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In recent years, deep convolutional neural networks (DCNN) have been widely used in the field of video action recognition.
Attention mechanisms are also increasingly utilized in action recognition tasks. In this paper, we want to combine temporal and
spatial attention for better video action recognition. Specifically, we learn a set of sparse attention by computing class response
maps for finding the most informative region in a video frame. Each video frame is resampled with this information to form two
new frames, one focusing on the most discriminative regions of the image and the other on the complementary regions of the
image. After computing sparse attention all the newly generated video frames are rearranged in the order of the original video to
form two new videos.*ese two videos are then fed into a CNN as new inputs to reinforce the learning of discriminative regions in
the images (spatial attention). And the CNN we used is a network with a frame selection strategy that allows the network to focus
on only some of the frames to complete the classification task (temporal attention). Finally, we combine the three video (original,
discriminative, and complementary) classification results to get the final result together. Our experiments on the datasets UCF101
and HMDB51 show that our approach outperforms the best available methods.

1. Introduction

As an important communication medium, video contains a
wealth of information. But this information used to be extracted
and used manually, which is time-consuming and laborious.
With the development of deep learning, attempts have been
made to allow computers to extract information from videos.
Many video-based deep learning tasks have emerged, such as
video action localization [1], video captioning [2], and video
question-answering [3]. *e video action recognition task is to
derive the behavior of a person in a video by analyzing the video
content. *is task is essentially a classification task where the
input is a video and the output is action labels. *is task has a
wide range of application scenarios; most typically, it can detect
violent action in surveillance videos and help police investigate
and collect evidence [4].

With the development of deep learning, many excellent
methods for video action recognition have emerged. Video is

composed of many frames, so the understanding of video
should include the relationship between frames in addition
to the image frames themselves. *erefore, the classical two-
stream network [5] divided the video into two parts: spatial
and temporal. Spatial part is the information of video frame,
for which there are many excellent 2D CNN structures
available, such as ResNet [6] and Inception [7], while the
temporal information comes from the association between
frames, and this part was obtained by optical flow. Finally the
temporal and spatial information were integrated together to
classify the video. Temporality is an important feature of
video; many researchers spend their efforts on how to better
capture the relationship between videos in the temporal
dimension [8]. In addition to the temporal dimension, the
information extraction of video frames itself is also an
important part. So researchers also gradually put their efforts
back to the images themselves in recent years. SlowFast [9]
sampled the original video at different frame rates. *e slow
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path learned spatial information with few frames and the fast
path learned temporal information with a large number of
frames and then combined it with nonlocal network to
model the relationship between frames from a global per-
spective. Video transformer [10] used transformer instead of
convolution to compute the internal relationship of the
whole video. But it was too computationally intensive to
compute both temporal and spatial attention for each patch
of each frame. So they proposed another architecture that
temporal attention and spatial attention are separately ap-
plied one after the other. *ey found that the latter one not
only reduced the computational effort significantly, but also
had a higher accuracy in the end.

We find that previous attention methods tend to favor
only one of temporal or spatial attention or treat all video
frames with the same attention strategy, like the different
frame rates of SlowFast [9], the transformer used by [10].
Inspired by previous approaches [11], we find that temporal
and spatial attention can complement each other to improve
the final classification. So in this paper, we first propose a
spatial attention mechanism that extracts discriminative
regions in video frames and resamples them into two new
videos. *ese two videos are like a data augmentation of the
original video. We then feed these two videos together with
the original video into a temporal attention network with a
frame selection strategy to filter out the most useful frames
for classification task. Finally our network learns the most
discriminative regions in these most useful frames, resulting
in a more accurate result. At the same time, since the
network where we extract spatial attention and the network
that finally completes the classification task are the same, our
extraction of discriminative regions in image frames is also
getting accurate as well as the final classification accuracy. A
positive beneficial cycle is formed to continuously improve
our classification results.

*emain innovations and contributions of this paper are
as follows: (1) We propose a novel sparse attention mech-
anism for extracting important regions from video frames,
and the method extracts discriminative regions while pre-
serving contextual information. We leverage this proposed
method as spatial attention. (2) We combine the spatial
attention with our previously proposed frame selection
strategy [12] to jointly form a novel network structure
containing both temporal and spatial attention. (3) Exper-
iments on two datasets commonly used for video action
recognition, UCF101 and HMDB51, show that our approach
outperforms the best available methods.

