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,e widespread deployment of the Internet of,ings in any smart city provides a regular flow of huge amount of data in server(s)
that poses challenges for effective and efficient management to improve the quality of citizens’ life. To maintain the privacy and
security of these data, a proper and secured identification and authentication process is very essential. In this paper, we propose a
cluster-based identification and authentication process for the users, edge servers, and service servers, which are engaged in
storing, processing, and accessing data. ,e proposed identification and authentication process is secured due to some codes
(values), which are not possible to compute except by the concerned entities. For the proposed trust evaluation method (which
actually strengthens the proposed authentication process), we consider major components and their integration in the model very
carefully so that the simulation results become credible. Hence, we hope that the simulation results will be useful for the
readership. As a whole, the proposed approach has potentials of being implemented in real-time applications.

1. Introduction

World population has increased significantly in the last few
decades, and most of the people are attracted to city “life” for
job opportunities, improved health care, and education, to
note a few. As a result, the number of city dwellers has
increased at an unprecedented rate. According to statistics,
the percentages of people living in cities were 29% and 50%
in the years 1950 and 2008, respectively, which is predicted
to reach 65% in 2040 [1]. With the rapid advancement and
innovation of Information Technology (IT), the world is
experiencing a paradigm shift in city infrastructures and
services. ,e evolution of this new form of IT-based city is
popularly known as “Smart City.” In a smart city, digital
technologies translate into better public services for in-
habitants and better use of resources while impacting the
environment less.

,e smartness of a city depends on proper integration of
numerous IoT devices with different service-oriented in-
formation systems. To make a city smart, sharing of

information among the citizens and those service-oriented
information systems is very important. For example, if a
citizen suddenly becomes sick, s/he can ask for medical
assistance through her/his smart phone.,en, an ambulance
from the Emergency Medical Service will rush to her/his
location to transfer her/him to a nearby hospital according
to her/his need. Hence, interconnection among the citizens
and service providers’ information systems to realize dif-
ferent services is a central issue of a smart city.

We know that cloud computing involves the use of
globally interconnected data centers. ,ese data centers
process a huge volume of IoT data from smart cities and
respond as per user requirement. However, as the physical
distance between the cloud and the end user is high,
transmission latency and response time also increase ac-
cordingly [2]. Besides, IoTdevices connected to distant data
centers try to access sophisticated applications, which im-
pose additional load on networks and contribute to higher
latency [3]. Many IoT applications such as a Medical As-
sistance Management System need to send the location of a
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citizen, her/his current medical condition (e.g., a severe
heart attack) with detailed medical records to the Medical
Emergency Service of a smart city for assessment, so that an
ambulance dedicated to her/his medical condition can reach
to her/his location, provide paramedic service inside the
ambulance, evaluate traffic conditions, and direct the am-
bulance in the best possible way to the nearest hospital of
required specialty. However, the inherent limitations of
cloud computing such as high latency, non-context-aware
behavior, and no support for such mobility requirements
pose serious limitations on the use of a real-time emergency
service [4].

A large-scale network of IoT with device and network-
level heterogeneity along with the ultralarge volume of data
and events generated by “things” of IoT will require pro-
hibitively high network bandwidth in the case of “IoT + -
Cloud” scenario [3, 5]. Apart from these downsides, cloud
computing will simply suffer from processing time ineffi-
ciency due to the large overhead of IoT data. Recent re-
search efforts are investigating how to effectively exploit
capabilities at the edge of networks to support the IoT in the
context of the smart city [6]. In edge computing, massive
data generated by different types of IoT devices of a smart
city can be processed at the network edge instead of
transmitting them to the distant cloud data centers owing
to bandwidth and energy consumption concerns. Edge
computing can provide services with faster response and
greater quality, in comparison with cloud computing. Edge
computing is more suitable to be integrated into the
paradigm of a smart city to provide real-time services for a
large number of end users.

