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Cyber-physical systems (CPSs) will play an important role in future real-world applications through the deep integration of
computing, communication, and control technologies. CPSs are increasingly deployed in critical infrastructure, industry, and
homes to achieve a smart grid, smart transportation, and smart healthcare and to bring many benefits to citizens, businesses, and
governments. However, the openness and complexity brought by network and wireless communication technology, as well as the
intelligence and dynamic of network intrusions make CPS more vulnerable to network intrusions and bring more serious threats
to human life, enterprise productivity, and national security. Therefore, intrusion detection and defense in CPS have attracted
considerable attention and have become a fundamental aspect of CPS security. However, a new challenging problem arises: how to
improve the efficiency and accuracy of intrusion detection while protecting user privacy during the intrusion detection process. To
address this challenge, we propose a deep reinforcement learning-based privacy-enhanced intrusion detection and defense
mechanism (PIDD) for CPS. The PIDD is composed of three modules: privacy-enhanced topology graphs generation module,
graph convolutional networks-based user evaluation module, and the deep reinforcement learning-based intruder identification
and handling module. The experimental results show that the proposed PIDD achieves excellent performance in intrusion
detection accuracy, intrusion defense percentage, and privacy protection.

1. Introduction

Cyber-physical systems (CPSs) are integral and complex
systems that deeply integrate computing, communication,
and physical systems. They bring a number of benefits to
citizens, businesses, and governments and have attracted
more attention in recent years. CPS plays an important role
in wide real-world applications and has been making great
business impacts in various industrial sectors, such as en-
ergy, transportation, healthcare, and manufacturing. With
the rapid evolution of wireless communication networks,
more and more CPS subsystems are built and connected
through the communication networks, which enables more
and more devices to link to CPS. However, the extensive
utilization of devices with security vulnerabilities and

unprotected communication networks makes CPS more
prone to malicious cyber attacks and intrusions [1] (see
Figure 1). These cyber threats, if they cannot be detected
quickly and adjust the proper response strategy, will lead to
grave consequences such as equipment damage, financial
losses, and public safety. Traditional intrusion detection
systems, primarily designed for conventional information
technology systems, are not enough for CPS since they do
not take into account the physical side of CPS.

In order to overcome these security threats, a deep re-
inforcement learning-based privacy-enhanced intrusion
detection and defense mechanism (PIDD) is proposed for
CPS. Intrusion detection and defense (IDD) is one of the
most important strategy for securing CPS from malicious
intrusions [2–4]; it can effectively minimize or prevent the
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damage caused by the intrusions through performing IDD to
model and monitor the malicious behaviors and intrusions
early, and taking proper counter-intrusion measures and
mitigation actions. With the characteristics of predicting
future intrusions or security threats by building detection-
based models and predictions based on empirical data,
machine learning has been introduced into IDD to enhance
CPS’s security.

Although there are emerging machine learning-based
IDD mechanisms [5–9], they do not take into account the
users’ privacy preservation while realizing intrusion detec-
tion and defense. Moreover, they do not combine the po-
tential relationship between a user being an intruder and the
user’s communication topology graphs and features into
IDD design in CPS, which helps to make the counter-
measures against intrusions more efficient and reliable. The
formal description of the intrusion detection problem
addressed in this paper is as follows. Under the given
communication conditions, it can efficiently discover in-
trusion behaviors and realize privacy protection at the same
time.

Inspired by the previous work [10] on anomaly detec-
tion, we utilize the deep neural network with DRL training to
solve the challenging problem of intrusion detection and
defense in CPS. The main contributions of this paper are
listed as follows.

(i) To achieve efficient intrusion detection while con-
sidering user privacy protection, we apply a varia-
tional graph autoencoder to construct a privacy-
enhanced intrasystem communication topology
graph and an intersystem communication topology
graph with normal node characteristics. Based on
these privacy-enhancing graphs and noisy node
features, we employ graph convolutional networks
to evaluate users’ communications as regular users,
intrasystem intruders, or intersystem intruders.

