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Collaborative learning is an emerging distributed learning paradigm, which enables multiple parties to jointly train a shared
machine learning (ML) model without causing the disclosure of the raw data of each party. As one of the fundamental col-
laborative learning algorithms, privacy-preserving collaborative logistic regression has recently gained attention from industry
and academia, which utilizes cryptographic techniques to securely train joint logistic regression models across data from multiple
parties. However, existing schemes have high communication and computational overhead, lose the ability to deal with high-
dimensional sparse samples, cut down the accuracy of the model, or exist the risk of leaking private information. To overcome
these issues, considering vertically distributed data, we propose a privacy-preserving vertical collaborative logistic regression (P2

VCLR) based on approximate homomorphic encryption (HE), which enables two parties to jointly train a shared model without a
trusted third-party coordinator. Our scheme utilizes batching method in approximate HE to encrypt multiple data into a single
ciphertext and enable a parallel processing through single instruction multiple data (SIMD) manner. We evaluate our scheme by
using three publicly available datasets, the experimental results indicate that our scheme outperforms existing schemes in terms of
training time and model performance.

1. Introduction

Machine learning (ML) [1] is a method for analyzing large-
scale data and is widely used in practice to train predictive
models for practical applications. As one of the basic ma-
chine learning algorithms, logistic regression (LR) [2] has
attracted much attention for its powerful ability to solve
classification problems in practical applications, such as
disease diagnosis [3], credit evaluation [4].

In recent years, in order to obtain massive data for
training better-performing models [5], there is growing
interest in machine learning by combining the data from
different institutions [6]. For instance, different hospitals
would like to combine health data to jointly train models to
facilitate more accurate disease diagnosis; different financial
companies want to collaborate to train more effective credit
card scoring and fraud detection models. Unfortunately, due

to regulatory and competitive reasons, it is difficult or even
impossible to directly exchange data of different parties for
model training in practice [7]. )at is, the data of different
organizations is isolated. To eliminate the issue of “data
isolation“, the idea of collaborative learning [8] is intro-
duced. Its goal is to cooperatively train a shared ML model
on distributed data while complying with regulation and
protecting privacy. )e security, privacy, and efficiency
concerns remain main challenges for practical applications.
Recently, as a fundamental collaborative learning algorithm,
privacy-preserving collaborative logistic regression (PPCLR)
[9–24] has received considerable attention recently, which
utilizes cryptographic primitives such as homomorphic
encryption (HE) algorithm [25] and multi-party computa-
tion (MPC) protocol [26] to securely train a joint logistic
regression model across data from multiple parties. How-
ever, for the HE-based schemes [9–11], model weights are
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exposed to all parties at each iterative update of global model
parameters during training, which is able to be utilized to
deduce additional private information [27]; for the MPC-
based schemes [12, 14], after using secret sharing (SS) [28]
on training samples of all parties, even previously sparse
samples become dense, so they are not able to efficiently
handle sparse samples and require high communication
complexity when the training data becomes large.

To solve the problems mentioned above, in a two-party
setting, considering two vertically distributed training data
with the same sample distributions but different feature
distributions, we construct a privacy-preserving vertical
collaborative logistic regression (P2 VCLR) based on the HE
for arithmetic of approximate numbers [29]. )e main
contributions are as follows:

(1) Firstly, we construct a P2 VCLR framework for
collaborative learning of vertical distributed features,
which can securely realize the joint modeling of both
parties without the assistance of a trusted third-party
(TTP), and hence greatly reduces the system
complexity.

(2) Secondly, to improve the training efficiency, using
the batching technique in HE [29], the proposed
scheme can pack multiple samples into a single
plaintext with multiple slots, encrypt it into a single
ciphertext, and enable a parallel computing through
using SIMD.

(3) Finally, we conduct performance evaluations on
three datasets [30], and the experimental evaluation
results indicate that our scheme achieves a significant
improvement in efficiency and performance than
existing schemes [9, 21]. Specifically, the training
time of the model is decreased by almost 32.3%-
72.5%; the accuracy, F1-score, and AUC of the model
have nearly 0.3% - 3.0%, 0.1% - 2.7% and 0 - 0.03
improvement, respectively. Furthermore, the secu-
rity analysis indicates that the proposed P2 VCLR
scheme is secure against semi-honest adversaries,
and neither of the both parties can know each other’s
raw data.

)e rest of this work is arranged as follows. Several works
related to our scheme are introduced in Section [2]. In
Section [3], we review some preliminaries. In Section [4], our
scheme is described. In Section [5], the evaluations for our
scheme are presented. )e security analysis of our scheme is
shown in Section [6]. In Section [7], we conclude this work.

