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HTTP adaptive streaming (HAS) technologies such as dynamic adaptive streaming over HTTP (DASH) and common media
application format (CMAF) are now used extensively to deliver live streaming services to large numbers of viewers. However, in
dynamic networks, inaccurate bandwidth prediction may result in the wrong request of bitrate, and short-term network
fluctuations may produce glitches, causing unnecessary bitrate switching, thereby degrading clients’ Quality of Experience (QoE).
To tackle this, we propose adaptive bandwidth prediction and smoothing glitches in low-latency live streaming (called APSG) in
this article. Concretely, firstly, the size of random bandwidth fluctuations is exploited as the weight of exponentially weighted
moving average (EWMA) for adaptive bandwidth prediction; in addition to bandwidth prediction and buffer occupancy, glitches
phenomena under a stable network environment are taken into account to enhance the viewing experience of clients. Finally,
experimental results show that compared to traditional ABR algorithms under a stable network environment, APSG could reduce
the number of bitrate switches and latency by up to 72.6% and 27.3%, respectively; under a dynamic network environment, APSG
could reduce the number of bitrate switches and latency by up to 53.8% and 23.6%, respectively.

1. Introduction

In recent years, the development of mobile networks and
streaming technologies has enabled clients to watch live
streaming on their mobile devices at any time, with video
accounting for 67% of global traffic in 2016 and expected to
reach 80% by 2022, according to Cisco’s Annual Visual
Networking Index Report [1]. Today, live streaming plat-
forms, such as Huya and Douyu, attract millions of active
clients, and video content providers have become more
interested in live streaming as client’s engagement will di-
rectly increase commercial revenue. )is trend means that
high-quality videos with fewer switches, lower latency, less
rebuffering, and higher bitrate need to be provided to clients.

In DASH, the video is divided into multiple segments,
each with a duration of approximately 2 to 10 seconds, and
encoded at different bitrates and resolutions [2]. On the

client’s side, the ABR algorithm takes into account network
environments or buffer occupancy to pick the right bitrate
for the clients and fetch it from the server. In a traditional
video on demand (VoD) scenario, DASH has a large end-to-
end latency due to the fact that the entire segment is
completely downloaded before it is added to the playback
buffer and queued for playback. If the buffer content is
empty, then the rebuffering will occur. In live streaming, the
latency is generated by the process of capturing video from
the anchor to the server and decoding it by the client. )e
latency is proportional to the size of the segment, and if the
duration of the segment is reduced to achieve the purpose of
reducing the latency, then the number of requests and the
round-trip time (RTT) will increase significantly. In order to
achieve target latency without reducing the duration of the
segments, CMAF is a method [3]. CMAF can divide the
segments into smaller chunks and then transmit them by
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HTTP.When the coding of the chunk is completed, it will be
sent to the client, and the remaining chunks of the segment
will be sent without additional requests; it is unnecessary to
send them to the client only after the coding of the entire
segment is completed. CMAF significantly reduces latency.

CMAF could reduce latency but bring new challenges;
bandwidth measurement becomes nonnegligible. )e big-
gest difference between live streaming and VoD is that live
content is generated in real time. Bandwidth measurement
usually uses the size of the segment divided by the download
time of the segment in the VoD. However, HTTP does not
provide a download start time for each chunk within the
segment. If the requested chunk is not encoded, it is nec-
essary to wait until the chunks coding is completed to send it
to the client. During this period, there must be idle times
between the two chunks. VoD’s bandwidth measurement
method will underestimate the download rate [4–6]. )e
ABR algorithm will choose a low bitrate, directly reducing
the client’s QoE. To solve this problem, Bentaleb et al.
proposed the first solution to calculate the bandwidth
through the sliding window moving average (SWMA)
bandwidth measurement method [7]. When the chunk
download rate is close to the average download rate of the
segment, this chunk must be disregarded. Although the
problem of bandwidth underestimation is solved, the
bandwidth will be overestimated, and it is more likely to
rebuffer when watching live streaming. In order to solve the
problem of bandwidth overestimation, Ozcelik and Ersoy
considered the whole segment and subtracted the download
end time of the consecutive chunks [8]. If the value is less
than the average download time of the segment, then it is
considered that there are no idle times between the two
chunks.)ese chunks are used to approximate the download
time of the remaining chunks within the segment and reduce
the impact of idle times.