Figure 1 depicts a smart city with dedicated servers for
different city-oriented services. By using different IoT de-
vices, users connect to those service servers through edge

servers to obtain real-time services (cloud computing can
also be used for providing non-real-time services).,ere can
bemillions of registered users for a particular server, and one
user may be client(s) of multiple servers. Service to service
and user to service communication are common scenarios in
the context of a smart city. Most of the services can generally
be accessed through IoT devices. In such a situation, user
identification and authentication is a paramount security
issue. It is important to note that edge computing can in-
corporate a hierarchy of servers with increasing computa-
tion capabilities for better service [7]. ,e hierarchy of
servers can be organized into a cluster-based formation. ,e
proposed cluster-based authentication process utilizes this
capability of edge computing to manage the security chal-
lenges of a smart city more effectively. In a smart city, there
will be thousands of users, who will access data, and it will be
very difficult to observe every activity of a user. So, we
consider cluster-based authentication to minimize the in-
sider attacks, where a cluster member cannot access data of
another cluster without going through her/his cluster
master, who is a more trusted subject (user) than a cluster
member. ,e clustering will decrease the processing over-
heads of authentication and authorization systems. ,e
proposed authentication process is integrated with a trust
evaluation method that helps to identify malicious activities
of the user(s).

An increasing number of studies emphasize on the se-
curity, privacy, and risks within smart cities, highlighting the
threats relating to information security and challenges for
smart city infrastructure in view of management and pro-
cessing of personal data [8–10]. Hence, privacy, data in-
tegrity, authenticity, and availability of information are
major concerns for a smart city [11]. In this paper, we focus
on to provide high availability of information and at the

Non Real Time
ApplicationsStorage & Backup Cloud

Emergency
Medical
Server

Water
Server

Environment
Server

Healthcare
Server

Education
Server

Ed
ge

 S
er

ve
rs

Power
Server

IoT
Devices

Non Real Time
ApplicationsStorage & Backup Cloud

EEEmergency
Medical
Server

Water
Server

Enviironment
SerS ver

Healthhcarcarcarcareee
Server

EduEdEdEdddEddEdu tcatcatiiioniion
ServerPPower

Server

IoT
Device

Central Server

Ed
ge

 S
er

ve
rs

Edge ServersIoT Devices

Edge Servers

Ed
ge

 Se
rv

er
s

Figure 1: A smart city with different computing service facilities.
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same time maintain privacy and data integrity. ,e con-
tributions of the paper are as follows:

(i) We have shown a concept of data processing
through edge servers and service servers controlled
by the central server(s) in a smart city.

(ii) A robust trust evaluation process has been designed
to evaluate the user trust before and after the reg-
istration to control the activities of the members as a
first line of defense. ,is process is demonstrated
using simulation results.

(iii) A secured cluster-based authentication process has
been designed in the paradigm of edge computing.
,e secrecy of user information and authentication
process is verified using AVISPA and Scyther.

(iv) A secured key management process has been ver-
ified using simulation results that ensure data
confidentiality and integrity.

In this way, the paper contributes to realize an efficient
ecosystem of IoT devices, data, and applications along with
stringent security requirements. ,e remainder of this paper
is organized as follows. In Section 2, we describe the pro-
posed Trust Evaluation and Cluster-based Authentication
Process. Section 3 presents comparison and discussion in
detail. Finally, we render our concluding observations in
Section 4.

2. Trust Evaluation and Cluster-Based
Authentication Process

In the proposed cluster-based approach, we consider three
types of servers such as edge server, which can ease the
processing and storing overload of the other server; service
server for each service (e.g., emergency healthcare service);
and the central server for a smart city. Each user commu-
nicates with an edge server, which is located in the user’s
locality. A user can get service from any service server
through cluster-based communication. All users of a service
server will be registered with the help of the edge servers.
Users will perform registration through the respective edge
server.

2.1. Trust Evaluation. For user registration, at first, the
“trust” of a user is evaluated. Trust has been treated as a soft
security mechanism for protection or a means for security in
many fields, ranging from economics, psychology, sociology,
medicine, and technology [12]. Hence, it is nearly impossible
to generalize the concept of trust. Even for a specific field,
trust is very complicated as it can be influenced by many
measurable and nonmeasurable attributes [13]. Trust can be
classified into two types: one is direct trust and another is
indirect trust [14, 15].