2. Related Works

)ere are several works that have been made to joint train a
LR model across multiple data owners. In general, a com-
mon approach is to implement secure logistic regression by
using cryptographic primitives like HE [25] and MPC [26].
)e existing works [9–24] can be divided into two categories:
PPCLRwith a TTP coordinator [9–16] and PPCLRwithout a
TTP coordinator [17–24]. A summary of the existing works
[9–24] follows.

As for the PPCLR with TTP coordinator [9–16], Hardy
et al. [9] described a privacy-preserving federated LR scheme
by employing additively HE scheme [25], which centralizes
two vertically distributed training data in one TTP coor-
dinator, but the approximation of non-polynomial function
reduces the model accuracy. Yang et al. [10] shown a quasi-
Newton way for achieving vertical federated LRmodel based
on the additively HE scheme [25]. Using an additive HE [31]
and an aggregation method [32], Mandal et al. [11] built a
privacy-preserving regression analysis protocol on the
horizontally distributed high-dimensional data. Employing
an additive secret sharing technique [33], Zhang et al. [12]
proposed a privacy-preservation collaborative learning for
ensuring local training data and model information. Liu
et al. [13] introduced a collaborative learning platform,
which supports multiple institutions to build machine
learning models collaboratively over large-scale horizontally
and vertically partitioned data. By means of MPC from
additive secret sharing [34, 35], Cock et al. [14] proposed a
protocol for securely training LR model over distributed
parties, where TTP initializer assigns relevant random values
to two computing severs. Based on multi-key fully HE [36],
Wang et al. [15] designed a secure cloud-edge collaborative
LR system, which employs the cloud centre and edge nodes
to collaboratively train a LR model over encrypted data. Zhu
et al. [16] proposed a value-blind LR training method in a
collaborative setting based on HE [25], where the central
server updates model parameters without access to the
training data and intermediate values, andmodel parameters
are shared among the central server with collaborating
parties. However, it’s inherently difficult to establish a third
party trusted by any data owners in a real-world scenario.
Moreover, data interactions between data owners and TTP
raise the risk of leakage of sensitive data of the data owner.

To decrease the complexity of training a joint model for
any two parties, by removing the TTP coordinator, Yang
et al. [17] constructed a parallel distributed LR method for
vertical federated learning based on HE [25], which allows
two parties to jointly train models without the help of a TTP
coordinator. Using the secure MPC protocol and ciphertext
domain conversion protocol [37], Chen et al. [18] presented
a collaborative learning system for jointly building better
models over vertically partitioned multiple data. Based on
the HE scheme [29], Li et al. [19] introduced a collaborative
learning method on encrypted data, which could securely
train LR models over vertically distributed data from both
data owners. Based on asynchronous gradient sharing and
HE algorithm [29], Wei et al. [20] designed a two-parties
collaborative LR protocol, which can train securely joint
model on the vertically partitioned data. Chen et al. [21]
combined the HE [25] and secret sharing [38] to build
securely LR model on the vertically distributed large-scale
sparse training data. Over the horizontally partitioned data,
based on secure MPC protocol, Ghavamipour et al. [22]
described two methods to train LR model in a privacy-
preserving manner. However, each data owner requires to
compute multiple shares of its sensitive training data and
sends them separately to each non-collusion computation
party, this leads to heavy communication costs. He et al. [23]
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constructed a vertical federated LR method through a HE
algorithm [25], which uses a piecewise function to ensure the
accuracy of the loss function, but this results in a loss of
efficiency. With the HE scheme [25] and differential privacy
algorithm [39], Sun et al. [24] introduced a vertical federated
LR solution, which alleviates the constraints on feature
dimensions. However, the existing PPCLR schemes [17–24]
without a TTP coordinator lead to high communication and
computational overhead.

3. Preliminaries

3.1. System Architecture. For ease of reading, the definitions
of the symbols in our P2 VCLR scheme are displayed in
Table 1. As is shown in Figure 1, the system architecture of
our P2 VCLR includes two semi-trusted entities: Pa and Pb.
Pa and Pb hold the vertically distributed datasets Sa and Sb,
respectively. Sa and Sb have the same sample space but
different feature distribution, namely, Pa holds the part of
the features, Pb holds another part of the features and the
label. Pa cooperates with Pb to train a shared LR model
without disclosing the privacy of training data. Specifically,
Pa generates ska, pka, rka, gka ←KeyGen(N, Q) [29],
sends polynomial-degree N, coefficient-modulus Q, scaling
factor Δ, public key pka, relinearization key rka, galois key
gka to Pb, and securely store secret key ska. )en, Pa en-
crypts its own data with pka, and sends the encrypted data to
Pb. Finally, Pa and Pb jointly execute P2 VCLR algorithm to
obtain the training result.

