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Service composition optimization is one of the core issues in cloud manufacturing research. However, all current studies of service
composition in cloud manufacturing assume that tasks have been decomposed into subtasks, so they can be directly mapped to existing
services. However, due to the complexity, diversity, and multilevel of services in cloud manufacturing, services have different granularity.
*erefore, the matching between tasks and services does not always occur at the lowest level. For solving the problem of discontinuity
between task decomposition and service composition, this paper considers the characteristics of existing services in the cloud pool and
proposes a task decomposition strategy based on task/servicematching on the basis of refining the descriptionmodel of tasks and services.
*en, for the decomposed subtask set, the E-CARGOmodel is used to model the optimal composition process of services, and CPLEX is
used to solve the model. Practical cases show that the proposed task decomposition strategy can solve the problem of discontinuity
between task decomposition and service composition without relying on more expert systems. In addition, the proposed service
composition model is more flexible, can easily model more variable factors, and CPLEX can solve the model more quickly and stably.

1. Introduction

Recently, with the promotion of emerging technologies such as
cloud computing, Internet of things (IOT), network physical
system (CPS), big data analysis, and artificial intelligence, a new
industrial manufacturing mode with the core characteristics of
globalization, personalization, digitization, cloud computing,
collaboration and integration, namely cloud manufacturing, has
been proposed [1–7]. As an emerging manufacturing model,
cloud manufacturing can effectively solve the problems of
shortage and idleness of manufacturing resources, deficiency,
and excess of manufacturing capacity in China’s manufacturing
industry, and realize a manufacturing-oriented service model
characterized by sharing, collaboration and on-demand use,
which can provide a new impetus for the transformation and
upgrading of manufacturing industry [8, 9].

Up to now, cloud manufacturing has attracted a large
number of scholars around the world, andmany problems that
need to be solved in the future are proposed and discussed,

such as the architecture of cloud manufacturing service plat-
form, business model, description of manufacturing resources,
optimal allocation of resources, etc. [9, 10]. Among these,
optimal allocation of manufacturing resources is the core
function of cloud manufacturing, mainly including two core
processes: task decomposition and service composition.

Task decomposition is the basis and premise of service
composition. Its goal is to obtain a highly cohesive task
sequence to ensure that different service providers can co-
operate to fulfill the customers’ requirements. However, in
the current research, task decomposition and service
composition are usually carried out as two independent and
irrelevant procedures. On the one hand, task decomposition
heavily relies on industry expert systems and lacks con-
sideration of the existing services’ status in the cloud pool,
which makes it difficult to keep up with the changing market
demand; on the other hand, the existing service composition
research lacks the modeling of collaboration between ser-
vices, which has a certain impact on the overall execution
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efficiency of manufacturing tasks. *erefore, how
to integrate task decomposition and service composition
together is the core issue of this paper.

As an intermediate procedure between task decompo-
sition and service composition, service matching is mainly
used to connect manufacturing tasks and services to max-
imize the satisfaction of both supply and demand. How to
effectively use service matching to solve the problem of
discontinuity between task decomposition and service
composition is one core problem to be solved in this paper.
In addition, the E-CARGO model, which was proposed by
Professor H. B. Zhu in 2006, is used to describe a role-based
collaboration system, and how to use it to model the col-
laboration between services to improve the practicability of
the service composition model is another problem to be
solved in this paper.

*e main contributions of this paper are as follows:

(1) According to the characteristics of candidate service
sets obtained after task service matching, specific
computable formulas are given for the internal
competition within candidate service sets and the
collaboration and dependence between candidate
service sets.

(2) Considering the service state, a new task decom-
position algorithm based on task/service matching is
proposed, which can combine the two processes of
task decomposition and task/service matching and
reduce the dependence on the expert system.

(3) A new cloud manufacturing service composition
model based on role collaboration is constructed,
where the mapping relationship between the service
composition problem and the E-CARGO model is
established. *is can not only solve the problem that
the heuristic algorithm is easy to fall into local op-
timization but also facilitate the introduction of
multiple variable factors to expand and optimize the
model.

*e remainder of this paper is organized as follows.
Related work is described in Section 2. Section 3 describes
the core problems related to the optimal allocation of
manufacturing resources. Section 4 gives the description
model of tasks and services, introduces the task/service
matching based task decomposition algorithm, and de-
scribes the subtask reorganization algorithm combined with
service characteristics. Section 5 formalizes the service
composition approach by utilizing the E-CARGOmodel and
the corresponding calculation methods. Section 6 analyzes
and verifies the proposed methods through application case
and performance analysis. Finally, the conclusions appear in
Section 7.

2. Related Work

As the core part of implementing cloud manufacturing,
manufacturing resource optimized allocation aims to pro-
vide a set of capabilities/services for satisfying personalized
manufacturing demands through a process of resource

composition and optimal selection. Efficient shared
manufacturing resource allocation can not only achieve
rapid response to diverse manufacturing demands but also
facilitate full-scale sharing of enterprises’ resources.

Task decomposition is one of the most important pre-
processing stages of manufacturing resource optimized al-
location while is a challenging task, not only because they are
characterized by cross-industry heterogeneity, but also be-
cause the decomposition process need considering the state
of service (such as service granularity and relevance).

In the existing research on task decomposition, some
methods used a design structure matrix (DSM) to express
the interaction information and correlation degree between
tasks [11–13]. Kherbachi et al. used DSM to cluster the tasks
in product development and matched the corresponding
development tasks to the appropriate research group and
development group [14]. Liu and Zhou proposed a method
of task decomposition and reorganization based on DSM
combined with adjustable task granularity [15]. However,
DSM has shortcomings in both the quantitative analysis
ability of uncertain information and the decomposition
ability of complex tasks. In [16], Shriyam et al. proposed an
approach based on a dynamic grid for decomposing ex-
ploration tasks among multiple Unmanned Surface Vehicles
(USVs) in port regions. In other ways, the task is decom-
posed into subtasks with appropriate granularity according
to the task hierarchy and task correlation. In [17], Zhang
et al. constructed a global manufacturing business process
network (GMBPN) according to the input and output re-
lationships of manufacturing business activities. Based on
the GMBPN, they further presented a two-phase decom-
position algorithm. Hu et al. divided the complex
manufacturing tasks into multiple stages according to the
attributes and characteristics of the production process and
proposed a novel hybrid method combining depth first
search, fast modular, and artificial bee colony to optimize
multistage production processes [18]. To solve complex parts
machining problems in CMfg, Guo et al. presented a ma-
chining task decomposition strategy that uses features of the
complex part as task granularity [19]. Liu et al. proposed an
ordered task decomposition method (task decomposition
method based on hierarchical task network) considering task
granularity, cohesion, and correlation [20].