(ii) In order to improve the accuracy of intrusion de-
tection, the deep reinforcement learning method

twin delayed deep deterministic policy gradient
algorithm (TD3) is used, which integrates the de-
cisions made by each variational graph autoencoder
during intrasystem communication and intersystem
communication, respectively to determine whether
the user is ultimately an intruder. Although adding
noise will affect the detection accuracy, the TD3
algorithm still guarantees high-accuracy intrusion
detection.

(iii) In order to effectively prevent intrusion, the cor-
responding countermeasures against intrusion are
proposed. For intrasystem intruders, intrasystem
communication is restricted, while intersystem in-
truders prohibit intersystem communication. In
addition, both intrasystem communication and
intersystem communication are prohibited for
intrasystem and intersystem intruders.

(iv) Validation experiments are performed on the “CSE-
CIC-IDS2018” dataset. The experimental results
show that the proposed PIDD achieves excellent
performance in terms of high intrusion detection
accuracy, defense capability, and low privacy
leakage.

The remainder of this paper is organized as follows. The
proposed intrusion detection and defense framework are
described in the following section. The implementation
details of the DRL-based privacy-enhanced solution are then
presented. Simulation results are presented and then dis-
cussed. The final section concludes this paper.

2. Overall Design of the DRL-Based Privacy-
Enhanced Intrusion Detection and
Defense in CPS

In this section, we first introduce the basic concept of CPS
and the formulation of the intrusions and defenses problem.
The proposed PIDD framework is then presented in detail.

2.1. Cyber-Physical Systems. A CPS is a controllable, reliable,
and scalable multidimensional complex system that deeply
integrates computing, communication, and control capa-
bilities based on environmental perception. CPS connects
physical equipment to the Internet and realizes deep inte-
gration and real-time interaction through the feedback loop
of the mutual influence of computing and physical processes
to add or expand new functions and detect or control
physical equipment in a safe, reliable, efficient, and real-time
manner. CPS enables physical devices to have five functions:
computing, communication, precise control, remote coor-
dination, and autonomy. Through the organic integration
and in-depth collaboration of computation, communica-
tion, and control technologies, realtime perception, dynamic
control, and information services of large-scale engineering
systems are realized, which makes CPS play an important
role in wide real-world applications and has been making
great business impacts in various industrial sectors, such as
energy, transportation, healthcare, and manufacturing.
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Figure 1: The architecture of cyber-physical systems and the
potential security threat.
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However, the diversity of application scenarios, the open-
ness and complexity of networking and wireless commu-
nication, and the intelligence and dynamics of intrusions
bring about unpredicted security and privacy protection
challenges to intrusion detection and defense mechanisms.
Therefore, efficient, accurate, and privacy-enhanced intru-
sion detection and defense mechanisms are crucial to the
success of CPS.

2.2. Intrusions and Defenses in CPS: Problem Formulation.
Cyber-intrusions mainly include intrasystem intrusions and
intersystem intrusions, both of which will lead to equipment
damage, economic loss, public safety, and other serious
consequences. Many traditional countermeasures have been
proven efficient against various intrusions. For example, in
[11], to authenticate user equipment, Cui et al. first devel-
oped an edge computing-enabled unified authentication
framework with the consideration of privacy preservation.
Then, to prevent compromised user equipments (UEs) from
launching internal intrusions, they adopt reinforcement
learning and design a trust evaluation-based method to
detect compromised user equipment. To enhance traditional
intrusion detection mechanisms, Shen et al. [12] measure the
data response processing time in the interlayer, analyze
network traffic to eliminate abnormal packets, and design a
hybrid augmented device fingerprinting approach to
eventually realize intrusion classification and detection.
However, these traditional intrusion detection systems,
primarily designed for conventional information technology
systems, are not enough for CPS since they do not take into
account the physical side of CPS.