3.2. Homomorphic Encryption. HE allows direct operations
on ciphertext without decryption, and can ensure that the
computation on the ciphertext is consistent with the com-
putation on the plaintext. Cheon et al. [29] introduced an
approximate HE algorithm from ring learning with errors
(RLWE) [40], which supports the following operations.

(1) ski, pki, rki, gki ←Key Gen(N, Q): Given the
parameters N, Q{ }, it generates ski, pki, rki, gki for
Pi.

(2) x←Enc(x, pki): Given a message vector x and pki,
it generates a ciphertext x.

(3) x←Dec(x, ski): Given x and ski, it generates a
message vector x.

(4) x + y←Add(x, y): Given x and y, it generates a
ciphertext x + y � x + y.

(5) x + y←Add Plain(x, y): Given x and a message
vector y, it generates a ciphertext x + y � x + y.

(6) x0 + · · · + xn−1←Add Many(x, y): Given a cipher-
text list X � x0, . . . , xn−1 , it generates a ciphertext
x0 + · · · + xn−1 � x0 + · · · + xn−1.

(7) x − y←Sub(x, y): Given x and y, it generates a
ciphertext x − y � x − y.

(8) x − y←Sub Plain(x, y): Given x and y, it generates
a ciphertext x − y � x − y.

(9) x∗y←Mul(x, y, rki): Given x, y and rki, it gen-
erates a ciphertext x∗y � x∗y.

(10) x∗y←Mul Plain(x, y, rki): Given x, y and rki, it
generates a ciphertext x∗y � x∗y.

(11) y←Rot Vector(x, k, gki): Given
x � [x0, . . . , xN/2−1], k and gki, it rotates x left by
rotation value k, and generates a ciphertext
y � [xk, . . . , xN/2−1, x0, . . . , xk−1].

3.3. Logistic Regression. Let a dataset S includes m samples
xi,1, . . . , xi,n, yi|i ∈ [m]  � xi, yi|i ∈ [m] , where an input

xi maps to a binary dependent variable yi ∈ 0, 1{ }, the goal of
binary LR is to compute weights ξ � ξ0, ξ1, . . . , ξn  that
minimizes the log-likelihood loss function
J(ξ) � −1/m · 

m
i�1((1 − yi) · (1 − log(σ(zi · ξ))) + yi ·

log(σ (zi · ξ))), where zi � 1, xi . Assuming that ξ(k) and
α(k) denote the model weights and learning rate at iteration
k, respectively, the gradient descent (GD) is able to be used
to compute the extremum of J(ξ) by
ξ(k+1)←ξ(k)

− αk/m · 
m
i�1((σ(zi · ξ(k)

) − yi) · zi). Since the
HE scheme (CKKS) [29] is not able to effectively support
non-polynomial arithmetic operations, we use a 7-degree
polynomial function f(x) � w0 + w1x + w3x

3+ w5x
5 + w7x

7

to approximate sigmoid function σ(x) � 1/(1 + e− x) over
the domain [-8, 8], where w0 � 1/2, w1 � 1.73496/8,
w3 � 4.19407/83, w5 � 5.43402/85, and w7 � 2.50739/87.

4. Privacy-Preserving Vertical Collaborative
Logistic Regression

Over vertically distributed datasets Sa and Sb, we propose a
P2 VCLR scheme based on an approximate HE [29]. Using
batching method in approximate HE, the proposed scheme
packs a message vector with multiple messages into a
plaintext with multiple plaintext slots, and performs parallel
training based on SIMD. For ease of readability, we give the
Algorithm , which can be found in Appendix. We assume
that the samples of Sa and Sb held by Pa and Pb have been
aligned, namely,
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Sa �

x0,1

x1,1

⋮

xm−1,1

x0,2

x1,2

⋮

xm−1,2

· · ·

· · ·

⋱

· · ·

x0,n1

x1,n1

⋮

xm−1,n1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Sb �

x0,n1+1

x1,n1+1

⋮

xm−1,n1+1

· · ·

· · ·

⋱

· · ·

x0,n1+n2

x1,n1+n2

⋮

xm−1,n1+n2

y0

y1

⋮

ym−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(1)

Sa and Sb consist of m samples of the form
xi,1, xi,2, . . . , xi,n1

  and xi,n1+1, . . . , xi,n1+n2
, yi , respectively,

where i � 0, 1, . . . , m − 1. Each column of Sa denote the
features.)e last column of Sb represents the label, and other
columns of Sb represent the features. Pa cooperates with Pb

to train a shared LR model without revealing the data
privacy. Suppose 2(n1 + n2 + 1)≤N, the details of the
proposed P2 VCLR are described below.