*e above literature studies the task decomposition
strategy from different levels and perspectives, but they only
use the characteristics of the task itself or the correlation
between tasks to decompose the task and take no consid-
eration of the service state, which results in the problem that
the process of task decomposition is divorced from that of
matching and assignment of task and service. To solve the
above problems, Yi et al. [21] decomposed the
manufacturing task into atomic tasks according to the
predefined decomposition rules and then reorganized these
atomic tasks using clustering algorithms by considering task
correlation, matching degree of tasks and services, and
competition between services. Although the algorithm
considers the state of the service, it inverts the dependency
between the task and the service. On the one hand, the
decomposition process of atomic tasks will rely heavily on
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expert systems, and then it is difficult to realize
a comprehensive expert system for massive heterogeneous
tasks in different industries and categories. On the other
hand, even if atomic subtasks can be successfully decom-
posed, there is a high probability that atomic subtasks cannot
match the appropriate candidate service set.

Service composition is another core function in the
process of resource optimized allocation. Its main purpose is
to select a group of optimal service combinations from the
candidate services of each subtask to complete the de-
mander’s manufacturing task. In essence, this process is the
process of combining multiple services (atomic services or
composite services) into value-added services to complete
one or a group of tasks. As a typical multiobjective and
multiconstraint NP-hard problem, a large number of met-
aheuristic algorithms, such as genetic algorithm, particle
swarm optimization algorithm, and ant colony algorithm,
have been proposed to find the optimal or nearly optimal
combination scheme in a reasonable time [22–31]. *e
typical processes of these algorithms are (1) propose heu-
ristic algorithms for fixed models and (2) repeatedly test and
adjust the heuristic algorithms to obtain the required per-
formance. If some aspects of the service (such as service
availability or service quality) change, this process must
usually be repeated. It can be seen that these algorithms have
a complex design process and are usually for specific
problems. *erefore, they are not adaptive to the dynamic
environment, which means that when the environment
changes, they may need to be redesigned.

In addition to devising these algorithms, another im-
portant problem is how to establish an appropriate service
composition model. As an important index to determine the
quality of service composition and an important factor to be
considered in the process of service composition, Quality of
Service (QoS) is widely used in the modeling of service
composition.*erefore, Que et al. [30] proposed the method
of using the user model (M2U) to solve service composition
and optimization selection and established the corre-
sponding mathematical evaluation model by comprehen-
sively considering the four QoS evaluation indexes (time,
cost, reliability, and capability). Li et al. proposed an ex-
tended Gale-Shapley (GS) algorithm for service composition
that allows the generation of multiple service composition
solutions effectively, where the requirements with different
constraints have been considered [31]. Considering the one-
to-one mapping between basic services and subtasks, Liu
and Zhang [32] freely combined multiple basic services with
equivalent functions into a cooperative service group (SESG)
to complete each subtask together. At the same time, the
optimized structure of SESG was introduced into the QoS
evaluation model, and the corresponding QoS evaluation
formula was given. In [33], Jin et al. proposed a correlation-
based service description model to describe the QoS de-
pendence of a single service on other related services and
then introduced a service correlation mapping model to
automatically obtain the value of QoS correlation between
services. Afterward, Laili et al. [34] studied the multistage
integrated scheduling problem of hybrid tasks in a cloud
manufacturing environment to maximize production

efficiency while balancing different production task orders.
*e experimental results show that this method reduces the
production cost and shortens the production time. In [23],
Yuan et al. proposed six basic QoS indexes including time,
composability, quality, availability, reliability, and cost, and
determined the weight of each index value in the QoS model
by using the improved fuzzy comprehensive evaluation
method.

Because services and tasks in cloud manufacturing have
different granularity, service composition is essentially a
dynamic matching process between multigranularity tasks
and services. However, most of the current research on the
service combination focuses on QoS modeling and rarely
considers how to add more practical constraints in practical
applications to easily expand the existing models, such as
cooperation and competition between related services.

3. Problem Description

Cloud manufacturing software service platform needs to
solve the problems of low sharing rate of manufacturing
resources, poor collaboration among enterprises, and low
customization level of manufacturing solutions in the
manufacturing process. Figure 1 shows its operation prin-
ciple, and it mainly includes three types of user roles: re-
source providers, resource demanders, and platform
operators. Resource providers describe and publish the
manufacturing resources (which will be encapsulated as
services) in the manufacturing process in a unified model;
resource demanders submit their manufacturing require-
ments (which can also be called tasks) and access various
manufacturing resources on demand with the support of the
platform; platform operators mainly audit and manage the
resources and requirements in the platform, release or
update various templates of resources and requirements in
time, and monitor the transactions between the suppliers
and the demanders.

Optimal allocation of manufacturing resources is an
important procedure in cloud manufacturing, and its basic
workflow is shown in Figure 2:

(1) Decomposing the total tasks submitted by resource
demanders into subtasks for collaborative
completion.

(2) According to the task-service matching method, the
cloud manufacturing software service platform
searches and matches the candidate service sets that
can complete each subtask of the initial total tasks.

(3) Considering the influence factors of QoS, such as
time, cost, quality, reliability, and so on, the cloud
manufacturing software service platform searches
for the best services in the candidate service set of
each subtask to form an optimal execution plan for
the initial total manufacturing task.

(4) Executing and supervising the completion process of
tasks according to the optimal execution plan.

Task decomposition is the most basic initialization step
of optimal allocation of manufacturing resources, and its
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purpose is to decompose the overall manufacturing task into
subtasks that should be executable and have low relevance
between each other so that the cloud manufacturing soft-
ware service platform can match the appropriate service to
complete the user’s demand. It is clear that the task de-
composition results are closely related to the processing
quality of the subsequent procedure of resource
optimization.

In the process of task decomposition, the scale of sub-
tasks is characterized by task granularity, which will directly
affect the quality and progress of task collaboration. Spe-
cifically, the larger the granularity, the higher the task in-
tegrity, but the implementation is complex, which is not
conducive to multienterprise cooperation. On the other
hand, the finer the granularity, the more interaction between
tasks, but the coordination is difficult, and the logistics cost
and information interaction cost are prominent, which affect
the quality, progress, and cost of task completion. *erefore,
how to combine the characteristics of the services in the
cloud pool and complete the decomposition of tasks at an
appropriate granularity is of great significance in resource
optimization.