For registration in a service server, a direct trust can be
gained if a user can present her/his National Identification
Number (NID) or passport number or an equivalent au-
thentic document issued by the government. On the other
hand, if a user cannot present her/his NID/passport, for

registration s/he must be endorsed by one or more existing
user(s) having direct trust or a representative (such as a
commissioner) from the user’s locality. In this way, a user
can gain indirect trust and be eligible for registration. Once a
user is registered into one or more service server(s), her/his
trust will be evaluated continuously according to her/his
activities over time. Hence, in the process of trust evaluation,
it is required to automatically collect information con-
cerning trust decision attributes, evaluate the level of trust
based on the values of trust decision attributes, and at times
evaluate the entire trust evaluation process to make the
proposed trust evaluation process more effective and
updated [13].

,e proposed trust evaluation process works as follows.
At first, we define the levels of trust (LT) and their associated
value ranges according to Table 1. When a user performs
registration through direct trust, s/he is assigned “mid (M)”
as the LT. Hence, s/he obtains a random value in the interval
of [0.41, 0.50] as the initial trust value. Similarly, when a user
performs registration through indirect trust, s/he is assigned
“low (L)” as the LT. As a result, s/he obtains a random value
in the interval of [0.31, 0.40] as the initial trust value. After a
user obtains the initial trust value, her/his trust value is
continuously updated based on a reward-penalty method.
We use the following recurrence to assign ITV (Initial Trust
Value) to a user Ui who is registered to the system.

ITV �
[0.41, 0.50], through direct trust,

[0.31, 0.40], through indirect trust.
 (1)

For each unwanted or malicious activity by the user, her/
his trust value will be decreased (as a penalty). Malicious
activities for which the trust value is penalized or rewarded is
called trust decision attributes (TDAs). Malicious activities
such as unauthorized read, write, update, or delete of data
are examples of some TDAs for which trust value can be
decreased. According to the proposed trust evaluation
process, TDAs for which the trust value is decreased are
grouped into the following two broad categories:

(i) Data-level TDAs
(ii) Application-level TDAs

TDAs of the abovementioned groups and their penalty
points are defined in Tables 2 and 3.

On the other hand, for a day-long authorized activity,
the user’s trust value will be increased (as a reward). For
LTs ranging from low (L) to high (H), the user’s trust value
will be increased by 0.01 for each day-long authorized
activity. However, for both warning (W) and very high
(VH) LTs, the trust value will be increased by 0.001 for
each day-long authorized activity. Trust value will not be
gone beyond 1.00.

We now explain how the trust value of a user can be
changed over time according to her/his activities and, as a
result, how it impacts the LT. We suppose that a user is
registered in a service server (the EmergencyMedical Service
Server) through direct trust; hence, the user’s LT will be
“mid” and a random number in the interval of [0.41, 0.50]
will be assigned as the trust value. Let us assume that the
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initial trust value (ITV) is 0.45. Now if s/he asks for medical
assistance through an application deployed in the emergency
medical service server, the emergency medical service will
act accordingly. However, if it is identified that the service
was called without any purpose, according to Table 3, the
user’s trust value will be reduced by 0.20 for “inappropriate
use” of the application. ,e user’s current trust value (CTV)
will be 0.25, and as a result, the user’s LT will change from
“mid” to “warning” and an appropriate text warning will be
sent to the user. After receiving the warning, if the user starts
committing authorized activities, then for each day-long
authorized activity the trust value will be increased by 0.001.
In this way, the user can increase her/his LT. However, if the
user does the same malicious activity with CTV 0.25, her/his
CTV will again be reduced by 0.20 (changes of values for
CTV can be formulated using equation (1)). As the user’s
CTV will be 0.05, the user’s LT will be “revocation list” and
her/his information will be put into the “revocation list”
database so that s/he will be barred from not only using the
Emergency Medical Service Server but also other sensitive
service servers. Even if the user tries to obtain a new reg-
istration through indirect trust, s/he will be detected from
the “revocation list” database and will be barred from
obtaining a new registration. However, the user can again be
assigned to the “warning” LT only if it is advised by an
appropriate regulatory body. ,e proposed trust evaluation
process can be further explained in Figure 2. In Figure 2,
DTF (Database for Trust Evaluation) consists of tables of
trust decision attributes, LTs and associated value ranges,
and the revocation list, and DRU stands for Database for
Registered Users.