In Section 2, the structure of the proposed network, loss
function, and other related contents will be introduced. In
Section 3, the experimental results of our method and the
implement details will be introduced. *e advantages of our
scheme will be summarized in Section 4.

2. Proposed Method

Inspired by [13], we find that the class peak responses typically
correspond to strong visual cues residing inside regions of
interest. As shown in Figure 1, we first feed the original video
into a pretrained CNN with temporal attention (T-CNN) to

extract features (Features in Green). *is part of features is sent
to the spatial attention network to activate class response maps
that allows the network to focus on the important part of the
video frames. Based on the peaks of class response map each
frame of the video is resampled into two new video frames. One
of these two video frames focuses on the discriminative region
of the image (the orange frame which enlarges the barbell part
of the original frame) and the other focuses on the comple-
mentary part (the blue frame which enlarges the human body).
*ese two branches then rearrange the video frames into two
new videos in the same order as the original video. *ese two
videos will also be fed into the T-CNN as new inputs. Each of
these three branches is optimized by a cross-entropy loss
function. Finally, the three video branches are jointly optimized
to obtain a more accurate classification result.

2.1. Obtaining Class Peak Response Point. We first feed the
video into T-CNN (whichwill be introduced in Section 2.3) that
has been trained to extract the feature maps X ∈ RT×C×H×W,
where T represents the number of frames, H×W is the size of
the featuremaps, andC is the number of channels.*enwe feed
the feature map into a global average pooling (GAP) layer and
then go through a fully connected (FC) layer to get the clas-
sification score x ∈ RS, where S is the number of categories in the
dataset.We expand the featuremaps along time dimension into
Tmaps, each with dimensionY ∈ RC×H×W.*enwe let each of
these maps go through a GAP and FC layer to get the classi-
fication score y ∈ RS for each frame. With the weight matrix of
the FC layer Wfc ∈ RC× S, we can compute the class response
map Ms as

MS � 􏽘
C

c�1
Wfc

c,s × Yc. (1)

*e class peak response of class c is defined as a local
maximum of the corresponding class response mapMc. *e
class peak point can be written as Pc � {(x0, y0), (x1, y1), . . .,
(xNs, yNs)}, whereNs is the number of valid peak points in the
s-th class. We use these peak points to locate regions that are
more important for the classification task and estimate a set
of sparse attentions.

Experiments show that peaks in top-1 class response map
tend not to cover all discriminative regions, while peaks in top-5
tend to contain the noise points. To seek a balance between these
two methods of choosing peak points, we first calculate their
entropy to determine the confidence of network predictions. If
the confidence is high, we use peaks from the top-1 class re-
sponse map, and if it is lower, we bring together the top-5 five
class response maps to find the peak points. We denote the
predicted probability of all S classes as Prob� softmax(y) ∈ RS
and use Prob ∈ R5 to denote the probability value of the top-5
classes. We compute the entropy as

H � − 􏽘
5

i�1
pilog pi, pi ∈ Prob. (2)

We construct a response map Rmap with the following
strategy:
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Rmap �

M1, if H< δ,

􏽘

5

k�1
Mk, if H> δ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

where M ∈ R5×H×W is the class response maps corre-
sponding to Prob . *en we use Min-Max Normalize to map
the values of Rmap to [0, 1].

Rmap �
Rmap − min Rmap􏼐 􏼑

max Rmap􏼐 􏼑 − min Rmap􏼐 􏼑
. (4)

We denote their positions as P� {(x1, y1), (x2, y2), . . .,
(xNp, yNp)}, where Np is the number of peaks we detected by
the above procedure.

2.2. Computing Sparse Attention and Resampling.
Reference [14] found that, in fine-grained image classifi-
cation task, the obtained class peak points can be divided
into two sets. One set is the discriminative region and the
other is the complementary region, and learning these two
sets separately is better than learning all class peak points
together directly. Inspired by them, we preset a random
number φ(x,y) from the uniform distribution between 0 and
1. We compare the response value Rmap of the peak point
with this random number φ and group all points with re-
sponse values greater than φ into one set Pdis and those less
than into another set Pcom.

Pdis � (x, y)|(x, y) ∈ P ifRmap(x,y)
≥φ􏼚 􏼛,

Pcom � (x, y)|(x, y) ∈ P ifRmap(x,y)
＜φ􏼚 􏼛.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

*e left part of Figure 2 is the original video frame, where
the orange dot is the center point of the attention map
(middle). As shown in Figure 2(a), points with high response
values tend to correspond to discriminative regions, such as
bow and arrow, and these peak points are generally grouped
into the Pdis set. *e points with low response values are
usually localized at complementary regions as illustrated in
Figure 2(b), that is, usually people in the video or the subject
of the action, and these peak points will be grouped into the
Pcom set.