In recent years, as one of the important strategies to
protect CPS from malicious intrusions, intrusion detection
and defense have been paid attention to by theoretical re-
search and industrial applications.

In [13], a novel intrusion detection method based on
network topology verification was proposed to improve the
security of the controller area network with a flexible data
rate network. The method reliably detected external intru-
sion devices through a simple random walk-based network
topology construction and subsequent verification and
triggered a security mode to further protect the network
from attacks. To deal with intrusion detection based on
dynamic data, Qi et al. [9] proposed a new anomaly de-
tection method combining locality-sensitive hashing, iso-
lation forest, and PCA. This method operated on
multifaceted data by introducing locality-sensitive hashing
and PCA, effectively captured group anomalies and could
perform model updates and processe data in constant
memory and time. In [14], the vulnerabilities of in-vehicle
and external networks were first discussed, and a multilayer
hybrid intrusion detection algorithm, including signature-
based and anomaly-based intrusion detection, was proposed
to detect known and unknown attacks on in-vehicle
networks.

Yang et al. [15] formulated the fine-grained known/
unknown intrusion detection problem as a two-stage
minimization problem, where the first stage used a

conditional autoencoder to seek a score metric to minimize
the empirical risk of misclassifying known attacks. The
second stage was to use extreme value theory to model the
distribution of reconstruction errors to find another score
metric to minimize the identification risk of inferring un-
known attacks. To detect malicious TCP packets, Bitton and
Shabtai [16] proposed a network-based intrusion detection
system specifically for securing remote desktop connections.
The system utilized an innovative machine learning-based
anomaly detection technique for finding malicious TCP
packets that carried exploits aimed at the remote desktop
protocols server. High-speed networks need to process a
large amount of network traffic in real time, and it is difficult
to implement intrusion detection models under large
amounts of big data. To process network content and build
reliable machine learning-based intrusion detection models,
Viegas et al. [17] proposed a new scalable and persistent
intrusion detection architecture. Using deep learning and
generative adversarial networks, Shu et al. [18] explored
distributed SDN and designed a cooperative intrusion de-
tection system for VANET that enabled multiple SDN
controllers to jointly train a global intrusion detection model
for the entire network without directly exchanging their
subnetwork flows.

In fact, both communication topologies and features
should be taken into account in IDD design due to the fact
that the decisions made on communication features alone
are not reliable. Given the difficulty of making out the
specific relations between the communication topologies
and the corresponding features, specific machine learning
technologies, i.e., graph neural networks and deep rein-
forcement learning algorithms [19], should be adopted.
Although machine learning technologies can efficiently
detect and defend against intrusions in CPS, users might
suffer from privacy leakage problems [20] due to users’ data
not being properly dealt with. In addition, since CPS in-
trusions have becomemore intelligent and the heterogeneity
problem of CPS still exists, various domains may have
specific specifications regarding the standards and objectives
of security, and the IDD mechanism for one CPS domain
may not match the other one.

2.3. The Proposed PIDD Framework. The framework of
PIDD is shown in Figure 2, which consists of three modules:
a privacy-enhanced communication topology graph gen-
eration module, a graph convolutional network-based user
evaluation module, and a deep reinforcement learning-
based intruder identification and processing module.

(i) Privacy-Enhancing Communication Topology Map
Generation Module. This module first collects each
user’s communication topology map and features
from all border routers. Then, the privacy-en-
hancing communication topology graph is con-
structed by two variational graph autoencoders
(VGAE) [21] using the intrasystem and intersystem
communication topology graphs, respectively. Next,
appropriate noise is injected to ensure privacy
protection of user communication features.
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(ii) GCN-Based User Evaluation Module. Based on
privacy-enhancing topological graphs and noisy
node features, uses a graph convolutional network
(GCN) [22] to evaluate users as potential regular
users, intruders in the system, or intersystem
intruders.