Once the exact bandwidth has been measured, the two
most important parts are bandwidth prediction and bitrate
selection. Traditional bandwidth prediction methods based
on time series models are weighted to historical data, which
can be estimated online in real-time. Fixed parameters or
weights are difficult to apply to all network situations, a
smaller number of samples may produce unstable prediction
values when the bandwidth changes drastically, and the
correlation between premature historical data and current
bandwidth is weak. When the bandwidth is at a certain
point, there is a glitches phenomenon (i.e., the stable net-
work suddenly changes and then gets back to the original
network state), and the bitrate changes accordingly. )is
unnecessary bitrate switching will directly affect the client’s
viewing experience.

To address the above issues, firstly, this article proposes
an adaptive bandwidth prediction method, which calculates
the network stability factor based on historical data, designs
the weight values based on the network stability factor, and
obtains the adaptive bandwidth prediction values by
EWMA. )en APSG algorithm is proposed for smoothing
glitches. )e bandwidth is differentiated into a stable and
dynamic network environment by calculating the network
stability factor.)e glitches phenomenon is smoothed under

a stable network environment.)is article takes into account
both bandwidth prediction and buffer occupancy and adopts
corresponding strategies to select the appropriate bitrate.
APSG algorithm is implemented under the DASH.js ref-
erence player [9] and extensive experiments have been done
under different network environments. )e experiments
enable APSG to compare with two traditional algorithms in
terms of live latency, average bitrate, and the number of
bitrate switches.

)e rest of this article is organized as follows. Related
work is provided in Section 2, followed by the details for the
APSG scheme in Section 3. Section 4 presents the experi-
mental evaluation, and Section 5 concludes the article.

2. Related Work

In the past decade, many ABR algorithms have been pro-
posed, which can be divided into four main categories: (1)
available bandwidth-based adaptive bitrate algorithms; (2)
playback buffer-based adaptive bitrate algorithms; (3) mixed
adaptive bitrate algorithms; and (4) data-driven adaptive
bitrate algorithms.

(1) Available bandwidth-based adaptive bitrate algo-
rithms: in this type of scheme, the most important
thing is to accurately predict bandwidth. Jiang et al.
proposed an algorithm called FESTIVE, which
mitigates bandwidth jitter caused by stop-and-wait
mechanisms by optimizing video chunks scheduling
and uses harmonic mean to predict bandwidth [10].
)e PANDA proposed by Li et al. uses an EWMA
with a weight of 0.2 for bandwidth prediction [11].
Bentaleb et al. implemented a CMAF-based band-
width measurement algorithm for live streaming and
recursive least-squares- (RLS-) based bandwidth
prediction [7]. However, the bandwidth overesti-
mation problem occurs when the idle time increases.
Ozcelik and Ersoy further addressed the problem of
bandwidth overestimation due to idle times based on
[7] and used an EWMA method with a weight of 0.9
to calculate the available bandwidth for the next
segment [8]. van der Hooft et al. proposed an HTTP/
2-based algorithm that discards unimportant frames
within a segment when the selected bitrate does not
match the available bandwidth [12]. Existing work
has shown that selecting the next bitrate based on
inaccurate bandwidth prediction values can cause
low-quality video or playback rebuffering.

(2) Playback buffer-based adaptive bitrate algorithms: in
this type of scheme, clients use the playout buffer
occupancy as a criterion to select the next segment
bitrate during video playback. Huang et al. proposed
a buffer-based bitrate selection algorithm called
BBA, which selects the bitrate based on a linear
function aimed at maximizing the average video
quality and avoiding unnecessary rebuffering events
[13]. Spiteri et al. designed a buffer-based online
control algorithm that uses Lyapunov optimization
techniques to minimize rebuffering and maximize
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video quality [14]. Essentially, these two algorithms
are mapping the current buffer occupancy. Huang
et al. developed a QoE model, including rebuffering,
the number of bitrate switches, and video quality,
and formulated the problem as a nonlinear stochastic
optimal control problem [15]. A dynamic buffer-
based controller is designed for DASH using control
theory to determine the bitrate of each segment. Qin
et al. proposed a framework for PIA by further
analyzing ABR video streaming based on propor-
tional-integral-derivative (PID) control and com-
bining several ABR algorithms to address various
business requirements [16]. Both of these approaches
use a PID controller to control the buffer occupancy.
)e adaptive bitrate algorithm based on the playback
buffer has many limitations, the most serious being
that in low-latency live streaming scenarios, the size
of the buffer that can be used is drastically reduced,
especially under long-term bandwidth fluctuations;
there are problems of overall low QoE, unstable
selection of bitrates, and too many bitrate switches.

