic Path

Low Semantic
Activation Map

Mesoscopic Semantic Path

2*3*3 Receptive Field
replace 5*5 Receptive Field 

Middle Semantic
Activation Map

2*5*5 Receptive Field
replace 7*7 Receptive Field 

Macro Semantic Path

High Semantic
Activation Map

Figure 8: Receptive field description maps of different semantic paths and generated results.

Table 2: Y, Cr, Cb, and RGB channels used as input for training and test results for C23 and C40 datasets.

Acc (%) on FF++(HQ) Acc (%) on FF++(LQ)
DeepFakes Face2Face FaceSwap NeuralTextures DeepFakes Face2Face FaceSwap NeuralTextures

RGB 99.73 99.09 99.17 91.2 93.83 91.15 92.47 74.41
Cr channel 84.46 85.58 79.04 83.35 79.67 75.73 75.32 63.32
Cb channel 87.19 85.17 77.08 80.11 80.45 72.91 69.65 59.83
Y channel 99.57 99.21 99.34 91.08 94.35 91.01 92.55 74.92
Bold values indicate the best results for four different channels.
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conducted experiments to verify the effectiveness of our
proposed channel and spatial attention modules. It is valid
for most datasets, as shown in Table 4. In particular, we find
that NeuralTextures and Face2Face can have satisfactory
effects in the most complex datasets of FaceForensics++.

Our overall accuracy on FaceForensics++ datasets ex-
ceeds that of many other previous methods, as shown in
Table 5. Most of the work on the TIMIT dataset uses the

AUC indicator. To evaluate the overall detection perfor-
mance, we calculated the area under the curve (AUC), which
is the area under the receiver operating characteristic (ROC)
curve, whose maximum value is 1 and displays the results in
Table 5. .e AUC of our proposed method is higher than
that of other methods, indicating better performance on
compressed deepfake video detection.

4.5. Validation of Generalization on Celeb-DFv2.
Cross-dataset validation was carried out to evaluate the
generalization ability of the proposed method. .e model
was trained on FaceForensics++ and tested on Celeb-DFv2.
We followed the setup of Celeb-DFv2 [10] to divide the test
set and displayed the experimental index AUC scores in
Table 6. It can be seen from the results that this method has a
better generalization effect than most methods. Masi’s [55]
generalization on Celeb-DFv2 is better than ours, but the
AUC score in the original dataset is far behind. Our ap-
proach has limitations, but it has always been a challenge to
balance accuracy and generalization.

5. Conclusion

Although methods for deepfake detection of videos and
images have made much progress, few methods consider
multiple aspects of semantic information. .is work

Table 3: Comprehensive precision comparison of three semantic pathways on FF++ dataset, and comprehensive precision comparison of
three semantic pathways and multiple semantic pathway networks on neuraltextures, deepfakes, FACE2FACE, faceswap, and
neuraltextures.

Acc (%) on FF++ (HQ) Acc (%) on FF++ (LQ)
DeepFakes Face2Face FaceSwap NeuralTextures DeepFakes Face2Face FaceSwap NeuralTextures

Microscopic path 99.05 98.57 98.39 90.05 91.26 89.72 90.01 73.4
Mesoscopic path 99.2 99.17 98.86 91.01 92.32 88.92 88.20 73.52
Macroscopic path 99.32 99.21 98.77 91.52 94.4 91.04 92.41 75.09
Multipath 99.73 99.24 99.17 91.30 93.83 91.15 92.47 74.41
Results in bold indicate the best results of the four ablation experiments.

Table 4: Ablation experiment on assigning weight to different semantics by adding attention module (ACC %).

Acc (%) on FF++(HQ) Acc (%) on FF++(LQ)
DeepFakes Face2Face FaceSwap NeuralTextures DeepFakes Face2Face FaceSwap NeuralTextures

Without attention 99.73 99.09 99.17 91.2 93.83 91.15 92.47 74.41
With attention 99.49 99.35 99.06 91.31 94.87 91.26 91.13 74.75
Bold values indicate higher results in two experiments.

Table 5: Quantitative detection results of ACC (%) using FF++ dataset on high quality (C23 light compression) and low quality (C40 heavy
compression) videos and AUC on TIMIT datasets. Bold font indicates the best result.

Acc on FF++(HQ) Acc on FF++(LQ) AUC on TIMIT(HQ) AUC on TIMIT(LQ)
Bayar and stamm [47] 88.68 61.6 86.50 88.33
InMesonet [4] 57.81 69.75 81.15 82.63
Rahmouni et al. [48] — 58.10 — —
Mesonet [4] 54.91 50.28 63.68 77.44
Zhou et al. [49] — — 73.5 83.5
Chollet [6] 91.87 72.93 93.64 88.24
Nirkin et al. [50] — 75.00 — —
Ours 94.21 76.31 99.12 99.52

Table 6: Face cross test results, using frame-level AUC (%) to
compare our method with others on both benchmarks.

Method FF-DF Celeb-DFv2
Two-stream [49] 70.1 53.8
Meso4 [4] 84.7 54.8
MesoInception4 [4] 83.0 53.6
HeadPose [51] 47.3 54.6
FWA [52] 80.1 56.9
DSP-FWA [52] 93.0 64.0
VA-MLP [53] 66.4 55.0
VA-LogReg [53] 78.0 55.1
Xception [6] 93.65 64.52
Multitask [54] 76.3 54.3
Two branch [55] 93.18 73.41
Capsule [56] 96.6 57.5
Ours 96.7 66.7
Bold values indicate higher results in two experiments.
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proposes a new face forgery detection method, MSPNN,
which can simultaneously capture micro, mesoscopic, and
macro semantics to comprehensively distinguish forged
images, with weights assigned automatically to the three
semantics. .e neural network can comprehensively capture
different semantic information of an image. In view of the
challenges of face tampering in a small-range, high-com-
pression dataset, and cross-dataset, the proposed framework
can effectively capture minor forged artifacts and macro
forged traces, which can further improve the detection of
high-compression forged images. .is framework has good
generalization as well. Furthermore, the proposed pre-
processing method can improve the detection ability of our
framework for low-quality counterfeit videos. Our future
work will consider the combination of frequency domain
information and brightness information at the separation
point to integrate the corresponding features for deepfake
detection.
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