After matching the manufacturing service set for each
manufacturing subtask under the functional constraints,
some suitable services need to be selected from each can-
didate set and assembled into composite services in a certain
order to collaboratively complete the user’s manufacturing
requirements. How to build a more flexible combination
model, which can easily model more variable factors to adapt
to the open and dynamic manufacturing environment, is
one of the urgent problems to be solved.

4. Task Decomposition Strategy

In this paper, task decomposition is divided into two stages:
preliminary decomposition and reorganization. In the
preliminary task decomposition stage, the total task is

decomposed into executable atomic subtasks based on task/
service matching. In the task reorganization stage, subtasks
with the small granularity are merged into subtasks with
appropriate granularity by considering the internal com-
petition of candidate service setting, cooperation, and de-
pendence between candidate service sets.

4.1. Description Model of Tasks and Services. Cloud
manufacturing users come from different enterprise and
engineering application fields, and their needs are more
diversified and personalized. In addition, manufacturing
resources are widely distributed in various forms and types.
*e description of requirements and resources by
manufacturing enterprises is often unclear, incomplete, and
inconsistent, which is difficult to realize the dynamic co-
operation between users and resources in the cloud
manufacturing environment. *erefore, a unified formal
description is inevitable. Here, the requirements are mod-
eled as manufacturing tasks, and the combination of several
resources is modeled as manufacturing services to complete
the specified tasks. Based on the formal description of the
existing manufacturing services and manufacturing tasks
(cloudservice� {ID, TypeInfo, BaseInfo, ResourceInfo,
FuncInfo, AssessInfo, StatuInfo}) [35], we further extend the
description of the function information FunInfo� {Fun-
Profile, InputParam, OutputParams}, where we have the
following:

(1) Funprofile: function summary, which briefly de-
scribes the functions provided by the service.

(2) Inputparams: the input information of the function,
indicating that the demand side needs to provide
necessary information or materials during the imple-
mentation of the service. For example, for a service of
manufacturing a special wrench, the demand side may
need to provide corresponding design drawings.

Platform Operator

Resource Provider Resource Demander

Knowledge 
Base

Cloud Manufacturing
Service Center

Manufacturing
Resources

Manufacturing
Requirements 

Registered Access

Figure 1: Operation principle of cloud manufacturing software service platform.
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(3) Outputparams: the output content of the function,
which indicates the service results to be provided to the
demander after the service is executed. As for a software
development service, the output content may be exe-
cutable source code or a one-year technical support
service.

4.2. Preliminary Decomposition Method. To avoid relying
too much on the industry knowledge and prevent the
problem that the decomposed subtasks cannot match any
appropriate services, we integrate the task decomposition
and task-service matching as a whole, where we use the
existing services in the cloud pool to adaptively complete the
preliminary task decomposition. *e basic flow of the
method is shown in Algorithm 1.

Step 1. Initialize the variable Ti
k, where k represents the k-th

subtask waiting to be decomposed, and i is the i-th subtask of

the k-th subtask. In particular, when k� 0, Ti
k means the

original task T, and when i� 0, Ti
k means the k-th original

subtask which has not been decomposed. RSSi
k is the cor-

responding candidate service set of Ti
k.

Step 2. Match the service set that meets the output re-
quirements of Ti

k in the cloud pool. If the service set can be
matched, proceed to Step 3, otherwise, proceed to Step 5.

*e matching methods are as follows:

(1) Use TF-IDF algorithm to find out the keywords of
task Ti

k and service j (0≤ j≤N) respectively, where N
represents the number of all services in the cloud
pool that have not yet participated in the matching.

(2) Select several keywords from task Ti
k and service j

respectively, and merge them into set D.
(3) Calculate the word frequency of task Ti

k and service j
relative to all words in set D in turn.

Users’ Needs

Task/Service 
Matching

Task/Resource 
Optimization 
Combination

Matching candidate service set for each subtask according to functional and status attributes

RSS1 (Subtask : t1)
RS1, RS2, R3⋯Rn

RSS2 (Subtask : t2)
RS1, RS2, R3⋯Rn

RSS3 (Subtask : t3)
RS1, RS2, R3⋯Rn

RSS8 (Subtask : t8)
RS1, RS2, R3⋯Rn

RSS9 (Subtask : t9)
RS1, RS2, R3⋯Rn

RSS10 (Subtask : t10)
RS1, RS2, R3⋯Rn

⋯

Designing service optimization combination model according to the service quality
(QoS) 

Simplify
Problem

Decision
Goal

Variable
definitions

Optimizatio
n algorithm

Evaluation
Index

Service Price

QoS

Task Tags

Scheduling
Constraints

Reasonable allocation of tasks and services

Subtask3

Provider3

Subtask10

Provider10
⋯

Task Decomposition

Task/Resource 
Scheduling

Complex 
Attributes

Basic Attributes

Functional Attributes

Evaluation Attributes

Status Attribute

Task 
Decomp-

osition

t1

t2 t3 t4

t5 t6 t7 t8

t9 t10

Subtask2

Provider3

Service Pool

Service
ProviderS

Figure 2: Basic process of resource optimization in cloud manufacturing software service platform.
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(4) Calculate and save the cosine similarity Si,j between
task Ti

k and service j.
(5) Sort all Si,j and calculate the average value of Si,j

ranking in topM. If the average value is greater than
the threshold C, the matching is regarded as suc-
cessful, and the topm services are the corresponding
service candidate set; otherwise, the matching is
regarded as failed, where C and M are constants.

Step 3. Save task Ti
k and the corresponding service set RSSi

k

and calculate the intersection of inputs of services in RSSi
k,

which can be labeled as InSect, and then set the InSect to be
the input of Ti

k.

Step 4. Create a new subtask using the content of the InSect
to be the output, and then repeat Steps 2 to 4 to obtain
subtask Ti

k+1 and the corresponding service candidate set
RSSi

k+1, where iε[1, n] and n is the number of InSect.

Step 5. Judge Ti
k is the original task T; if it is, the algorithm is

terminated; otherwise, proceed to Step 4.

4.3. Subtask Reorganization Algorithm. In the preliminary
task decomposition stage, only the function matching of the
service is considered, and the original task is decomposed
into executable subtasks with smaller granularity, without
considering the competition within the candidate set, the
dependence between candidate sets and the difficulty of

collaboration, which will be detrimental to the collaborative
work between the final services.