(3) Mixed bitrate algorithms: in this type of scheme,
clients select bitrate based on the combination of
metrics, including available bandwidth and buffer
occupancy. Pioneering this critical work was Yin et al.,
who modelled bitrate adaptation as a stochastic op-
timal control problem, proposing a model predictive
control (MPC) approach to model cache dynamics
and then select the bitrate by optimizing the overall
QoE function based on bandwidth prediction and
current buffer occupancy as inputs [17], but MPC is
sensitive to bandwidth prediction errors and network
jitter. A fuzzy logic-based bitrate adaptive algorithm
and prediction mechanism was proposed that takes
into account buffer occupancy and the prediction of
available network bandwidth in order to be able to
respond proactively to requests [18]. Reference [19]
considered the joint decision of two factors and
minimized video bitrate switching. Yarnagula et al.
designed a segment-aware rate adaptation (SARA)
algorithm by considering segment size to predict the
time to download the next segment [20].

(4) Data-driven adaptive bitrate algorithms: CS2P pro-
posed by Sun uses a hidden Markov model to design
a prediction model by analyzing the evolution tra-
jectory of download rate [21]. In [22, 23], an ABR
algorithm is based on deep reinforcement learning.
With the powerful approximation ability of the
neural network, the best mapping between various
states and bitrate selection is learned. However, when
encountering untrained network environments,
the overall QoE will be very poor. Another disad-
vantage is that it is difficult to reproduce these ABR
algorithms based on deep reinforcement learning
[24, 25].

)e approach used in this paper is based on a joint
decision between bandwidth prediction and current buffer

occupancy. On the one hand, the adaptive bandwidth
prediction method is used to improve bandwidth prediction
accuracy; on the other hand, the APSG method is used to
solve the glitches phenomenon, thus significantly improving
the quality of service experience for clients.

3. Proposed APSG

In this article, APSG is designed to improve bandwidth
prediction accuracy and eliminate glitches caused by
bandwidth fluctuations under different network environ-
ments. Figure 1 shows the components of the APSG in
DASH.js [9], which contains five parts: (1) bandwidth
measurement module; (2) bandwidth prediction module; (3)
ABR control module; (4) logger module; and (5) playback
speed control module. )is section will introduce each
module in the DASH.js player and elaborate on the details.
)e list of notations used in APSG is given in Table 1.

3.1. APSGProcess. )is article selects the appropriate bitrate
for clients to match the current network environments.
Firstly, the download rate is measured based on the history
of the segment after removing the idle times; then, the
proposed prediction method is used to get the predicted
value of the download rate of the next segment. )en the
current buffer occupancy and bandwidth prediction are
combined to jointly determine the bitrate of the next seg-
ment to be requested and subsequently place the down-
loaded video in the playback buffer and determine the buffer
status and whether the playback speed control module needs
to be invoked.

3.2. APSG Design. )e next section of this article describes
the core functional design and implementation details of the
APSG.

3.2.1. Bandwidth Measurement Module. )e module uses a
heuristic bandwidth measurement method that is able to
reduce the impact of idle times on the calculation of
download rates. As mentioned earlier, the chunks are
encoded and transmitted at the same time, chunks that are
not encoded to completion become unavailable, and
unavoidable idle time is generated between two consec-
utive chunks. )erefore, this article uses the bandwidth
measurement method of [8]. )e method is shown as
follows.

Firstly, this article expresses the size and download time
of each chunk in a segment as a sequence: Li � x1

i ,􏼈

x2
i , x3

i , . . . , xn
i }; there are n chunks in each segment, t

j

i de-
notes the download end time of the ith segment’s jth chunk,
and s

j
i denotes the size of the ith segment’s jth chunk. We

can know the download end time but do not know the
download start time of each chunk, so we use the download
end time of consecutive chunks subtracted from each other
as the download time of each chunk.)e average arrival time
of successive chunks in each segment is as follows:
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ti �
t
n
i − t

1
i

n − 1
. (1)

Secondly, these chunks are considered to be unaffected
by the encoding side and has already been encoded at the
time of request without idle times if the chunks are
downloaded faster than the average arrival time. Place these
chunks in an additional sequence Li

′:

Li
′ � x

j
i􏼐 􏼑, s.t.tji − t

j−1
i ≤ ti∀x

j
i ∈ L. (2)

)en use the chunks in Li
′ to calculate an approximate

download rate ρi:

ρi �
􏽐

x
j

i
∈L′s

j
i

Ti
′

,

Ti
′ � 􏽘

x
j

i
∈L′

t
j
i − t

j−1
i .