Input: Sa and Sb for Pa and Pb respectively
Output: [ξ(s)

0 , ξ(s)
1 , . . . , ξ(s)

n1
] and [ξ(s)

n1+1, ξ
(s)
n1+2, . . . , ξ(s)

n1+n2
]

for Pa and Pb respectively
Preprocessing:
1: Pa computes l � 2log(n1+n2+1), u � N/2l, v � m/u, lets
xi
′ � [1, xi,1, xi,2, . . . , xi,n1

, 0, 0, . . . , 0]|

i � 0, 1, . . . , m − 1},
generates ska, pka, rka, gka ←KeyGen(N, Q), en-
crypts dataset Sa into v ciphertexts

xa,i � Enc([xi·u
′, xi·u+1′, . . . , x(i+1)·u−1′]

−
N/2

, pka)| i � 0, 1, . . . , v − 2
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

xa,v−1 � Enc([x(v−1)·u
′, x(v−1)·u+1′, . . . , xm

′, 0, 0, . . . , 0]
−

N/2

,

pka),
lets
ξ′(0)

� [ξ(0)
0 , ξ(0)

1 , . . . , ξ(0)
n1

, 0, 0, . . . , 0]
−
l

,
encrypts the initial weight ξ′(0) into one ciphertext
ξ(0)

a � Enc([ξ′(0)
, ξ′(0)

, . . . , ξ′(0)
]

−
N/2

, pka),

and sends N, Q, Δ, pka, rka, gka, s,
xa,i|i � 0, 1, . . . , v − 1 , ξ(0)

a to Pb.
2: Pb computes l � 2log(n1+n2+1), u � N/2l, v � m/u, lets

x′
′
i � [0, 0, . . . , 0

−
n1+1

, xi,n1+1, xi,n1+2, . . . , xi,n1+n2
, 0, 0, . . . , 0]

−
l

i � 0, 1, . . . , m − 1}
⎧⎪⎨

⎪⎩
,

yi � [yi, 0, 0, . . . , 0]
−
l

i � 0, 1, . . . , m − 1
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

sets data set Sb into 2v message vectors
xb,i � [xi·u

″, xi·u+1″, · · · , x(i+1)·u−1″]−N/2
i � 0, 1, . . . , v − 2},

Table 1: )e definition of the symbol.

Notation Definition
x Message vector [x0, . . . , xN/2−1]

x[i] )e i-th element of x

x A ciphertext of x

X A list of message vectors x0, . . . , xn−1 

X[i] )e i-th message vector of X
X A list of ciphertexts x0, x1, . . . , xn−1 

X[i] )e i-th ciphertext of X

x∗y [x0 · y0, . . . , xN/2−1 · yN/2−1]

x + y [x0 + y0, . . . , xN/2−1 + yN/2−1]

x − y [x0 − y0, . . . , xN/2−1 − yN/2−1]

x · y [x0 · y0 + · · · + xN/2−1 · yN/2−1]
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xb,v−1 � [x′
′
(v−1)·u, x′

′
(v−1)·u+1, . . . , x′

′
m, 0, 0, . . . , 0]

− N/2
,

yi � [yi·u, yi·u+1, . . . , y(i+1)·u−1]
− N/2

i � 0, 1, . . . , v − 2},

yv−1 � [y(v−1)·u, y(v−1)·u+1, . . . , ym, 0, 0, . . . , 0]
−

N/2

,
lets
ξ’’(0)

� [0, 0, . . . , 0
−

n1+1

, ξ(0)
n1+1, ξ

(0)
n1+2, . . . , ξ(0)

n1+n2
, 0, 0, . . . , 0]

−
l

,
sets the initial weight ξ’’(0) into one message vector
ξ(0)

b � [ξ′′(0)
, ξ′′(0)

, . . . , ξ′′(0)
]

−
N/2

,

sets the learning rate α into one message vector

α/m � [α/m, α/m, . . . , α/m
−

n1+n2

, 0, 0, . . . , 0]−
N/2

,
lets

wi � [wi, 0, 0, . . . , 0] i � 0, 1, 3, 5, 7
−
l

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

sets the message vectors

ωi � [wi, wi, . . . , wi] i � 0, 1, 3, 5, 7
−

N/2

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

sets the lists
Xa � xa,0, xa,1, . . . , xa,v−1 ,
Xb � xb,0, xb,1, . . . , xb,v−1 ,
Y � y0, y1, . . . , yv−1 .
Training:
3: Pb computes ξ(0)