Definition 1. Internal competitiveness of candidate service
sets. It refers to the relative number N of services available in
the service candidate set corresponding to each subtask after
preliminary decomposition. To preserve the competitiveness
between services, formula (1) can be used for calculation in
the actual calculation process:

N �
ssimilarityi

S
, (1)

where S is the number of services in the candidate service set
(that is, in the preliminary task decomposition stage, the
service candidate set with the matching degree in the top s),
similarityi indicates the matching degree between the ith
service in the candidate set and the corresponding subtask.
*e higher theN, the more competitive the candidate service
set.

It should be noted that in the cold start stage of the
system, the number of services in the cloud pool is less, so the
value of S can be set smaller. As the number increases, the
value of S can be gradually increased, but the increased value
should also be weighed against the efficiency of the
algorithm.

*e competitiveness of a candidate service set is to
ensure that when a resource is selected, we can quickly find a
substitute when it is unable to provide services due to un-
expected circumstances. From a long-term perspective,

Input: task waiting to be decomposed T
Output: sub-tasks Ti

k the corresponding candidate service set RSSi
k

(1) initialize k to 0, i to 0, n to 0
(2) label T as Ti

k

(3) match the service set RSSi
k in the cloud pool that meets the output requirements of Ti

k

(4) if RSSi
k is not empty

(5) save Ti
k and RSSi

k

(6) calculate the count n of the intersection of inputs of RSSi
k, and label it as InSect

(7) set the input of the Ti
k to InSect

(8) if n is not equal to 0
(9) set k+ 1 to k
(10) for epoch� 1, 2, . . ., n do
(11) set i+ 1 to i
(12) create a new subtask Ti

k whose output of Fun-Info is the i-th value of InSect
(13) goto 3
(14) end for
(15) set i to 0
(16) else:
(17) goto 11
(18) end if-else
(19) else:
(20) if k equal to 0 and i equal to 0
(21) end algorithm
(22) else:
(23) goto 11
(24) end if-else
(25) end if-else

ALGORITHM 1: Preliminary decomposition algorithm.
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reserving competition space will make the pricing given by
manufacturing resource owners more reasonable and urge
them to actively improve service quality so as to promote the
healthy development of the cloud manufacturing platform
[21].

Definition 2. *e degree of dependency between services R,
which can be expressed by the correlation between services.
Considering that the correlation is mainly determined by the
logistics correlation and information exchange correlation
between them, to reduce the complexity of calculation, the
number, and type of inputs of task dependencies can be used
as parameters to calculate the dependence between service
candidate sets, as shown in

R � 
M

i

wi × Qi, (2)

where M is the number of categories of inputs, Qi is the
number of categories i, wi (0≤wi ≤1) is the correlation
coefficient of category i. *e actual value of wi is determined
by the expert evaluation method and will be modified
according to the operation results during the daily operation
of the platform. *e smaller the granularity of task de-
composition, the greater the dependency.

Definition 3. Coordination difficulty between services. It
refers to the difference between the longest and shortest
service time (i.e., the execution waiting time of dependent
tasks), which can be calculated by

Ti � 
N

tmax − tmin( , (3)

where Ti is the coordination difficulty of the i-th task, N is
the number of layers of all subtasks of the i-th task, tmax and
tmin represent the maximum execution time and minimum
execution time of subtask in the specified level, respectively.
Obviously, the larger the granularity of task decomposition,
the more difficult it is to cooperate.

Definition 4. *e granularity G of the candidate service set,
which indicates the suitability of the granularity of the
candidate service set to complete the specified task.
According to the comprehensive analysis formulas (2) and
(3), the higher the interdependence of the candidate service
sets, the more unfavorable it is to complete the tasks in
collaboration. *at is, with the increase of R value, the G
value should be appropriately increased (i.e., subtasks should
be merged). However, the larger the decomposition gran-
ularity, the more waiting time for other parallel tasks, which
is more unfavorable for the system to complete the task, that
is, with the increase of T value, the g value should be ap-
propriately reduced (that is, the task should be decomposed),
so it can be expressed by

G � N × R − (1 − N) × T. (4)

It should be noted that when we calculate G using
formula (4), the values of N, R, and Tneed to be regularized.

Definition 5. *e state tree of the candidate service set,
which is used to simplify the description of the task reor-
ganization process. *e node in the tree is the meta-task
obtained after the preliminary decomposition of the task.
*e value of the node represents the internal competitive-
ness of the service candidate set corresponding to the node,
and the weight of edges represents the granularity of the
candidate set relative to the parent node.

With the purpose of increasing the internal competi-
tiveness of the candidate service set, reducing the degree of
dependency between candidate service sets, and reducing
the waiting time of the parallel services in candidate service
sets, we design the pruning algorithm as shown below to
realize task reorganization (Algorithm 2).

Step 6. Calculate the internal competition of each candidate
service set, the dependencies between each candidate service
set and others, and the coordination difficulty of each
candidate service set, so as to construct the state tree of the
candidate resource set using formula (4).

Step 7. Traverse all nodes in the m-th layer of the candidate
service set state tree to determine whether the subnodes
under the node need to be merged.

(1) Set k� k+ 1 and repeat steps (1)–(3) if the k-th node
in the m-th layer is a leaf node; otherwise, go to step
(2).

(2) Get the value nodeVal of the k-th node in the m-th
layer; if the value is less than zero, set k to k+ 1 and
return back to step (1); otherwise, go to step (3).

(3) Crop all child nodes under the k-th node, recalculate
the node values in the new state tree, set k� k+ 1, and
repeat steps (1)–(3).

Step 8. Set m�m+ 1 and go back to Step 7.

5. Service Composition Model

5.1. Problem Description. For the original manufacturing
task T submitted by the customer, after task decomposition,
the subtask list is obtained as shown in Table 1, where the
“number of acceptable services” represents the number of
service providers that can be accepted by the demander, In
the specific implementation process, considering that some
subtasks may be complex, multiple services are required to
complete them.

Considering that there may be a large number of
manufacturing tasks of the same category with the same or
similar input and output in the cloud manufacturing soft-
ware service platform, it is necessary to consider the com-
position quality of all tasks of the same category while
building the optimal composition model of services. Let
subtask Tk belong to category TCk. *erefore, the service
candidate set RSSk matching task Tk also can match all other
tasks under category TCk. Afterward, according to the given
QoS evaluation model, we can calculate the competency of
each service in the candidate set RSSk for each task under
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category TCk, as shown in Table 2.*e combination target is
to find a service combination with the highest competency,
which means the sum of competencies of each subtask of the
manufacturing task T is the largest, and ensure all other tasks
under each category TCk have the highest competency at the
same time.