(3)

Once the approximate download rate is obtained, the
total size of the remaining chunks and ρi are used to estimate
the effective download time, reducing the effect of idle times
in this step:

Ti �
􏽐

x
j

i
∈ L/L′( )s

j
i

ρi

. (4)

)erefore, the average download rate of the ith segment
is calculated according to Ti

′ + Ti of (3) and (4):

Bi �
􏽐

x
j

i
∈Ls

j

i

Ti
′ + Ti

. (5)

3.2.2. Bandwidth Prediction Module. )is module dynam-
ically and adaptively predicts bandwidth in the APSG. It
consists of two phases: Phase 1, which calculates the size of
network fluctuation; Phase 2, which adaptively predicts the
bandwidth of the next segment based on phase 1.

At phase 1, firstly, it is necessary to distinguish whether
the network environments are transient jitter or long-term
changes, and this article introduces a network stability factor
α, the ratio of the standard deviation to the mean of a set of
data to indicate the size of the fluctuation. α is calculated by
the actual download rate of the lastm segments of the sliding
window and constructing a set Bi−m+1, Bi−m+2, · · · , Bi􏼈 􏼉. )e
network stability factor is calculated as shown in the fol-
lowing equation:

α �

���������������������������

􏽐
i
j�i−m+1 Bj − 1/m 􏽐

i
j�i−m+1 Bj􏼐 􏼑

2
􏽱

1/m 􏽐
i
j�i−m+1 Bj

. (6)
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Figure 1: APSG overview in DASH.js reference play.

Table 1: List of notations.

Notation Meaning
Bi Download rate of the ith segment
ti Average download time of the ith segment
t
j
i Download time of the jth chunk of the ith segment

x
j
i )e jth chunk of the ith segment in the extra sequence

s
j

i Size of the jth chunk of the ith segment
Ti Download time of the ith segment
Ti
′ Download time of the ith segment without idle times

ρi Approximate coefficient of the ith segment
α Network stability factor
θ Network stability factor threshold
􏽢Bi )e predicted bandwidth of the ith segment
ri Bitrate of the ith segment
k k segments in the video sequence
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α characterizes the dispersion of the download rate of the
nearest m segments. When the value of α is small, it means
that there is little fluctuation in bandwidth during the pe-
riod, but there may be glitches, and those transient changes
can seriously affect the client’s viewing experience, so the
network stability factor is designed to find and eliminate
glitches.)e network stability factor threshold θ is defined to
measure the fluctuation of the bandwidth. )e current
network environment is considered to be in a stable network
environment if α belongs to (0, θ); otherwise, it is considered
to be in a dynamic network environment.

Bandwidth prediction for chunked video streams is not
easy, and to solve this problem, traditional bandwidth
prediction methods are as follows:

(1) Segment-based last bandwidth: the last successfully
downloaded segment is used to predict the next
segment

(2) Sliding Window Moving Average (SWMA) [7]:
using the last three successfully downloaded seg-
ments, find their average

(3) Exponentially Weighted Moving Average (EWMA)
[8]: exponentially weighted average bandwidth of the
last four segments

(4) Harmonic mean: the total size of the last five seg-
ments is divided by the total download rate

)e four predictionmethodsmentioned above all share a
common feature, where SWMA and Harmonic have a fixed
window size and EWMA has fixed weights, so there cannot
predict different network environments. For example, when
bandwidth fluctuations are small, there is high prediction
accuracy, but when the fluctuations become larger, too early
measurements are less relevant to the current network
environment. )e player will take a long time to download
the selected chunks of a high prediction value and therefore
may run out of content in the buffer during the download
process, causing rebuffering. In VoD scenarios, the ABR
algorithm usually has enough cached content to absorb
errors, but the playback buffer is small in live streaming
scenarios; the wrong request of bitrate causes rebuffering,
which can seriously affect the client’s viewing experience.
Fixed parameters are difficult to apply to all network
environments.