For each peak set, we compute a set of sparse attentionA
∈ RNp×H×W using Gaussian kernel.

Ai,x,y �

Rxi,yi
e

− x− xi( )
2
+ y− yi( )

2/Rxi,yi
β21 , if xi, yi( 􏼁 ∈ Pdis,

1
Rxi,yi

e
− x− xi( )

2
+ y− yi( )

2/Rxi,yi
β22 , if xi, yi( 􏼁 ∈ Pcom.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

Both β1 and β2 are learnable parameters.
With the previously obtained sparse attention, we can

resample the discriminative regions from the original video
frames while also preserving the contextual information
around the image regions. After the above series of oper-
ations, each video frame can be resampled to obtain two new
frames, and we use Qdis to denote the feature map of the
extracted discriminative branch and Qcom to correspond to
the feature map of the complementary branch.

Qdis � 􏽘Ai, if xi, yi( 􏼁 ∈ Pdis,

Qcom � 􏽘Ai, if xi, yi( 􏼁 ∈ Pcom.

⎧⎪⎨

⎪⎩
(7)
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Figure 1: Network structure of our method.
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*e resampling process is implemented using convo-
lution following the method of [15] and can be embedded
into the end-to-end training. So both β1 and β2 can be
updated by the classification loss function. *e input video
has multiple frames and each frame of video can produce
two frames according to the above method; we then line up
all the discriminative and complementary branch images in
the order of the original video input to form two new videos
Vcom and Vdis.

2.3. Network Structure and Loss Function. Essentially, the
sparse attention we propose is for spatial attention of video
images. Our input is an original video Vo and the output is
two videos Vcom and Vdis. *e video frames of Vdis focus
more on discriminative regions, while Vcom focuses on
regions that are complementary.

As we mentioned before, in order to obtain the two new
videos, we first feed the original video into a pretrained CNN
with temporal attention (T-CNN) to extract features. Table 1
shows the network structure of T-CNN; “Dilation Conv(4)”
means a dilation convolution with a dilation of 4 is used in
the temporal dimension. T-CNN comes from a network
structure that we obtained previously using neural archi-
tecture search [12]. In this work we explored how many
frames are needed in each stage of the network. In fact, it is
about allowing the network to focus on only the appropriate
number of video frames to complete the final classification
task. After we get the two new videos, Vcom and Vdis, we will
refeed them to T-CNN as new data to learn. *ese two new
videos are equivalent to a data augmentation of our original
input. So our method does not significantly improve the

number of model parameters, although the computational
complexity increases.

Our loss function is a cross-entropy loss. Each input
video will produce three predictions, which we denote as Fo,
Fcom, and Fdis. *ese three predictions come from the
original video Vo, the discriminative video Vdis, and the
complementary video Vcom, respectively. Comparing them
with the classification labels will produce three losses. We
will also concatenate the features of the three videos together
and pass them through a FC layer to obtain the fourth
prediction Ftotal. So our final loss function consists of four
components, which can be written as

L(X) � 􏽘
i∈ O,C,D{ }

Lcls Fi,F
∗

( 􏼁 + Lcls Ftotal,F
∗

( 􏼁, (8)

where Lcls denotes the cross-entropy loss and F∗ is the
ground-truth label vector.

3. Experimental Results and Discussions

3.1. Datasets and Implementation Details. To evaluate the
effectiveness of our proposed method, we have done ex-
periments on two common datasets for video action rec-
ognition, UCF101 and HMDB51.

*e UCF101 dataset [16] has 13,320 videos from 101
action categories. Each of these categories can be divided
into 25 groups, each containing 4–7 action videos. *is
dataset is highly diverse in terms of motion and varies greatly
in terms of camera movement, object appearance and pose,
object scale, point of view, cluttered backgrounds, lighting
conditions, etc.

(a)

(b)

Figure 2: Visualization of discriminative and complementary branches: (a) discriminative branch; (b) complementary branch.
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*e HMDB51 dataset [17] contains 51 action categories,
a total of 6849 videos, and each action contains at least 51
videos. *e action categories can be divided into four major
categories: (1) general facial actions (laughing, chewing); (2)
facial and object actions (smoking, eating); (3) human body
actions (hugging, inversion); (4) interactive actions with
objects (horse riding, archery).