It should be noted that the competency value in Table 2
needs to be calculated under a given QoSmodel according to
the evaluation data of the specific evaluation system in the
cloud manufacturing service platform. As each attribute of
QoS has different measurement methods and dissimilar
units, the aggregated QoS values for each attribute should be
normalized before evaluating the global QoS of the cloud
manufacturing service. Each attribute is either a positive or a
negative factor (for a negative factor, the smaller the value of
the index, the better for the service requesters and vice
versa). *is can be obtained using the following equations:

Fn �

fn − minfn

maxfn − minf
, minfn ≠ maxfn,

1, minfn � maxfn,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

Fn �

maxfn − fn

maxfn − minf
, minfn ≠ maxfn,

1, minfn � maxfn.

⎧⎪⎪⎨

⎪⎪⎩
(6)

Formulas (5) and (6) are associated with the normalization
of positive QoS indices (such as availability and reliability) and
negative QoS attributes (such as time and cost), respectively. In
this paper, for the convenience of expression, the aggregated
QoS values are generated randomly between 0 and 1.

Collaboration is a typical feature of service composi-
tion,while as a typical model using to describe role-based
collaborative system, E-CARGO [36–41], which is proposed
by Professor Zhu in 2006, is applied to the service com-
position in cloud manufacturing for the clearly description
of the collaboration of service composition in this paper. In
E-CARGO, a role-based system is described as nine-tuples.
Σ: � (C, O, A, M, R, E, G, S0, H), where C is a set of classes,
O is a set of objects, A is a set of agents who are repre-
sentatives of human users,M is a set of messages, R is a set of
roles, E is a set of environments, G is a set of groups, s0 is the
initial state of a collaborative system, and H is a set of users.

5.2. 5e Proposed Service Composition Model. To use the
E-CARGO model for service composition in cloud manu-
facture, we map the related concepts involved in service
composition to the corresponding tuples, and the specific
process is shown in Figure 3.

Here, we introduce some necessary parameters to
simplify the description of the model.

N is a nonnegative integer
m(�|A|) is the number of agents, which is mapped to
the number of services in one service candidate set
n(�|R|) is the number of roles, which is mapped to the
number of all tasks whose category is the same as the
specified sub-task in the current total task
q(�|Q|) is the number of all sub-tasks of the current
original task after decomposition

Next, we give the following definitions combined with
the above parameters.

Input: atomic subtasks and the corresponding candidate service sets
Output: subtasks with suitable granularity and the corresponding candidate service sets
(1) initialize k to 0, m to 0, nodeVal to − 1
(2) construct the state tree of candidate resource set
(3) set m to the count of the original subtasks
(4) for epoch� 1, 2, . . ., m do
(5) set k to the count of the sub-tasks of the m-th original subtasks
(6) for epoch� 1, 2, . . ., k do
(7) if sub-task Tk

m is not a leaf node
(8) get the value of nodeVal
(9) if nodeVal is greater than 0
(10) crop and recalculate the state tree
(11) end if
(12) end if
(13) end for
(14) end for

ALGORITHM 2: Subtask reorganization algorithm.

Table 1: List of subtasks of task T.

Subtasks T1 T2 . . . Tk . . .

Number of acceptable services 3 2 . . . 1 . . .

8 Security and Communication Networks



Definition 1: in group G, <i, j> is used to indicate that
role j is assigned to agent i. It means that the
manufacturing task j is assigned to service i in the cloud
manufacturing environment.
Definition 2: in group G, L(j) ∈ ∈n (1≤ j≤ n) expresses
that the role j needs to be assigned at least L [j] agents.
As for the cloud manufacturing environment, L(c, j) ∈ n
(1≤ c≤ q, 1≤ j≤ n) expresses that subtask j of category c
needs at least L(c, j) services to complete cooperatively.
Definition 3: in group G, La(i) ∈m (1≤ i≤m) means
that agent i can only be assigned to La(i) roles at most.
As for the cloud manufacturing environment,

La(c, i) ∈m (1≤ c≤ q, 1≤ i≤m) means that service i in
the c-th candidate service set can only serve La(i) tasks
at the same time.

Definition 4: in group G, the matrix Q[i, j] ∈ [0, 1]
(1≤ i≤m, 1≤ j≤ n) represents the competence degree
of agent I for role j, where 0 is the lowest competence
degree, and 1 is the highest. In the cloud manufacturing
environment, we introduce the variable c representing
the category to expand the matrix Q. *e expanded
matrix Q [c, i, j] ∈ [0, 1] (where 1≤ c≤ q, 1≤ i≤�m,
1≤ j≤ n) describes the ability of service i in the c-th
candidate service set to complete the j-th subtask of

Table 2: Competency of each service in RSSk for each task under category TCk.

T1
K T2

K T3
K . . . Ti

K . . .

RSS1K 0.43 0.73 0.74 0.59 0.69 0.73
RSS2K 0.54 0.84 0.78 0.63 0.72 0.94
RSS3K 0.65 0.95 0.83 0.75 0.89 0.85
. . . . . .

RSSj

K 0.95 0.35 0.87 0.83 0.92 0.65
. . . . . .

RSSm
K 0.78 0.48 0.28 0.89 0.02 0.48
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complete 
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Figure 3: Mapping relationship between service composition and E-CARGO model.
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category c. *e values of competence degree are usually
calculated according to the corresponding QoS model,
which generally assigns different weights to different
QoS criteria (e.g., time, cost, etc.).
Definition 5: in group G, the assignment matrix T [i,
j]� {0, 1} (where 1≤ i≤m, 1≤ j≤ n) indicates whether
role j is assigned to agent i. T [i, j]� 1 means role j is
assigned to agent i, and T [i, j]� 0 means not assigned.
In the cloud manufacturing environment, T [c, i, j] ∈ [0,
1] (where 1≤ c≤ q, 1≤ i≤m, 1≤ j≤ n) is used to indicate
whether the j-th task of category c is assigned to the i-th
candidate service set.
Definition 6: in group G, the assignment efficiency σ
represents the total competency degree of all agents
assigned roles, and it can be calculated by

σ � 
m

1


n

1
T(i, j)∗Q(i, j). (7)

In the cloud manufacturing environment, σ can be
calculated by

σ � 

q

c�1


m

i�1


n

j�1
T(c, i, j)∗Q(c, i, j). (8)