� Add Plain(ξ(0)
a , ξ(0)

b )

4: for (i � 0 to v − 1) do
5: Pb computes X[i] � Add Plain(Xa,[i], Xb,[i])

6: end for
7: for (j � 0 to s − 1) do
8: for (i � 0 to v − 1) do
9: Pb computes D[i] � Mul(ξ(j)

,X[i], rka)

10: Pb computes E[i] � Rot Sum 1(D[i], l, gka)

11: Pb computes F[i] � Approx Sigmoid
(E[i],ω0,ω1,ω3,ω5,ω7, rka)

12: Pb computes G[i] � Sub Plain(F[i], Y[i])

13: Pb computes H[i] � Rot Sum 2(G[i], l, gka)

14: Pb computes I[i] � Mul(H[i], X[i], rka)

15: end for

16: Pb computes a � Add Many(I)

17: Pb computes b � Rot Sum 3(a, l, gka)

18: Pb computes c � Mul Plain(b, α/m, rka)

19: Pb computes ξ
(j+1)

� Sub(ξ(j)
, c)

20: Pb chooses random message vector
δ(j+1) � [δ(j+1)

0 , δ(j+1)
1 , . . . , δ(j+1)

N/2−1]

21: Pb computes φ(j+1) � Sub Plain(ξ
(j+1)

, δ(j+1))

22: Pb sends φ(j+1) to Pa

23: Pa computes φ(j+1) � Dec(φ(j+1), ska) to Pa

24: Pa sets
φ(j+1) � [φ(j+1)

[0] ,φ(j+1)

[1] , . . . ,φ(j+1)

[n1+n2], 0, 0, . . . , 0]
−
l

25: Pa sets φ(j+1) � [φ(j+1), φ(j+1), . . . , φ(j+1)]
−

N/226: Pa sets φ(j+1) � Enc(φ(j+1), pka)

27: Pa sends φ(j+1) to Pb

28: Pb sets δ
(j+1)

� [δ(j+1)

[0] , δ(j+1)

[1] , . . . , δ
(j+1)

[n1+n2], 0, 0, . . . , 0]−l

29: Pb sets δ
(j+1)

� [δ
(j+1)

, δ
(j+1)

, . . . , δ
(j+1)

]
−

N/2
30: Pb computes ξ(j+1)

� Add Plain(φ(j+1), δ
(j+1)

)

31: end for
Reconstructing:
32: Pa sends [φ(s)

[n1+1],φ
(s)
[n1+2], . . . ,φ(s)

[n1+n2]] to Pb

33: Pb computes [ξ(s)
n1+1, ξ

(s)
n1+2, . . . ,

ξ(s)
n1+n2

] � [φ(s)
[n1+1],φ

(s)
[n1+2], . . . ,φ(s)

[n1+n2]] +

[δ(s)
[n1+1], δ

(s)
[n1+2], . . . , δ(s)

[n1+n2]]

34: Pb sends [δ(s)
[0], δ

(s)
[1], . . . , δ(s)

[n1]] to Pa

35: Pa computes [ξ(s)
0 , ξ(s)

1 , . . . , ξ(s)
n1

] �

[φ(s)
[0],φ

(s)
[1], . . . ,φ(s)

[n1]] + [δ(s)
[0], δ

(s)
[1], . . . , δ(s)

[n1]]

36: return: [ξ(s)
0 , ξ(s)

1 , . . . , ξ(s)
n1

] and [ξ(s)
n1+1,

ξ(s)
n1+2, . . . , ξ(s)

n1+n2
] for Pa and Pb respectively

5. Performance Evaluation

We execute the performance comparisons among our P2

VCLR scheme and existing schemes [9, 21]. We perform all
experiments on a 64-bits Linux systemmachine with i7 CPU
and 16 GB memory. For all experiments, we choose the
initial weights [ξ(0)

0 , ξ(0)
1 , . . . , ξ(0)

n1
] � [0, 0, . . . , 0],

[ξ(s)
n1+1, ξ

(s)
n1+2, . . . , ξ(s)

n1+n2
] � [0, 0, . . . , 0], the learning rate

α � 0.15, and the maximum number of iterations s � 20.)e
schemes [9, 21] choose the Paillier cryptosystem [25] to
provide the additive HE operations, the proposed scheme