For both video datasets, during training, we sample 16
consecutive frames from each video, and each frame is
converted to 256× 342 resolution by preprocessing. And
then we randomly crop 224× 224 pixels from the frame and

feed them into the network. To make a fair comparison with
other methods, we follow the common reference method
[18]. We divide each video into 10 clips equally, with each
clip including 16 video frames, resize the short edge of each
image to 224 pixels, and cut three 224× 224 crops from the
left, middle, and right of the image. Each crop of each clip is
called a “view,” so we have 30 views, and the final prediction
result of each video is obtained by averaging the softmax
scores of these 30 views.

*e whole model is trained for 150 epochs with a batch
size of 16. We use SGD optimizer with 0.9 momentum and
4×10−5 weight decay. *e learning rate strategy uses cosine
annealing learning rate schedule [19]. *e initial learning
rate was 0.1 and the lowest was 1× 10−4. *e dropout
probability is 0.5 after the final GAP layer. Finally, it is sent to
the linear layer to classify according to the number of classes
of each dataset.

3.2. Comparison with SOTA. On the two commonly used
datasets, UCF101 and HMDB51, we compare the proposed
method with the SOTA methods. Since our method uses
only RGB images as input, when comparing with other
methods that have multiple input modalities like I3D, we
only compare with their results obtained with RGB mo-
dality. From the results of the comparisons in Tables 2 and 3,
we can see that the classification accuracy of our method on
both datasets exceeds the best available methods.

*e advantage of our method comes first from our
spatial attention. From the results, the network of T-CNN
with only temporal attention has lower accuracy than TSM
and I3D RGB on both datasets. In particular, for I3D RGB,
T-CNN is 0.3% lower than it on UCF101 and 1.5% lower
than it on HMDB51. When the spatial attention proposed in
this paper is added, our method achieves a reversal on both
datasets.*is effect is related to these two datasets, which are
more sensitive to spatial information, so the increase of
attention to spatial information will produce such a huge
improvement (1.4% for UCF101 and 1.9% for HMDB51).
*en there is the fact that the spatial attention in this paper is
finally externalized to two new data inputs, which actually
has the effect of data augmentation. *is is very important
because both UCF101 and HMDB51 are easy to overfit. Data
augmentation helps to improve generalization ability and
reduce the occurrence of overfitting.

*e second advantage of our approach comes from the
fact that we integrate spatial and temporal attention,
allowing them to complement each other and improve the
final classification accuracy. Not all video frames have
positive implications for classification. As shown in Figure 3,
this image is difficult to classify based on the original picture
and spatial attention. It is easy to be classified as “holding
something” rather than “shooting an arrow.” At this point,
we can rely on temporal attention in the frame selection
strategy to reduce our chances of picking this image frame,
thus reducing the number of misleading cases.

*ere are also shortcomings in our method. From the
last column in Tables 2 and 3, we can see that the com-
putational complexity of our method has increased several

Table 1: Network structure of T-CNN.
Input: 3×16× 224× 224

Stage 1 Conv 3–32 +BN+ReLU
Conv 32–32 +BN+ReLU

Stage 2 Conv 32–64 +BN+ReLU
Conv 64–64 +BN+ReLU

Stage 3 Conv 64–96 +BN+ReLU
Conv 96–96 +BN+ReLU

Stage 4

Conv 96–160 +BN+ReLU
Conv 160–160 +BN+ReLU
Conv 160–160 +BN+ReLU

Dilation Conv(4) 160–160 +BN+ReLU
Conv 160–160 +BN+ReLU

Dilation Conv(4) 160–160 +BN+ReLU
Conv 160–160 +BN+ReLU

Dilation Conv(4) 160–160 +BN+ReLU
Conv 160–160 +BN+ReLU
Conv 160–160 +BN+ReLU
Conv 160–160 +BN+ReLU
Conv 160–160 +BN+ReLU
Conv 160–160 +BN+ReLU