(iii) DRL-Based Intrusion Detection and DefenseModule.
This module adopts the twin delayed deep deter-
ministic policy gradient algorithm (TD3) based on
deep reinforcement learning to judge whether a user
is an intruder and how to deal with different cat-
egories of users. Based on the final decision, users
detected as intruders will be banned from com-
municating within or across systems.

In PIDD, to efficiently detect and defend intrusions, two
entities of CPS, namely users and routers, are defined as
follows.

(i) Users. There are two types of users considered in this
paper. One is the normal user, while the other one is
the intruder. Normal users communicate with other
users within the system or cross-systems, while the
intruders might launch intrusions to do different
levels of damage to intrasystem routers or border
routers and eventually paralyse the entire CPS.

(ii) Routers. For each system, there are several intra-
system routers, which coordinate the intrasystem
communications, and a system border router, which
is responsible for cross-system communication
routing. Due to the significance of routers, to reduce
the quality of service of CPS, intruders might target
routers and launch the following intrusions: denial
of service attacks, botnet attacks, and infiltration
attacks, which are difficult to detect merely based on
the features of the communication data. Within the
entire CPS, the core router that coordinates all in-
tersystems communications. We deploy the

intrusion detection module on the core router to
detect both intersystem intrusions and intrasystem
intrusions. The intrusion detection module collects
users’ communication topology graphs and the
corresponding features from all region-border
routers for further analysis to detect intruders.

3. Models and Algorithms for the PIDD

All three modules of the proposed PIDD work collabora-
tively to detect and defend against intrusions in CPS, which
are elaborated on in details.

3.1. Privacy-Enhanced Communication Topology Graphs
Generation Module. Recall that both communication to-
pology graphs and features of each user will be used to
determine whether this user is an intruder or not. However,
without proper privacy preservation, this information about
users will be exposed. Injecting the proper noises can solve
this problem. However, doing so will raise two other
problems: (i) whether both communication topology graphs
and features will be injected with noises; (ii) how much
noises should be injected without causing serious detection
accuracy degradation. The feasible solution to the first
problem is to inject noises into communication features
only. The reason for that is as follows: In order to ensure the
privacy of the topology graph, the degree of each node
within will be added as noise. Then, one should reconstruct
the graph from the latest degree sequence. However, it is
difficult due to the fact that the degree sequence might not
satisfy the basic requirements of graph reconstruction [23].
Even if it is possible to reconstruct the graph, the intrusion
detection accuracy will be greatly reduced, because as more
communication links are added to the graph, some links will
actually never exist in reality.That indicates that noise can be
added to communication features only. To solve the second
problem, we let each feature of the communication be
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Figure 2: The framework of the proposed PIDD.
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normalized and added a random sampled noise from the
normal distribution. Since the noise injection will result in
the detection accuracy degradation, each noise is associated
with a discount factor that ranges from 5% to 15%, with an
increment of 5%.

We are aware that even if the communication features
are protected by noise disturbance, there is always a chance
that the original features will be discovered by using gen-
erative adversarial networks (GAN) [24], especially when the
communication topology graphs remain the same. Thereby,
we employ the VGAE to realize further privacy preservation.
Basically, VGAE exploits latent variables and is able to learn
interpretable latent representations for undirected graphs by
using GCN as an encoder and a simple inner-product de-
coder. In VGAE, each communication topology graph is
treated as an undirected and unweighted graph. For each
graph, an adjacency matrix with diagonal elements set to 1, a
degree matrix, and a random latent variable are introduced.
The inference model used in VGAE is parameterized by a
two-layer GCN in which both a mean vector matrix and a
latent variable variance matrix are constructed. Unlike in-
ference models, generative models are given by inner
products between latent variables. VGAE takes the varia-
tional lower bound as the optimization objective of varia-
tional parameters. Note that we feed two different VGAEs
with the intrasystem communication topology graphs and
the intersystem communication graph of each user, re-
spectively, to construct the individual privacy-enhanced
communication topology graphs. Obviously, these two
VAGEs should be trained with pairs of communication
topology graphs and features of intruders or users in ad-
vance. To sum up, all VAGEs of the proposed PIDD are
responsible for privacy preservation during intrusion
detection.