P2VCLR
Sa

Pa

Homomorphic Encryption
Sb

Pb

Figure 1: System architecture.
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uses the Microsoft SEAL library [41] to instantiate the HE
operations [29]. To achieve κ � 80 bits security, for the
schemes [9, 21], we set the prime number p, q � 512 bits and
n � 1024 bits; for the proposed scheme, we choose the
polynomial-degree N � 215, the coefficient-modulus
Q � 520, and the scaling factor Δ � 240. On three publicly
available datasets [30]: Θ1 - Umaru Impact Study, Θ2 -
Myocardial Infarction from Edinburgh, andΘ3 - Nhanes III,

we compare the proposed scheme and schemes [9, 21] in
terms of training time, accuracy, F1-score, AUC. Pa has the
first 4 features x1 − x4  of all samples ofΘ1, Pb has the last 4
features and labels x5 − x8, y  of all samples of Θ1; Pa has
the first 5 features x1 − x5  of all samples of Θ2, Pb has the
last 4 features and labels x6 − x9, y  of all samples of Θ2; Pa

has the first 8 features x1 − x8  of all samples of Θ3, Pb has
the last 7 features and labels x9 − x15, y  of all samples of
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Figure 2: )e training time of the model.

Table 2: Performance comparisons.

Sa Sb scheme Training time Accuracy F1-score AUC No TTP

[9] 1.27 min 74.1 % 85.1 % 0.57 ×

Θ1: x1 − x4  Θ1: x5 − x8, y  [21] 2.18 min 74.1 % 85.1 % 0.56 √
Ours 0.86 min 74.4 % 85.2 % 0.58 √
[9] 2.20 min 91.3 % 77.5 % 0.96 ×

Θ2: x1 − x5  Θ1: x6 − x9, y  [21] 3.41 min 90.9 % 75.3 % 0.96 √
Ours 1.49 min 92.3 % 78.0 % 0.96 √
[9] 11.13 min 82.7 % 60.1 % 0.88 ×

Θ3: x1 − x8  Θ1: x9 − x15, y  [21] 21.32 min 82.7 % 60.1 % 0.89 √
Ours 5.87 min 85.7 % 61.9 % 0.91 √

6 Security and Communication Networks



Θ3. We get the validity of the experimental results by using
5-fold cross-validation. All experiment results are shown as
the average of 10 experiments. )e performance compari-
sons between the proposed scheme and schemes [9,21} are
described in Table 2, in which ’’√’’ denotes ’’satisfied’’ and ’’
×’’ means ’’unsatisfied’’. From Table 2, we can see that our P2

VCLR scheme outperforms existing schemes [9, 21] in both
training time and model performance, and does not need a
TTP coordinator.

From Figure 2, we can get that, for dataset Θ1, in our
scheme, the training time of the model is 0.86 min, which is
decreased by nearly 32.3% and 60.6% compared with that of
[9, 21], respectively; for dataset Θ2, in our scheme, the
training time of the model is 1.49 min, which is reduced by
almost 32.3% and 56.3% in comparison to that of [9, 21],
respectively; for dataset Θ3, in our scheme, the training time
of the model is 5.87 min, which is nearly 47.3% and 72.5%
less than that of [9, 21], respectively.

From Figure 3, we can get that, for dataset Θ1, in our
scheme, the accuracy of the model is 74.4%, which has nearly
0.3% and 0.3% improvement compared with that of [9, 21],
respectively; for dataset Θ2, in our scheme, the accuracy of
themodel is 92.3%, which has an increase of almost 1.0% and
1.4% in comparison to that of [9, 21], respectively; for dataset
Θ3, in our scheme, the accuracy of the model is 85.7%, which
is nearly 3.0% and 3.0% higher than that of [9, 21],
respectively.

From Figure 4, we can get that, for dataset Θ1, in our
scheme, the F1-score of the model is $85.2\%$, which has
nearly 0.1% and 0.1% improvement compared with that of
[9, 21], respectively; for dataset Θ2, in our scheme, the F1-
score of the model is 78.0%, which has an increase of almost
0.5% and 2.7% in comparison to that of [9, 21], respectively;
for dataset Θ3, in our scheme, the F1-score of the model is
61.9%, which is nearly 1.8% and 1.8% higher than that of
[9, 21], respectively.
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Figure 3: )e accuracy of the model.
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From Figure 5, we can get that, for dataset Θ1, in our
scheme, the AUC of the model is 0.58, which has nearly 0.01
and 0.02 improvement compared with that of [9, 21], re-
spectively; for dataset Θ2, in our scheme, the AUC of the
model is 0.96, which is the same as that of [9, 21]; for dataset
Θ3, in our scheme, the AUC of the model is 0.91, which is
nearly 0.03 and 0.02 higher than that of [9, 21], respectively.