Definition 7: in group G, role j is workable when there
are enough agents that can compete for it, and there is



m

i�1
T[i, j] � L(j) , (1≤ j≤ n). (9)

In the cloud manufacturing environment, a
manufacturing task j can be effectively assigned when
all of its subtasks are effectively assigned, and formula
(10) should be satisfied:



m

i�1
T[c, i, j] � L(j), (1≤ c≤ q, 1≤ j≤ n). (10)

Definition 8: in group G, agent i is workable when the
number of roles assigned to agent i does not exceed its
workload, and there is



n

i�1
T[i, j] � L

a
(i) (1≤ i≤m). (11)

In the cloud manufacturing environment, the assign-
ment result for service i is effective if it satisfies the
constraint condition in



q

c�1


n

j�1
T[c, i, j] � L

a
(i) (1≤ c≤ q, 1≤ j≤ n). (12)

Definition 9: in group G, the assignment matrix T is
workable if each role and each agent is workable. If T is
workable, then group G is workable. In the cloud
manufacturing environment, if all subtasks

decomposed from an original task can be assigned to
enough services that meet the workload requirements,
we can say there is effective service composition.

Finally, the process of role collaboration-based service
composition is to find the optimal assignment scheme T,
where A(|A|�m), R(|R|� n), Q(|Q|� q), L and La are given.
Namely, we need to solve the maximum value of the target
object σ shown as formula (13) under the specified
constraints.

max

q

c�1


m

i�1


n

j�1
T(c, i, j)∗Q(c, i, j). (13)

subject to



m

i�1
T[c, i, j] � L(c, j), (1≤ c≤ q, 1≤ j≤ n),



q

c�1


n

j�1
T[c, i, j] � L

a
(i), (1≤ c≤ q, 1≤ j≤ n),

T[c, i, j] ∈ 0, 1{ }, (1≤ c≤ q, 1≤ i≤m, 1≤ j≤ n).

(14)

5.3. Cplex-Based Solving Method. For obtaining higher ex-
ecution efficiency, this paper bypasses the compilation
process of the IBM ILOG CPLEX development environment
and uses the method of directly referencing the ILOG de-
velopment package in Java project to solve the above model.
*e specific steps are as follows:

(1) Find the mapping relationship: It is necessary to map
the relevant elements involved in the service com-
bination model to the four basic elements (objective
function, function variable, variable coefficient,
constraint condition) of the linear programming
problem in ILOG, where the objective function is σ,
the variables of the objective function correspond to
the assignment matrix T, the variable coefficients
correspond to the quality of service (QoS), and the
constraint conditions are related to L and La.

(2) Add objective function: When using ILOG to solve
linear programming problems, we need to transform
the matrices Q and T into one-dimensional vectors
and form the final objective function. *en the
optimization target is added in the Java code by
calling the following method of ILOG:

IloIntVar[] X� cplex.intVarArray(q∗m∗n, 0, 1);
cplex.addMaximize(cplex.scalProd(X, V));
where, X[c∗m∗ n + i∗ n + j] �T[c, i, j], V[c∗m

∗ n + i∗ n + j] �Q[c, i, j] (1 ≤ c≤ q, 1
≤i<m, 1≤ j≤ n).

(3) Add constraints:

First, declare the expression object of the
constraints:
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6. Experimental Analysis and Verification

Considering the types of open-source toolkits in different
development languages and the characteristics of task de-
composition algorithm and service composition model in
this paper, Python language, and its mainstream scientific
computing library are used to implement the task decom-
position algorithm, and Java language and IBM ILOG
CPLEX library are used to implement the service compo-
sition algorithm. *e specific hardware and software ex-
perimental environment are shown in Table 3.

6.1. Case Analysis. *e design and production process of
military electric vehicles is extremely complex, and it is
difficult to rely on a single service provider to complete the
manufacturing task. *erefore, after receiving the task, the
platform needs to decompose the task into executable and
appropriate fine-grained subtasks and assign them to dif-
ferent service providers to complete the task cooperatively.
After an in-depth understanding of the design and pro-
duction process of military electric vehicles, we combine
them in detail to form a more specific process as shown in
Table 4, and a logical relationship between the processes is
shown in Figure 4, where Serial Number 0 represents the
completed vehicle [39].

*e implementation of the task decomposition method
proposed in this paper relies on the existing services.
*erefore, the first step is to collect sufficient service data
sets. We crawl some related service sets from the network
and expand them through reproduce, mirroring, local ad-
justment and other methods according to the characteristics
of the crawled network data in a reasonable range, where the
service times of each service are randomly generated in a
specified range according to the complexity of the service,
and meantime, the dependency degree of the specified input
type is set to a fixed value initially, for simplifying the
difficulty of the solution, we only consider two input types:
logistics and communication.

For verifying the effectiveness of the task preliminary
decompose algorithm, we take the design and production of
the drive motor system as input and obtain the result shown
in Figure 5, where the values of nodes is the corresponding
serial number in Table 5. Next, we reorganize the result using
the reorganization algorithm proposed in this paper, but the
result has not changed.

*en, the design and production of the electric drive
system is taken as input for the proposed algorithm. *e
result of the preliminary decomposition shown in
Figure 6(a) and that of the reorganization shown in 6(b) are
obtained, respectively.

Without any expert system in the industry, this proposed
decomposition method can decompose complex
manufacturing tasks into subtasks with enough candidate
service sets according to the characteristics of the existing
service in the platform, which provides the necessary
premise for the realization of collaborative manufacturing.

After the subtasks and the corresponding candidate
service sets are obtained by task decomposition, an optimal

assignment scheme is needed to lay the foundation for the
subsequent task scheduling. To simplify the description
process, this paper takes the task described as the design and
production of the electric drive system as an example to
verify the effectiveness of the proposed service composition
model.

Known from Figure 6, the task named design and
production of electric drive system can be decomposed into
two first-level subtasks, design and production of drive
motor system and design and production of power system,
which can come from task decomposition or direct release
by other users. Assuming that the number of them is n1 and
n2, respectively, and that of the corresponding candidate
service sets are m1 and m2, respectively. At the same time,
the related data involved in this experiment are initialized as
the following: n1, n2, m1, and m2 are random numbers
between 3 and 5; the number of services can be accepted by a
single task L and the workload of single service La are all
random numbers between 1 and 3; the service quality of each
service in the candidate set (in real application scenarios, it is
calculated based on its historical evaluation data) is a ran-
dom number between 0 and 1. Finally, the initial situation is
shown in Table 6.