CTV � ITV − 

|TDA|

i�1
pen TDAi(  + 

|D|

j�1
inc. (2)

Here, in (2) |TDA| is the number of trust decision at-
tributes. pen(TDAi) indicates the penalty associated with
the i-th TDA. |D| is the number of day-long authorized
activity; inc is the increment (as a reward) of CTV for each
day-long authorized activity based on CTV.We define inc as
follows:

inc �
0.01, if CTV ∈ [0.31, 0.40],

0.001, if CTV≤ 0.30 or CTV≥ 0.81.
 (3)

It is worth to mention that the whole process of trust
evaluation is flexible. For example, penalties of TDAs can be
reviewed regularly and can be updated as per relevancy to
the trust decision process. Accordingly, if any TDA such as
“unauthorized download” from the category of application-
level attributes (Table 3) becomes irrelevant in the future,
then its penalty will be set to a very small value or zero. If a
new TDA appears to be relevant, it can be incorporated with
an appropriate penalty. Even if a new category of TDAs
evolves, they can be incorporated into the process of trust
evaluation. Different data mining algorithms [16, 17] can be
applied in the evolution of the trust evaluation process.

We now identify how effective is the proposed trust
evaluation process in terms of protection against Denial of
Service (DoS) attack and resistance to insider attack. In
doing so, we simulate some scenarios as described in the
following. ,e simulation program is developed using
Python 3.8. For simulation, we consider three types of
scenarios.

(i) Scenario 1: user first commits malicious activity and
then plans to do day-long authorized activity

Table 1: Levels of trust and their associated value ranges.

Levels of trust (LT) Revocation list (RL) Warning (W) Low (L) Mid (M) High (H) Very high (VH)
Value ranges [0.00, 0.15] [0.16, 0.30] [0.31, 0.40] [0.41, 0.50] [0.51, 0.80] [0.81, 1.00]

Table 2: Penalties for data-level TDAs.

Data-level
attributes

Unauthorized
read

Unauthorized
write

Unauthorized
update

Unauthorized
delete

Unauthorized
upload

Unauthorized
download

Penalties 0.1 0.2 0.2 0.3 0.2 0.2

Table 3: Penalties for application-level TDAs.

Application-level
attributes

Inappropriate
share

Inappropriate
use

Unauthorized
installation

Unauthorized
execution

Unauthorized
upload

Unauthorized
download

Penalties 0.1 0.2 0.2 0.3 0.2 0.2

DTE

User applies for
Registration in a
Service Server

DRU
Registration

Process
Trust Evaluation

Process

Cluster-based
Authentication

Process

Figure 2: ,e process of trust evaluation.
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(ii) Scenario 2: user first does day-long authorized ac-
tivity and then plan to commit malicious activity

(iii) Scenario 3: user starts at randomwhether to commit
a malicious activity or do the day-long authorized
activity

In Scenario 1, a user with direct trust obtains a random
value in the interval of [0.41, 0.50] as ITV (initial trust value)
according to equation (1). ,en, s/he starts activities by first
committing a malicious activity. ,e malicious activity is
selected randomly from the set of data-level TDAs and
application-level TDAs. As a result, the user’s CTV (current
trust value) will be reduced. To compensate the reduction,
the user starts doing day-long authorized activity so that
again user’s CTV can be increased and again s/he can get an
opportunity do some malicious activities. However, if the
user goes into the “revocation list” in the database, her/his
CTV will never be increased unless s/he is again assigned to
the “warning” LT (level of trust) by an appropriate regu-
latory body.

From the simulation, we see that if a user with direct
trust first commits a malicious activity and then plans to do
day-long authorized activity (any number of days from 1 to
30), s/he will be able to commit only another malicious
activity before going into the “revocation list” in the data-
base. Here, in total two (02) malicious activities are com-
mitted, however, at the cost of nine (09) day-long authorized
activities (see columns 2 and 3 of the first data row of Ta-
ble 4). In this paper, we define maximum possible malicious
activities (MPMA) as the number of malicious activities
before going into the “revocation list.” We also define the
number of day-long authorized activities before going into
the “revocation list” as the cost in days (CD). Here,
MPMA� 2 and CD� 9. If the same user first does a day-long
authorized activity (any number of days from 1 to 30) to
increase CTV and then plan to commit malicious activity, s/
he will be able to commit 4 malicious activities (MPMA),
however, at the cost of 68 day-long activities (CD) (see
columns 6 and 7 of the first data row of Table 4). If the same
user starts by random (whether to commit a malicious
activity or do day-long authorized activity), then MPMA� 4
and CD� 65 (see columns 10 and 11 of the first data row of
Table 4).