3.2. GCN-Based Users Evaluation Module. Once privacy-
enhanced intrasystem and intersystem communication to-
pology graphs are constructed by VGAEs, we employ two
GCNs to rate the user and generate the intrasystem rating
and the intersystem rating, respectively.

Specifically, there are many irregular data structures.The
typical ones are graph structures or topological structures,
i.e., social networks, chemical molecular structures,
knowledge graphs, and communication topology graphs.
Similar to CNN, GCN is a feature extractor of graph data
that requires both an adjacent matrix and a feature matrix so
that these features can be used to classify graph data for node
classification, graph classification, edge prediction, and
graph embedding. In this paper, both intrasystem and in-
tersystem intruder identification are referred by the graph
classification. That suggests we can train GCNs with the
labelled pairs of privacy-enhanced communication topology
graphs and noisy node features about intruders constructed
by using VGAEs. Once both GCNs are well trained, the
GCNs’ classification results about a user are considered as
the intrasystem rating and intersystem rating of that user,
respectively.

3.3. DRL-Based Intruders’ Identification and Handling
Module. It is worth mentioning that two ratings of the user,
namely the intrasystem rating and the intersystem rating,
cannot guarantee the user is an intruder. For example, even
if both GCNs are well trained, there is always a chance that a
normal user is misjudged as an intruder and vice versa due to
the fact that the original communication topology graphs are
altered by VGAEs, and the corresponding features are added
with noises. Thereby, we introduce the overall rating of each
user by calculating the weighted sum of two ratings. If the
overall rating is higher than 0.5, then this user is a normal
user; otherwise, the user is an intruder. To defend against
intrusions, the intruder should be eliminated from the
communication system of the CPS. However, some users
might have overall ratings almost equal to 0.5, which might
result from occasionally launching intrusions against routers
in CPS. Thereby, for a user whose intrasystem rating is
higher than 0.5, the intrasystem communication of this user
should be forbidden; otherwise, the intersystem commu-
nication of this user should be banned.

Since the final decision is made based on the overall
rating, the pair of weights should be calculated to improve
intrusion detection accuracy. Note that each weight ranges
from 0 to 1, with the sum of all weights equal to 1. That
suggests the optimal pair of weights should be searched in a
continuous space. As an off-policy method, DQN does not
use the real action of the interaction each time it learns but
uses the action that is currently considered to be the most
valuable to update the objective value function, so there will
be an overestimation of the Q value. Compared with DQN,
TD3 uses two critical networks to estimate the action value
function and uses soft update, policy noise, delayed learning,
and gradient interception methods to solve the problem of
overestimation. Thereby, we develop a twin delayed deep
deterministic policy gradient (TD3) based intrusion detec-
tion mechanism. Specifically, the TD3 algorithm requires an
actor-network π, a target actor network π′, two critic net-
works Q1 and Q2, and their target network Q1′ and Q2′.
Basically, the network of participants chooses the action that
should be taken for the state, and the network of critics
evaluates this choice and prevents overestimation. We first
give the definitions of state, action, and reward, respectively,
as follows:

(i) State. Since each user might be a normal user or an
intruder, let 0 represent the user being a normal one
and 1 represent the user’s being an intruder.
Thereby, the state is constructed as a vector that
consists of the binary representation of intrusion
detection for all users.

(ii) Action. Recall that intrusion detection depends on
the intrasystem rating and the intersystem rating of
each user, both of which are coordinated by a pair of
weights to generate the overall rating. Therefore, the
pair of weights serves as the action. As the sum of
two weights is equal to 1, if either weight is higher
than 0.5, then the corresponding intrusion detection
result is more dominant than the other. Moreover,
the action should include countermeasures against
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intruders. If the user is an intrasystem intruder, an
intersystem intruder, or both, then the user is
forbidden to communicate with intrasystem users,
intersystem users, or both accordingly.