6. Security Analysis

In the semi-honest model [42], we let the parties Pa and Pb

know pka, rka, gka, and only Pa has ska. )e proposed P2

VCLR scheme belongs to secure two-party computation,
which denotes an objective functionality F · Fa,Fb . For
the inputs xa, xb , where xa is from party Pa and xb is from
party Pb, the outputs Fa(xa, xb),Fb(xa, xb)  are random.
Fa(xa, xb) is the output for Pa, andFb(xa, xb) is for Pb, and
neither party can know more private information than its
output. According to the simulation-based security [43], we
perform a security analysis of our P2 VCLR scheme.

Definition 1. Let F be a deterministic functionality and Π
be a secure two-party computation protocol to compute F.
Given Pa’s input xa, Pb’s input xb, and security level κ, the
views of Pa and Pb in the protocol Π are denoted as Va �

κ, xa, xb  � ska, pka, rka, gka, xa, xb, ya  and
Vb � κ, xa, xb  � pka, rka, gka, xb, yb , where ya and yb

are the messages received by Pa and Pb. We think that, in
semi-honest model, Π can securely calculate F if there are
the probabilistic polynomial-time (PPT) simulators Sa and
Sb, such that

Sa 1κ, xa,Fa xa, xb( (  κ,xa,xb
� Va κ, xa, xb(  κ,xa,xb

Sb 1κ, xb,Fb xa, xb( (  κ,xa,xb
� Vb κ, xa, xb(  κ,xa,xb

.
(2)

Theorem 1. Assuming that the Pa and Pb do not collude with
each other, and the HE scheme (CKKS) [29] satisfies the
semantic security, our P2 VCLR scheme can ensure the se-
curity in semi-honest model.
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Figure 4: )e F1-score of the model.
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Security Proof. Security proof of our P2 VCLR scheme follows
the simulation-based security [43]. We prove that we are able
to build Sa and Sb, such that

SAa
1κ, ya, ska(  κ,z,ska

� VAa
κ, z, ska(  κ,z,ska

SAb
1κ, z, yb(  κ,z,ska

� VAb
κ, z, ska(  κ,z,ska

,
(3)

where VAa
and VAb

denote the views of Aa and Ab, re-
spectively. Next, we show that the above two equations are
indistinguishable for the corrupted parties Aa and Ab,
respectively.

Against corrupted Aa: We build Sa that, when given κ,
Aa’s input ska and Aa’s output ya, is able to simulate Aa’s
view in the execution of the protocol. In this respect, we then
analyze Aa’s view VAa

(κ, z, ska) in the execution of the
protocol. De only message Aa gets is the ciphertext z.
Derefore, VAa

(κ, z, ska) consists of Aa’s secret key ska,
randommessage vector ra and ciphertext ya. Given κ, ska, and
ya,SAa

generates a simulation ofVAa
(κ, z, ska).SAa

encrypts
SAa

with pka into ya
′, and generates the output (ska, ra, ya

′).
Derefore, we can obtain two equations as follows:

VAa
κ, z, ska(  � ska, ra, ya

′( 

SAa
1κ, ya, ska(  � ska, ra, ya

′( .
(4)

Drough the above analysis, we are able to get that
probability distribution of Aa’s view and SAa

’s output is
indistinguishable. Derefore, the proposed P2 VCLR scheme is
secure against the corrupted Aa in semi-honest model.

Against corrupted Ab: We build Sb that, when given κ,
Ab’s input z andAb’s output yb, is able to simulateAb’s view
in the execution of the protocol. For this reason, we analyze
Ab’s view VAb

(κ, z, ska) in the execution of the protocol. Ab

does not receive any message vectors from Aa. Derefore,
VAb

(κ, z, ska) consists of Ab’s input z and random message
vector rb. Given κ, z, and yb, SAb

generates a simulation of
VAb

(κ, z, ska) by outputting (z, rb). Derefore, we have the
following two equations:

VAb
κ, z, ska(  � z, rb( 

SAb
1κ, z, yb(  � z, rb( .