An example of how MPMA and CD are calculated for
simulation is described in the following. At first, a user
with direct trust obtains a random value of 0.49 in the
interval of [0.41, 0.50] as ITV. ,en, for the case of
“Scenario 1,” malicious activity is selected randomly from
the set of data-level TDAs and application-level TDAs. If
“unauthorized download” gets selected from data-level
TDAs, the associated penalty of 0.2 is deducted from the
CTV of the user. As a result, CTV of the user reduces to
0.49–0.2 � 0.29 according to equation (2). At this point,
MPMA � 1 (as one malicious activity has just been
committed). ,e reduction of CTV also affects the user’s
LT (level of trust). With a CTV of 0.29, the user’s LT will
change from “mid” to “warning” and an appropriate text
warning will be sent to the user. Now, if the user starts
committing authorized activity, then for each day-long

authorized activity the trust value will be increased by
0.001 (this increment value is assigned with the “warning”
LT). For simulation, the number of day-long authorized
activity is randomly selected either from 1 to 30 or from 1
to 60. Even if 60 is selected (meaning two month-long
uninterrupted authorized activities), CTV is only in-
creased to 0.29 + (0.001 × 60) � 0.29 + 0.06 ≡ 0.30. At this
point, CD � 60. However, when the user commits the next
random malicious activity (suppose with 0.2 penalties),
CTV is reduced to 0.30–0.20 � 0.10. At this point, MPMA
will be 2 (as two malicious activities have been committed
in total). However, with CTV � 0.10, the user is placed into
the “revocation list” database and will be barred from not
only using the Emergency Service Servers but also other
sensitive service servers. ,e user’s CTV will never be
increased unless s/he is again assigned to the “warning”
LT, however, only if recommended by an appropriate
regulatory body. In the same way, the simulation result
also shows that in Scenario 1, the most likely value of
MPMA is 2 (see Table 4). In Table 4, we interpret “any
number of day-long authorized activities from 1 to 30” as
“1 to 30” and “any number of day-long authorized ac-
tivities from 1 to 60” as “1 to 60” for convenience.

From Table 4, we see that even for users with direct trust,
and planning intelligently and patiently (user first do day-
long authorized activity for any number from 1 to 60 and
then plan to commit malicious activities), CD/MPMA is
31.28. ,is implies that even when the user(s) plan metic-
ulously for committing malicious activities, they will not be
able to repeat that within a month. Such a low frequency of
malicious activities can occur even by mistake. Hence, it is
easily understandable that the proposed trust evaluation
process provides formidable protection against Denial of
Service (DoS) attack and insider attack.

,e calculation of CTV, which in turn determines the
LT of a user, is performed in such a way that it is inde-
pendent of the nature of applications or sensors (or any
IoT devices). As detailed above, the calculation of CTV is
directly dependent on data-level TDAs, application-level
TDAs, and the current LTof a user. ,erefore, the CTV of
a user is directly dependent on the usage pattern of that
particular user. ,is is why, in the scenario of a concurrent
attack on an application, the CTVs of all participating
users are reduced in the same manner.

2.2. Cluster-Based Authentication. Now, the proposed
cluster-based authentication process comes into action.
According to the proposed cluster-based authentication
process, each service server gets a number generated by the
central server and it is unique for each service server.
Similarly, each edge server gets a number generated by the
respective service server and each user of an edge server is
assigned a number generated by the edge server. ,ese
numbers are called authentication numbers, which are used
for generating keys and authentication token for each entity
(user, edge server, and service server). Here, we have con-
sidered two types of cryptosystems such as symmetric (secret
key) and asymmetric (public key) cryptosystems. In a secret
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key cryptosystem, a secret key is used for both encryption
and decryption. In an asymmetric cryptosystem, private and
public keys are used. Figure 3 shows an edge server with its
registered users. ,e respective server generates the au-
thentication number using a cryptographic hash function
such as SHA-512 or any other strong hash function. ,e
authentication number generation process is given below.