So, in phase 2, an adaptive bandwidth prediction method
is designed in this article. An initial weight αj is set for each
segment based on the network stability factor, j ∈ 0, 1,{

· · · , m − 1};m is the window size. Normalizing these weights
to their geometric sum, the final weights for each segment
are expressed as follows:

αj �
αj

(1 − α)

1 − αm . (7)

Considering that there is a strong correlation between
the bandwidth prediction value and the bandwidth fluctu-
ation, this article needs to choose the appropriate weight and
prediction formula according to the size of the network
stability factor. )e bandwidth prediction formula is
expressed as follows:

􏽢Bi+1 �

􏽘

m

j�0
αjBi−j, 0.6< α< 1,

􏽘

m

j�0
αm−jBi−j, α> 1,

1
m

􏽘

m

j�0
Bi−j, others.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

When the network stability factor is less than 0.6, it
means that the network is in a stable state. )e detrimental
effects of the glitch’s phenomenon can be well reduced using
m segments average for prediction. When α is in the other
two ranges, it means that the network changes greatly or
drastically, the average value of historical data as the
bandwidth prediction values may result in a wrong request
of bitrate. )e segment closer to the current moment has a
greater impact on predicting the next segment, so it is given a
greater weight value. From (7), it can be obtained that the
size of the weights varies with the drastic changes in the
network, and we can make predictions adaptively according
to the stability of the network.

3.2.3. ABR Control Module. )e ABR algorithm is the core
of the process and the bitrate chosen directly determines the
client’s viewing experience. In different scenarios, ABR al-
gorithms have different objectives. In the VoD scenario,
there is no buffering requirement. To ensure a better viewing
experience for the clients, it will increase or decrease step by
step rather than changing suddenly because the buffer is
large enough to allow this. However, live streaming requires
fewer switches, lower latency, less rebuffering, and higher
bitrate within the constraints of a small buffer, and an ap-
propriate bitrate is very difficult to choose.

As with typical bitrate adaptation algorithms, the APSG
selects the most appropriate one from the set of available
bitrates. )e downloaded segments are placed in the play-
back buffer, and this article defines four buffer thresholds
and the maximum playback buffer, which are bI bα, bβ, bmax.
bcurr represents the current buffer occupancy. As shown in
Figure 2, all thresholds are defined in terms of time. )e
proposed algorithm uses the joint decision of buffer occu-
pancy and bandwidth prediction to select the bitrate for the
next segment.

)e details of the APSG algorithm are shown in Algo-
rithm 1. R: r0, r1, · · · , rmax􏼈 􏼉 defined as the set of bitrates
available for video in the server. )e buffer threshold bI bα,
bβ, bmax, the network stability factor threshold θ, and the set
of bitrates available R are initialized. )ese parameters do
not change during each experiment. )e bitrate of the next
segment is chosen with knowledge of the following pa-
rameters: Download the bitrate of the current segment
(rcurr), the current buffer occupancy(bcurr), network stability
factor α, the size corresponding to the next available segment
of bitrate si+1(f) � si+1(0), si+1(1), · · · , si+1(max)􏼈 􏼉, and the
adaptive bandwidth prediction value 􏽢Bi calculated by (8).
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According to the current buffer occupancy and playback
time, the proposed algorithm is divided into four stages,
which are described as follows:

Stage 1 (bcurr ≤ bI or i< 4): there is nothing in the
playback buffer when the video starts to play; the lowest
bitrate is chosen to ensure low initial latency and also to
fill the buffer quickly to avoid rebuffering. )e lowest
bitrate is chosen during the initial playback stage of the
video for two purposes: firstly, the currently known
sample values for download rates are too few to use the
proposed bandwidth prediction method; secondly, it
prevents clients from giving up watching the video due
to rebuffering.
Stage 2 (bcurr ≤ bα): the algorithm enters stage 2 when
the current buffer occupancy is less than bα. At this
stage, the selected bitrate is incremented by one level
and is no longer played at the lowest bitrate, improving
the quality of the video.
Stage 3 (bα < bcurr ≤ bβ): when the playback buffer oc-
cupancy is between bα and bβ, this is the desired stage in
this article. At this stage, the dynamic changes in the
network environment can be used to determine
whether the current network is in a stable state, and if it
is in a stable state, the glitches phenomenon can be
eliminated based on the choice of bitrate, reducing
unnecessary switching of bitrate and improving the
viewing experience of the client.

Stage 4 (bβ < bcurr ≤ bmax): when the playback buffer
occupancy exceeds bβ, )ere is a risk of video content
overflow, resulting in a lost frame. )e video down-
load is paused until the playback buffer occupancy
returns to stage 3 in the traditional method. )e
bandwidth resources are wasted, and the proposed
bandwidth prediction method cannot be used because
the download rate cannot be obtained during the
pause. So, a playback speed control module is used to
avoid causing overflow and wasted bandwidth
resources.