(iii) Reward. The goal of intrusion detection is to detect
and eliminate intruders to greatly reduce the
number of intrusions in CPS. That suggests the
intrusions prevented should be taken into account
in the reward calculation. Moreover, the commu-
nication traffic should be considered as well,
asimproperly chosen weights might result in a
significant communication traffic drop.Thereby, we
let the normal communication traffic, which equals
the overall communication traffic minus the in-
trusion traffic, be the reward to evaluate the per-
formance of the proposed PIDD.

In TD3 training, we randomly sample N experience to
update the critic network with the loss function,

L ϑQi  �
1
N
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zϑQi
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Then, we update the actor-network π by optimizing the
objective function,
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zϑπ
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Next, the parameters of target networks ϑQ′ and ϑπ′ are
updated with a learning rate κ.

Note that the training process for all three modules of the
proposed PIDD is as follows. First, VGAE and GCN are
trained using all labelled communication topology maps and
features of users and intruders in the privacy-enhancing
communication topology map generation module and the
GCN-based user evaluation module. Then, TD3 is trained
using the corresponding ratings in the DRL-based intruder
identification and a processing module. Once trained, the
proposed PIDD is able to determine whether a user is an
intruder based on the user’s communication topology and
characteristics.

The main symbols and their meanings for the proposed
PIDD are shown in Table 1.

4. Numerical Results

To evaluate the performance of the proposed mechanism, we
target three attacks, namely the denial of service attack
(DoS), the botnet attack (Bot), and the infiltration attack
(Inf), to prevent intrusion.The experiment was conducted to
evaluate the performance of the proposed PIDD in Python
on a computer equipped with an i7 6.4GHZ processor, 32G
memory, and a win7 64-bit system. In VGAE, initialized
weights are set as described in [21], and a 32-dim hidden
layer and 16-dim latent variables are used in all experiments.
There are up to 200 iterations of training using Adam with a
learning rate of 0.01.

The “CSE-CIC-IDS2018” dataset, which is available at
“https://www.unb.ca/cic/datasets/ids-2018.html,” is used in
this experiment. The dataset includes seven different attack
scenarios: Brute-force, Heartbleed, Botnet, DoS, DDoS, Web
attacks, and infiltration of the network from inside. The
attacking infrastructure includes 50 machines, and the
victim organization has 5 departments and includes 420
machines and 30 servers. The dataset includes the captured
network traffic and system logs of each machine, along with
80 features extracted from the captured traffic by using
CICFlowMeter-V3. To facilitate the performance evaluation,
each cyber-physical system contains at most 16 routers and 1
border router. Both intrasystem communication topology
graphs and intersystem communication topology graphs are
extracted first. Then, all these topology graphs and com-
munication features are used to determine whether users are
intruders. The following indexes are employed to evaluate
the performance of the PIDD with the consideration of
different percentages of noise added.

(i) Detection Accuracy. Both the false alarm rate (FAR)
and the miss detection rate (MDR) are applied to
evaluate the detection accuracy.

(ii) Intrusion Prevention Percentage. The percentage of
intrusions prevented in overall intrusions launched

(iii) Privacy Preservation Percentage. The differences
between the original communication topology
graphs and the privacy-enhanced ones aremeasured
in the privacy preservation percentage.

Figure 3 shows the detection accuracy of adding different
percentages of noise. As shown in Figure 3, we find that the
FAR and MDR of all three types of intrusions increase as the

Table 1: Main symbols and meanings.