(5)

0.57 0.56 0.58

0.0

0.2

0.4

0.6

0.8

1.0

�
e A

U
C 

of
 th

e m
od

el

[21] Ours[9]
Dataset Θ1

0.96 0.96 0.96

0.0

0.2

0.4

0.6

0.8

1.0

�
e A

U
C 

of
 th

e m
od

el

[21] Ours[9]
Dataset Θ2

0.88 0.89 0.91

0.0

0.2

0.4

0.6

0.8

1.0

�
e A

U
C 

of
 th

e m
od

el

[21] Ours[9]
Dataset Θ3

Figure 5: )e AUC of the model.
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Drough the above analysis, we are able to get that
probability distributions of Ab’s view and SAb

’s output are
indistinguishable. Derefore, the proposed P2 VCLR scheme is
secure against the corrupted Ab in the semi-honest model.

7. Conclusion

In this paper, to improve the efficiency of the collaborative
LR, based on an approximate HE algorithm, we propose a P2

VCLR over vertically distributed data while realizing the
security of training data and the privacy of model parameters
for all parties. We then evaluate the proposed scheme on the
public datasets. )e evaluation results show that our P2

VCLR scheme achieves a better performance in terms of
joint training time andmodel performance in comparison to
that of existing schemes [9, 21]. Specifically, the training time
of the model is decreased by almost 32.3%-72.5%; the ac-
curacy, F1-score, and AUC of the model have nearly 0.3% -
3.0%, 0.1% - 2.7% and 0 - 0.03 improvement, respectively. In
the future, we will extend our method for supporting more
complex ML, and deploy our scheme for practical
applications.

Appendix

Input: x,ω0,ω1,ω3,ω5,ω7, rki

Output: f(x)

1: x2 � Mul(x, x, rki)

2: x4 � Mul(x2, x2, rki)

3: x6 � Mul(x2, x4, rki)

4: ω7x � Mul Plain(x,ω7, rki)

5: ω7x
7 � Mul(ω7x, x6, rki)

6: ω5x � Mul Plain(x,ω5, rki)

7: ω5x
5 � Mul(ω5x, x4, rki)

8: ω3x � Mul Plain(x,ω3, rki)

9: ω3x
3 � Mul(ω3x, x2, rki)

10: ω1x � Mul Plain(x,ω1, rki)

11: ω0 + ω1x � Add Plain(ω1x,ω0)

12: ω0 + ω1x − ω3x
3 � Sub(ω0 + ω1x,ω3x

3)

13: ω0 + ω1x − ω3x
3 + ω5x

5 � Add(ω0+ ω1x − ω3x
3,

ω5x
5)

14: ω0 + ω1x − ω3x
3 + ω5x

5 − ω7x
7 � Sub(ω0+

ω1x − ω3x
3 + ω5x

5,ω7x
7)

15: return: f(x) � ω0 + ω1x − ω3x
3 + ω5x

5 − ω7x
7

Input: x � [[[x0, x1, . . . , xl−1, xl, xl+1, . . . , x2l−1,

. . . , x(u−1)l, x(u−1)l+1, . . . , xN/2−1]]], l, gki

Output: y � [[[i� 0l−1 xi, ∘ , . . . , ∘ −l,


2l−1
i�l xi, ∘ , . . . , ∘

−
l

, . . . , 
N/2−1
i�(u−1)l xi, ∘ , . . . , ∘

−
l

]]]

1: y � x

2: for (k � l/2; k≥ 1; k � k/2) do
3: z � Rot Vector(y, k, gki)

4: y � Add(y, z)

5: end for

6: return: y

Input:
x �

[[[x0, 0, . . . , 0
−
l

, xl, 0, . . . , 0
−
l

, . . . , x(u−1)l, 0, . . . , 0
−
l

]]], l, gki

Output:
y �

[[[x0, x0, . . . , x0
−
l

, xl, xl, . . . , xl
−
l

, . . . , x(u−1)l, x(u−1)l, . . . ,

x(u−1)l−
l]]]

1: y � x

2: for (k � l/2; k≥ 1; k � k/2) do
3: z � Rot Vector(y, − k, gki)

4: y � Add(y, z)

5: end for
6: return: y

Input:
x � [[[x0, x1, . . . , xl−1, xl, xl+1, . . . , x2l−1, . . . , x(u−1)l,

x(u−1)l+1, . . . , xN/2−1]]], l, gki

Output:
y � [[[

u−1
i�0 xil, . . . , 

u−1
i�0 x(i+1)l−1

−
l

, . . . , 
u−1
i�0 xil, . . . , 

u−1
i�0

x(i+1)l−1−
l]]]

1: y � x

2: for (k � N/2; k≥ l/2 + 1; k � k/2) do
3: z � Rot Vector(y, k, gki)

4: y � Add(y, z)

5: end for
6: return: y
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