3.2.4. Logger Module. )e module regularly records various
metrics such as bitrate, buffer occupancy, rebuffering,
measured bandwidth values, and predicted bandwidth
values.

3.2.5. Playback Speed Control Module. )e client has a
catch-up function that adjusts the playback rate to pull the
player back to the target real-time edge. )e player can keep
itself close to the target latency by controlling the playback
rate, which relies on the assumption that changes in play-
back rate are not significant enough for the end client at 25%
or less [26]. It, therefore, speeds up or slows down the
playback rate within a range of (0.75, 1.25) depending on the
difference between the target latency and the current latency.
To determine the actual value in this range, this article relies
on the default implementation in the DASH.js player, which
uses a sigmoid function.

4. Experimental Result

4.1. Experimental Design

4.1.1. Test Set. As with the existing CMAF-based live servers,
this article uses the video sequence Big Buck Bunny [27],
encoded using x264 [28] into three different bitrates{360p@
200Kbps, 480p@600Kbps, 720p@1000Kbps}. )e encoded
video was then segmented using MP4Box [29] into 0.5-
second segments for DASH and into 0.5-second segments
with 33-millisecond chunks for CMAF-DASH.)e resulting
segments/chunks were used in the DASH.js framework. )e
whole video sequence intercepted the first 300 seconds of Big
Buck Bunny.

4.1.2. Test Platform. In order to build an end-to-end live
streaming system, two Ubuntu 20.04 virtual machines were
built using personal computers, the first running the
DASH.js player in the Google Chrome browser (v97) [30].
Another virtual machine is used to enable the CMAF
wrapped FFmpeg encoder and put it into the server. To
simulate the network, the network bandwidth is controlled
on the server PC using the TC [31] network traffic shaping
tool, a module of the Linux kernel, whose control principle is
to restrict the transmission of packets at the transport layer
so that the data traffic can be shaped.

4.1.3. Bandwidth Configuration. )is article is a live
streaming scenario with a single client exclusive link
bandwidth, and the bandwidth variation is modelled by two
scenarios: a stable network and a dynamic network, the
details of which are depicted in Figure 3. In a stable network,
there are two glitches at 50 and 110 seconds and a sudden
decrease and increase in bandwidth at 220 and 270 seconds,
respectively. )ere are two glitches during the dynamic
network, and the network fluctuates dramatically after 150
seconds.

bαbβbmax

bcurr

0bI

Figure 2: Video playback buffer model.
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4.1.4. ABR Comparison Algorithm. )e proposed APSG was
compared with two traditional algorithms, the available
bandwidth-based bitrate adaptation algorithm FESTIVE

[10] and the buffer-based bitrate adaptation algorithm
(BBA) [13]. Bandwidth is predicted by an average of 5
historical data, and then the maximum bitrate less than the

Data:
R: r0, r1, · · · , rmax􏼈 􏼉: Set of available bitrates
bI, bα, bβ, bmax: Buffer thresholds
θ: Network stability factor threshold
INPUT:
rcurr: Bitrate of the most recently downloaded segment
bcurr: Current playback buffer occupancy (in seconds)
α: Network stability factor
si+1(f) � si+1(0), si+1(1), · · · , si+1(max)􏼈 􏼉 are the (n + 1)th segment sizes for bitrates r0, r1, · · · , rmax􏼈 􏼉
􏽢Bi+1: )e Adaptive bandwidth prediction of the (i + 1)th segment
Initialization
if i< 4 or bcurr < bI;
then

li+1 � r0;
else

if bcurr < bα;
then

li+1 � r1;
else if bcurr < bβ;

then
if α< θ;
then

li+1 � li;
else

li+1 � max rf|rf ∈ R, si+1(f)/􏽢Bi+1 ≤ bcurr − bI􏽮 􏽯;
else if bcurr > bβ;
then

li+1 � max rf|rf ∈ R, si+1(f)/􏽢Bi+1 ≤ bcurr − bα􏽮 􏽯;
end

end
Result:
li+1: )e bitrate of the next segment to be downloaded

ALGORITHM 1: Adaptive prediction and smoothing glitches algorithm.
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Figure 3: Bandwidth configuration. (a) Stable network; (b) dynamic network.
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predicted value is selected in FESTIVE. )e BBA uses a
linear mapping function where the bitrate is chosen based on
the buffer occupancy.