Dilation Conv(4) 160–160 +BN+ReLU

Stage 5

Conv 160–224 +BN+ReLU
Conv 224–224 +BN+ReLU
Conv 224–224 +BN+ReLU

Dilation Conv(2) 224–224 +BN+ReLU
Conv 224–224 +BN+ReLU

Dilation Conv(4) 224–224 +BN+ReLU
Conv 224–224 +BN+ReLU

Dilation Conv(4) 224–224 +BN+ReLU

Stage 6

Conv 224–288 +BN+ReLU
Conv 288–288 +BN+ReLU
Conv 288–288 +BN+ReLU

Dilation Conv(2) 288–288 +BN+ReLU
Conv 288–288 +BN+ReLU

Dilation Conv(2) 288–288 +BN+ReLU
Conv 288–288 +BN+ReLU

Dilation Conv(2) 288–288 +BN+ReLU
Conv 288–288 +BN+ReLU
Conv 288–288 +BN+ReLU

Stage 7

Conv 288–512 +BN+ReLU
Conv 512–512 +BN+ReLU
Conv 512–512 +BN+ReLU

Dilation Conv(2) 512–512 +BN+ReLU
Global average pooling
Fully connected layer

Softmax
Classification result

Security and Communication Networks 5



times compared to T-CNN. *e T-CNN has the lowest
computational complexity among existing methods (15.78
GFLOPs), but with the addition of the spatial attention part,
the computational complexity comes directly to the back
half of the list. *is is mainly due to the fact that our spatial
attention resamples two new videos into the network, which
equates to one video input that needs to be computed 3 times
through the network, plus the fact that we need to compute
the class response maps and sparse attentions for each frame
and resample them. All of them add to the computational
complexity.

3.3. Effects of Different Extraction Branches. To verify the
effects of each branch, we tried to omit one or more branches
and observe their effects on the final classification results.
From Table 4, we can draw the following conclusions. (1)
Both O+Dmode and O+Cmode are improved for the final
classification accuracy. It indicates that both complement
and discriminative regions are helpful for classification, and
it also verifies that the spatial attention extraction method in
this paper is effective. (2) In the absence of the comple-
mentary branch, our overall accuracy decreases the least
(from 96.7 to 96.3), indicating that the complementary

Table 2: Comparisons with other methods on UCF101 dataset.

Model Pretraining dataset Accuracy (%) GFLOPs
C3D [20] Sports-1M 82.3 38.57
TRN [21] — 83.5 83.83
Res3D [22] Sports-1M 85.8 —
P3D [23] Imagenet + Sports-1M 88.6 18.51
T3D [24] Kinetics-400 90.3 —
TSN [8] Imagenet +Kinetics-400 91.1 80
R(2 + 1)D [25] Sports-1M 93.6 41.69
TSM [26] Kinetics-400 95.5 32.88
I3D RGB [27] Imagenet +Kinetics-400 95.6 108
T-CNN [12] Kinetics-400 95.3 15.78
T-CNN+ spatial Kinetics-400 96.7 52.3

Table 3: Comparisons with other methods on HMDB51 dataset.

Model Pretraining dataset Accuracy (%) GFLOPs
Res3D [22] Sports-1M 54.9 —
T3D [24] Kinetics-400 59.2 —
R(2 + 1)D [25] Sports-1M 66.6 41.69
TSM [26] Kinetics-400 73.6 32.88
I3D RGB [27] Imagenet +Kinetics-400 74.8 108
T-CNN [12] Kinetics-400 73.3 15.78
T-CNN+ spatial Kinetics-400 75.2 52.3

(a) (b)

Figure 3: An example of classification error based only on spatial attention. (a) original frame. (b) Spatial attention.
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branch is indeed the region containing the least discrimi-
native information compared to the other branches. How-
ever, the accuracy of the classification still decreases when
this part is missing, suggesting that sometimes the subject of
the action can also play a crucial role in the classification
task.

4. Conclusions

In this paper we integrate temporal and spatial attention to
construct a network structure. We learn a set of sparse
attention by computing class response maps. It selectively
collects visual evidence of dynamic information areas based
on image content and surrounding context. Based on these
regions obtained by spatial attention we resampled two new
videos. *ese new videos are fed into the network as
completely new data, enhancing the generalization ability of
our network structure. We then feed these two videos with
the spatial attention together with the original video into a
temporal attention network. So our network learns the most
discriminative regions in these most useful frames, resulting
in a more accurate result. And the network where we extract
spatial attention is the same as the network that finally
completes the classification task. So our extraction of dis-
criminative regions in image frames is also getting accurate
as well as the final classification accuracy. A positive cycle is
formed to continuously improve the classification results.
Integrating attention in temporal and spatial is actually
consistent with human vision. We also recognize the other
person’s action by observing key object information in
consecutive actions. Extensive experimental results on some
benchmark datasets illustrate the promising performance of
the proposed scheme.
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