Symbol Meaning
CPS Cyber-physical systems
IDD Intrusion detection and defense
GCN Graph convolutional network
VGAE Variational graph autoencoders
TD3 Twin delayed deep deterministic policy gradient
π Actor network
π′ Target actor network
Qi�1,2 Critic network
Qi�1,2′ Target critic network
η, ι, κ Learning rate
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percentage of added noise increases. Furthermore, PIDD
achieves on average 6%, 11.5%, and 14% of FAR and 3%, 4%,
and 7% of MDR, and all noises are 5%, 10%, and 15% in-
trusion, respectively. What’s more, even though the features
add up to 15% noise, the highest FAR andMDR of PIDD are
still lower than 16% and 8%. This is because the proposed
PIDD combines the graph variational autoencoder and the
graph neural network and considers intrasystem and in-
tersystem communication at the same time, so it can ef-
fectively discover the intrusion behavior of the attacker.
Experimental results show that PIDD can accurately detect
routing intrusions in CPS with noisy communication data.

Table 2 gives the intrusion prevention that adds different
percentages of noise in terms of intrasystem intrusion and
intersystem intrusion. As observed in Table 2, it is clear that
the percentage of intrusion prevention decreases with the
percentage of added noise, as expected. Note that PIDD is
more effective at preventing intrasystem intrusion than
intersystem intrusion. This may be due to intruders
launching intrasystem intrusions more frequently, making
intrusion patterns harder to learn. Additionally, PIDD can
detect and block at least 83% of intrasystem intrusions and
81% of intersystem intrusions, even when up to 15% of the
noise is added to the communication signature. The in-
trusion prevention shown in Table 2 shows that PIDD can
effectively defend against routing intrusion in CPS because
the variational graph autoencoder and graph neural network
adopted by PIDD can well capture the characteristics of
intrusion behavior.

Figure 4 shows the privacy protection of adding different
percentages of noise. It is worth mentioning that, in order to
protect the privacy of users, only noise has been added to the
communication function. As the percentage of added
Gaussian noise increases, the user’s privacy is better pro-
tected. On the other hand, VGAE modifies the user’s
communication topology map to a privacy-enhanced
communication topology map as the input to the GCN-
based classifier. Both noise injection and VGAE-based graph

modification provide user privacy protection, which is
verified in this figure. Furthermore, PIDD achieves on av-
erage about 91%, 86%, and 82% privacy preservation, adding
5%, 10%, and 15% of noise, respectively. This shows that
PIDD can protect the privacy of users during the intrusion
detection process.
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Figure 3: Detection accuracy with different percentages of noise added. (a) FAR and (b) MDR.

Table 2: Intrusion prevention with different percentages of noise
added.

Intrusion
Noise

5 (%) 10 (%) 15 (%)
Intra_DoS 93 87 83
Inter_DoS 91 85 82
Intra_Bot 93 87 83
Inter_Bot 89 85 84
Intra_Inf 92 87 83
Inter_Inf 88 86 81
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Figure 4: Privacy preservation with different percentages of noise
added.
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5. Conclusion

In order to improve the efficiency and accuracy of intrusion
detection and protect user privacy from being leaked during
the CPS intrusion detection process, this paper proposes a
privacy-enhanced intrusion detection and defense mecha-
nism based on deep reinforcement learning. Specifically,
first, two variational graph autoencoders are trained to
generate privacy-enhanced communication topology
graphs. Second, two graph convolutional networks are
trained based on the privacy-enhanced communication
topology map and noise features to perform user evaluation.
Finally, a deep reinforcement learning algorithm TD3 is
applied to identify intruders and execute appropriate
countermeasures. We conducted validation experiments on
the “CSE-CIC-IDS2018” dataset. Experimental results show
that the proposed PIDD achieves excellent performance in
terms of intrusion detection accuracy, intrusion prevention
percentage, and privacy protection.

Although the proposed algorithm can perform intrusion
detection under the condition of preserving privacy, the
detection accuracy needs to be improved. Our future re-
search directions include how to further combine the
characteristics of intrusion behavior with the communica-
tion topology of intrusion.
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