4.1.5. Performance Metrics. )e following performance
metrics are prediction errors and QoE parameters.

(1) Prediction errors: the bandwidth prediction errors
model is based on Root Mean Square Error (RMSE),
which is calculated based on the difference between
the bandwidth prediction and the actual bandwidth
measurement, as follows:

RMSE �

�������������

1
k

􏽘

k

i�1

􏽢Bi − Bi

Bi

􏼠 􏼡

2
􏽶
􏽴

. (9)

(2) QoE parameters: after each segment is downloaded,
this article considers three evaluation metrics of
video average bitrate, the number of bitrate switches,
and latency to analyze the performance of the
proposed algorithms; the rebuffering problem was
not considered because these three algorithms did
not show cache underflow during the experiment.

Bitrate is one of the most important metrics of the client
viewing experience; the higher bitrate brings a better viewing
experience for the clients.

Q
v
i �

1
k

􏽘

k

i�0
ri. (10)

From the client’s perspective, frequent bitrate switching
is undesirable. Video is easily abandoned because bitrate
switches from high to low; the following formula determines
whether the bitrate switching occurs:

Q
s
i � 􏽘

k−1

i�1
ri − ri−1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (11)

VoD streaming has more relaxed latency requirements
and can use large playback buffers, whereas live streaming
cannot. To maintain interactivity, the most important re-
quirement is low latency. )e latency parameter Td can be
obtained directly in the DASH.js player.

In summary, the QoE model is as follows:

QoEi � μQ
v
i − cQ

s
i − ςTd, (12)

where μ, c, ς are the weights used to calculate the QoE. Each
weight is given the following values: μ� segment duration;
since this article focuses on bitrate switching, a large weight
is given to c, c � 20; the latency is expressed in milliseconds
in Dash.js, ς � 5000. To simplify the representation of QoE, a
normalized QoE with a value between 0 and 1 is used,
N-QoE (QoE/QoEMAX).

4.2. Bandwidth Prediction Accuracy. In this section, the
accuracy of traditional bandwidth predictionmethods [10] is
compared with that of the adaptive prediction methods in

this article. Under the same network environment and
parameters, the same ABR algorithm and playback speed
control module is used in two prediction methods. Ten
experiments were conducted to take the average of each ABR
algorithm. However, this article cannot conclude from the
observations that the proposed prediction method is better
than the traditional method, so there are other aspects to
prove that the proposed prediction is more accurate.

Bandwidth prediction error can be calculated by (9),
which can directly measure the prediction accuracy at each
time. Figure 4 shows the error values at each moment.

According to Figure 4, it can be seen that adaptive
prediction produces lower errors in the stable networks at 50
and 110 seconds and 220 and 270 seconds, while at other
times, these two errors overlap, shown in blue, because the
mean prediction method is used when the network stability
factor is less than θ. )e same results can be clearly seen
under a dynamic network. )e proposed prediction method
is calculated to reduce the error by 2% compared to the
traditional mean prediction error under a stable network
and by 5% under a dynamic network. If the network changes
more and more dramatically, then the proposed prediction
method will be more effective. )e proposed prediction
method is able to withstand small network changes as well as
large ones, in contrast to traditional algorithms that are
slower to respond to bandwidth changes because they only
consider a fixed sample of historical measurements.
)erefore, there is evidence that our prediction method
outperforms the traditional method.

4.3.:eGlitches Phenomenon. In this section, we verify that
APSG can eliminate the glitches phenomenon. Figure 5
shows the bitrate selected results of the three algorithms
in the stable network with bandwidth shown in Figure 3(a).

As can be seen from Figures 5(a) and 5(b), the lowest
bitrate was chosen as the initial playback bitrate of all three
algorithms at the beginning of playback. )e glitches phe-
nomenon was eliminated at 50 and 110 seconds, and the
same bitrate as the previous segment was selected by the
APSG algorithm. In Figure 3(a), the network suddenly
changes immediately back to the original network envi-
ronment, the bitrate selected by the FESTIVE algorithm is
switched at 50 and 110 seconds, and small fluctuations
occurred in 280 seconds, with bandwidth falling below
600Kbps, resulting in lower bitrate requested. Figure 5(c)
shows that the bitrate is selected by the BBA algorithm and it
can be seen that although the glitches are eliminated, it is
switched several times between 220 and 270 seconds when
the network changes. In a live streaming scenario, the buffer
is quite small. Once the network environment changes, the
content of the buffer will continue to increase or decrease,
resulting in fluctuations around the threshold, and the se-
lected bitrate will be switched many times.