According to the initialization data of the above model
shown in Table 6, we use the Cplex-based method to solve
the model and get the assignment scheme shown in Table 5,
which takes 204.02ms and the sum of the QoS in this scheme
is 7.13. It should be noted that the above randomly generated
data may not be able to find the assignment scheme, which is
a common scenario in practical applications, and the specific
processing measures are not within the scope of this paper.

6.2. Performance Analysis. On the one hand, the current
research on task decomposition is relatively few, and there is
no unified evaluation standard. On the other hand, con-
sidering that the main advantage of the proposed decom-
position strategy in this paper is to reduce the dependence
on industry expert system and solve the problem of dis-
connection between task decomposition and service com-
position process, which has been reflected in the specific
implementation process. *erefore, we take no in-depth
comparative analysis of that.

*e proposed service composition model can smoothly
transition from the task decomposition procedure to make
full use of the existing service state in the cloud pool, and it
can be easily introduced with a variety of variable factors to
expand and optimize itself. For example, all the same, or
similar independent tasks want to be assigned the best
services.*erefore, the demander’s acceptance matrixM can
be introduced to expand the model (13) to obtain the op-
timization model (14); all interdependent services need a
solid foundation for cooperation with each other. *erefore,
the provider’s acceptance matrix N can be introduced to
expand the model (14) to (15); in addition, with the rapid
development of social networks, the influence of peer effect
in the evaluation system of the platform becomes increas-
ingly important, which can directly or indirectly affect the
choice of users themselves or other users. *erefore, the
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Table 3: Hardware and software experimental environment.

System environment
CPU Intel(R) Core(TM) i7-6500U CPU @2.50GHz 2.50GHz
Memory 8G (7.87G可用)
Operating system Windows 7 ultimate
Java development environment
Development tool Eclipse version: Luna Release (4.4.0)
JDK jdk8u241
*ird-party library Cplex
Python development environment
Development tool PyCharm Community Edition 2021.1.1+ Anaconda3
Python Python 3.7.3
*ird-party library Jieba 0.42.1+ gensim 3.8.3+ numpy 1.18.3

Table 4: Specific design activity units chart.

Serial number Design and production name
1 Electric drive system
2 Power system
3 Power battery
4 Battery management system
5 Car charger
6 Auxiliary power source
7 Drive motor system
8 Electronic controller
9 Power converter
10 Drive motor
11 Mechanical transmission
12 Clutch
13 Transmission
14 Transmission shaft and other universal transmissions
15 Axle (main reducer, differential axle housing, etc.)
16 Wheels
17 Vehicle controller
18 Motor controller
19 Current sensor
20 Voltage sensor
21 Temperature sensor
22 Body
23 Body-in-white
24 Body safety guard
25 Auxiliary system
26 Automotive instrumentation, lighting and accessories
27 Power steering
28 Steering mechanism
29 Steering gear
30 Steering transmission mechanism
31 Front and rear suspension
32 Braking system
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Table 5: Current tasks waiting to be assigned, corresponding candidate service sets, and their constraints.

Design and production of power system

Services(m1) Tasks(n1)
Task1/L [1]� 1 Task2/L [2]� 1 Task3/L [3]� 2 Task4/L [4]� 2

Service1/La [1]� 2 0.88 0.70 0.04 0.52
Service2/La [2]� 2 0.94 0.47 0.87 0.74
Service3/La [3]� 2 0.72 0.46 0.94 0.24
Design and production of drive motor system

Services(m2) Tasks(n2)
Task1/L [1]� 1 Task2/L [2]� 1 Task3/L [3]� 1 Task4/L [4]� 2

Service1/La [1]� 2 0.27 0.50 0.71 0.09
Service2/La [2]� 1 0.22 0.06 0.89 0.01
Service3/La [3]� 1 0.58 0.16 0.00 0.49
Service4/La [4]� 2 0.65 0.52 0.53 0.01
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Figure 4: Logical relationship between the processes.
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Figure 5: Decomposition result of “design and production of drive motor system.”
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user’s social relationship S can be introduced to optimize the
model and obtain the optimization model (17). However,
considering the limited space of this paper, the modeling of
M, N, and S is not described in detail. In the next experi-
mental verification, we only take the proposed service

composition model as the basic model and verify its ef-
fectiveness and adaptability by comparing it with the im-
proved Hungarian algorithm [37, 42] (we call it KMB in the
following description):

max 

q

l�1

m

i�1


n

j�1
T(l, i, j)∗Q(l, i, j)∗M(l, i, j), (15)

max 

q

l�1


m

i�1


n

j�1
T(l, i, j)∗Q(l, i, j)∗M(l, i, j)∗N(l, i, j), (16)

max 

q

l�1


m

i�1


n

j�1
T(l, i, j)∗Q(l, i, j)∗M(l, i, j)∗N(l, i, j)δ ∗ S(l, i, j). (17)

Firstly, the validity is verified, and the experimental pa-
rameters are set as follows: q, n,m, L[j], and La[i] are all random
integers, where, for improving the success rate of assignment,
the values ofm are usually set to an integermultiple of values of
n (the number of services is generally required to be more than
the number of tasks), La[i] is set between 1 and 3 and L[j] is set
between 1 and 2m/n. *e experimental results are shown in
Table 7. It can be seen that the proposed method and the KBM
algorithm can get comparable results atmost times; in addition,

KMB algorithm is more efficient when the number of tasks n is
less than 20. However, when the number of tasks n is greater
than 20, the KMB algorithm’s efficiency is significantly lower
than that of the proposed method. Considering that in the real
business environment, the number of subtasks and their
corresponding service candidate sets is usuallymuchmore than
20, so the proposed composition model and the corresponding
solution algorithm can better meet the engineering
requirements.

1

2 7

8 9 104 5 63 11

12 13 14

(a)

1

2 7

8 9 10 11

12 13 14

(b)

Figure 6: Decomposition result of “design and production of the electric drive system.” (a) Result of decomposition. (b) Result of
reorganization.

Table 6: Signment results based on the proposed model.

Design and production of power system

Services(m1) Tasks(n1)
Task1/L [1]� 1 Task2/L [2]� 1 Task3/L [3]� 2 Task4/L [4]� 2

Service1/La [1]� 2 0 1 0 1
Service2/La [2]� 2 0 0 1 1
Service3/La [3]� 2 1 0 1 0
Design and production of drive motor system

Services(m2) Tasks(n2)
Task1/L [1]� 1 Task2/L [2]� 1 Task3/L [3]� 1 Task4/L [4]� 2

Service1/La [1]� 2 0 0 0 1
Service2/La [2]� 1 0 0 1 0
Service3/La [3]� 1 0 0 0 1
Service4/La [4]� 2 1 1 0 0
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Secondly, to verify the overall performance of the
proposed composition model and the corresponding so-
lution algorithm, we use different scales of random integers
for experimental analysis, where q is a fixed value of 2, n
increases from 10 to 300 with the pace of 10 each time,m is
set to 1∗ n, 2 ∗ n, 3 ∗ n, 4∗ n in turn, L [j] and La [i] are

random numbers from 1 to m/n. At the same time, for
avoiding the randomness of the experimental results, each
data pair(q, m, n) is randomly tested for 100 times, and the
average value is collected as the final experimental data, and
the final performance trend chart as shown in Figure 7 is
formed.

Table 7: Comparison of validity of the proposed composition model, the corresponding solution algorithm and km.

Numbers q m n
Cplex execution time (s) km execution time (s)

Sum of QoS
(times) (Cplex ?

km)
Avg Max Min Avg Max Min > � <

100 [1–5] 2∗ n [5–10] 0.0233 0.188 0.005 0.0010 0.004 0.0 51 0 49
100 [1–5] 5∗ n [5–10] 0.0357 0.206 0.007 0.0026 0.009 0.0 54 0 46
100 [5–10] 2∗ n [20–50] 0.4283 0.774 0.116 0.7094 1.52 0.078 57 0 43
100 [5–10] 5∗ n [20–50] 0.8664 1.838 0.236 4.0076 8.924 0.414 49 0 51
100 [1–5] 2∗ n [100–150] 1.5421 3.644 0.287 10.7309 26.428 1.257 57 0 43
100 [5–10] 5∗ n [100–150] 4.0185 9.091 0.745 66.5779 161.536 8.317 55 0 44

Performance of the Proposed Method

Number of Tasks (n)

Performance of KBM Algorithm

0 20 30 40 60 80 90 10
0

12
0

14
0

15
0

16
0

18
0

20
0

21
0

22
0

24
0

26
0

27
0

28
0

30
0

Performance of Algorithm

Ex
ec

ut
io

n 
Ti

m
e (

s)

2.5

2.0

1.5

1.0

0.5

0

(a)

Performance of Algorithm

Performance of the Proposed Method
Performance of KBM Algorithm

Ex
ec

ut
io

n 
Ti

m
e (

s)

50

40

30

20

10

0

0 20 30 40 60 80 90 10
0

12
0

14
0

15
0

16
0

18
0

20
0

21
0

22
0

24
0

26
0

27
0

28
0

30
0

Number of Tasks (n)

(b)

Performance of the Proposed Method
Performance of KBM Algorithm

0 20 30 40 60 80 90 10
0

12
0

14
0

15
0

16
0

18
0

20
0

21
0

22
0

24
0

26
0

27
0

28
0

30
0

Performance of Algorithm

Ex
ec

ut
io

n 
Ti

m
e (

s)

400

300

200

100

0

Number of Tasks (n)

(c)

Performance of the Proposed Method
Performance of KBM Algorithm

0 20 30 40 60 80 90 10
0

12
0

14
0

15
0

16
0

18
0

20
0

21
0

22
0

24
0

26
0

27
0

28
0

30
0

Ex
ec

ut
io

n 
Ti

m
e (

s)

2500

2000

1500

1000

500

0

Performance of Algorithm

Number of Tasks (n)

(d)

Figure 7: Performance comparison of our method and KBM algorithm. (a)m� n, La[i] ∈ [1, 2]. (b)m� 2∗ n, La[i] ∈ [1, 3]. (c)m� 3∗ n, La
[i] ∈ [1, 4]. (d) m� 4∗ n, La[i] ∈ [1, 5].

Security and Communication Networks 15



It can be seen that the KMB algorithm’s
execution efficiency decreases sharply with the increase of La
[i], and its complexity is O  La[i]3. Compared with the
KMB algorithm, the execution efficiency of the proposed
method is more stable, and when La [i] is greater than or
equal to 2, it is far better than the KMB algorithm; at the
same time, we notice that both KMB algorithm and our
solution method have some fluctuations in the execution
process. When m� n, more exceptions exist in the proposed
composition model and the corresponding solution method
than that of the KBM algorithm, which is caused by the
unreachable assignment scheme under the existing condi-
tions (the number of services and tasks are the same, but
some tasks need multiple services). And when m> n, the
exception of our method does not exist. However, the KMB
algorithm still has some anomalies in some cases. In most
cases, the above two solutions can meet the practical needs,
but compared with the KMB algorithm, our composition
model and solution method is obviously better than KMB
algorithm in both efficiency and stability.

7. Conclusions and Future Work

Optimal manufacturing resource allocation is a core
problem in the cloud manufacturing mode. In the specific
implementation process, we should solve the problems of
resource virtualization, task decomposition, task service
matching, service composition, and scheduling in turn. *is
paper mainly proposes the corresponding solutions for task
decomposition and service composition model. As for task
decomposition, we refine the description model of task and
service and propose the preliminary decomposition scheme
based on task service matching and the reorganization
strategy based on the characteristics of the service candidate
set. As a result, the problem of discontinuity between task
decomposition and service composition is solved. For
solving the problem of task and service assignment, we
design the service composition model using E-CARGO and
solve the model using Cplex, which not only greatly reduces
the problem of falling into local optimum of heuristic al-
gorithms but also provides the necessary foundation for the
introduction of more variable factors(such as cooperation,
conflict and other constraints). Finally, the practicability of
decomposition strategy and service composition model is
proved by the experimental analysis.

*e future work may follow several aspects:

(1) Task scheduling of manufacturing resource opti-
mized allocation. Compared with the management
of independent resources of enterprises, the man-
agement of shared resources is more dynamic (e.g.,
devices can join or withdraw from sharing services at
any time). Hence, the difficulty in task scheduling
will be greatly increased.

(2) Personalized recommendation applied in
manufacturing resource optimized allocation. To
improve the user-friendliness and convenience of
online platforms, the personalized service recom-
mendation for different customer requirements is an

effective means. However, since manufacturing
services usually appear in the form of composite
services, existing Web service-based personalized
recommendation technologies are difficult to be
applied effectively.

(3) Real-time response of large-scale cases in a dynamic
environment should be investigated to prove the
superiority of Blockchain technology-based method
over the centralized optimization methods. And
more comparisons with other methods (e.g., PSO,
game theory) should be made [43].
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