Figure 6 shows the bitrate selected results of the three
algorithms in the dynamic network with bandwidth shown
in Figure 3(b). As can also be seen in Figures 6(a) and 6(b),
the proposed algorithm APSG is able to remove the glitches
phenomenon and avoid bitrate switching due to transient
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bandwidth fluctuations. At about 160 seconds, the network
environment becomes worse and the bitrate selection by the
FESTIVE algorithm decreases; however, the APSG

algorithm still maintains the original bitrate. )is is because
the bitrate changes less during this period, and the proposed
bandwidth prediction method is closer to the real network
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Figure 4: Prediction errors for different prediction methods under two network environments. (a) Stable network prediction errors; (b)
dynamic network prediction errors.
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Figure 5: )e bitrate selection results during the stable network; the red line represents the bandwidth and the blue line represents the
selected bitrate. (a) APSG; (b) FESTIVE; (c) BBA.
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Figure 6: )e bitrate selection results during the dynamic network; the red line represents the bandwidth and the blue line represents the
selected bitrate. (a) APSG; (b) FESTIVE; (c) BBA.
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Figure 7: Average bitrate, number of switches, and live latency for different ABR and different networks over 10 runs. (a) Average bitrate;
(b) average number of switches; (c) average live latency.

Table 2: Average bitrate, live latency, and QoE with its metrics.

Avg.Bitrate (Kbps) Avg.Live Latency (s) Avg. Switches Avg.N-QoE
Stable network

APSG 531.334 2.68 3 0.98
FESTIVE [10] 528.667 3.47 9 0.85
BBA [13] 552.000 3.69 11 0.85

Dynamic network
APSG 544.697 2.94 6 0.98
FESTIVE [10] 540.667 3.85 11 0.86
BBA [13] 562.000 3.83 13 0.85
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Figure 8: Average N-QoE.

Security and Communication Networks 11



environments, so there is no bitrate switching until the
bandwidth is reduced again in 170 seconds. For Figure 7(c),
the bitrate selection is similar to the stable network, where
the appropriate bitrate is selected based on the buffer oc-
cupancy, which tends to ignore the reasonable use of net-
work bandwidth from the playback cache perspective,
resulting in wasted bandwidth resources.

4.4. QoE Performance. )is section shows the comparison
and summary of APSG and two traditional algorithms in
QoE metrics. Table 2 and Figure 7 are QoE indicators of the
three algorithms under two network environments. In terms
of average bitrate, the APSG algorithm compared with the
FESTIVE algorithm has little improvement but less than the
BBA algorithm, the overall change is not big, and video
quality can be considered to remain unchanged. In terms of
switching, the APSG algorithm reduced the number of
switches relative to the FESTIVE algorithm and the BBA
algorithm by 6 and 8 under a stable network and by 5 and 7
under a dynamic network, respectively. In terms of latency,
the APSG algorithm reduces it by 0.79 seconds and 1.15
seconds under a stable network and by 0.91 seconds and 0.75
seconds under a server network, respectively. Because this
article references the playback speed control module of the
DASH.js player, it is able to speed up or slow down the
playback speed within range. As can be seen from the above
results, unnecessary switching is reduced on the basis of
guaranteed bitrate by the APSG algorithm.

Figure 8 shows the N-QoE of different algorithms under
different network environments. It can be seen that the
algorithm proposed has a higher QoE, while the other two
traditional algorithms have a lower overall QoE due to the
excessive number of switches. )e number of bitrate
switches is a key concern in this article, and the QoE ob-
tained by the two traditional algorithms would be lower if
the item is given a higher weight.

5. Conclusion

In this article, an adaptive bitrate scheme called APSG is
proposed to improve prediction accuracy and eliminate the
glitches phenomenon caused by bandwidth fluctuations.)e
ABR decision relies on three main components: (1) band-
width measurement with idle time removed; (2) adaptive
bandwidth prediction based on the size of network fluctu-
ation; (3) a joint decision algorithm based on bandwidth
prediction and buffer occupancy. Results showed that
compared to traditional ABR algorithms stable network
environment, APSG could reduce the number of bitrate
switches and latency by up to 72.6% and 27.3%, respectively,
under a dynamic network environment; APSG could reduce
the number of bitrate switches and latency by up to 53.8%
and 23.6%, respectively, achieving a better video service
experience.

Although this work shows good performance in re-
moving glitches, there is room for improvement. Next, we
will consider making full use of the various network con-
ditions’ scenarios to improve the model and consider the

human subjective factor to improve the quality of
experience.
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