(1) For the central server, ANcs�H (IDcs ‖ RN ‖ TScs-
an) generated by itself

(2) For a service server, ANss�H (IDss ‖ ANcs ‖ TSss-
an) generated by the central server

(3) For an edge server, ANes�H (IDes ‖ ANss ‖ TSes-
an) generated by the respective service server

(4). For a user, ANu�H (IDu ‖ Pwd ‖ ANes ‖ TSu-an)
generated by the respective edge server

,e authentication numbers of all registered users are
stored in the respective edge servers. All the symbolic no-
tations used in this article are defined in Table 5. All the
authentication numbers are stored in the server, which
generates them and the respective entity obtains her/his/its
authentication number from her/his/its controlling server.
Here, an authentication number is much secured since it is
generated using a one-way hash function such as SHA-512.
Hence, it is not possible to compute an authentication
number of a user without knowing the authentication
number of the respective edge server and the authentication
number of an edge server cannot be computed without
knowing the authentication number of the respective service
server. A user can get access to the respective edge server
using her/his IDu, Pwd, and ANu. For secured communi-
cation, each entity will have a secret key. ,e secret key
generation process is as follows:

(1) For a user, Ksec-u�H (IDu ‖ ANu ‖ ESsec ‖ TSu-k)
generated by the respective edge server

(2) For an edge server, Ksec-es�H (IDes ‖ ANes ‖ SSsec
‖ TSes-k) generated and stored by the respective
service server

(3) For a service server, Ksec-ss�H (IDss ‖ANss ‖CSsec
‖ TSss-k) generated and stored by the central server

(4) For the central server, Ksec-cs�H (IDcs ‖ ANcs ‖

CSsec ‖ TScs-k)

For the security of the secret key of each entity (user,
edge server, service server, and central server), secrecy of the
respective generating entity plays an important role. For
example, in case of the secret key of a user (Ksec-u), even if
ANu (authentication number of the user) is compromised
no one can compute Ksec-u without knowing the ESsec

(secret key of the edge server). Similarly, other secret or
private keys cannot be computed without knowing the secret
key of the respective generating entity. Dialogues of the
different entities in process of secret key generation are
shown in Table 6.

In the proposed approach, each service server and its
related edge server constitute a cluster. Each edge server is a
cluster member, and the respective service server is a cluster
master in the cluster. ,e secret key of a cluster member is
used for secured communication between a member of a
cluster and its master (service server). Member to member
communication is performed using public key cryptography
[18]. However, the user to user communication can be done
through the help of the respective edge server. For cluster-
based communication, each entity will use token for au-
thentication purposes. ,e generation process of authenti-
cation token is as follows:

(1) For a user, ATu�H (IDu ‖ Ksec-u ‖ ESsec ‖ TSu-at)
generated by the respective edge server

(2) For an edge server, ATes�H (Ides ‖ Ksec-es ‖ SSsec ‖

TSes-at) generated by the respective service server
(3) For a service server, ATss�H (IDss ‖ Ksec-ss ‖ CSsec

‖ TSss-at) generated by the central server

Figure 4 shows a cluster where all edge servers are
members of the cluster and the respective service server is
the cluster master. A cluster member can be authenticated by
the cluster master whenever it is necessary. If there are r
(more than one) service servers in a smart city, there will be r
clusters for secured communication.

Here, a user gets services directly from the edge server
where s/he has done her/his registration. At first, a user logs
in to the edge server using her/his ID, Pwd, and

U1

U2

U3 U4

Un-1

Un

…

Edge Server

Figure 3: An edge server with its registered users.

Table 4: Simulation of the proposed trust evaluation process.

Scenario 1 Scenario 2 Scenario 3
1 to 30 1 to 60 1 to 30 1 to 60 1 to 30 1 to 60

Type of users MPMA CD MPMA CD MPMA CD MPMA CD MPMA CD MPMA CD
User with direct trust 2 9 2 42 4 68 287 8977 4 65 37 954
User with indirect trust 1 0 1 0 3 53 44 1368 4 44 12 326
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authentication token (AT). For a strong authentication
process, AT is used here. A user can get service from another
edge server where s/he has not registered. ,is process will
be performed in the following way. Suppose a user Ui has
performed registration in an edge server ESi where her/his
credential is stored. If s/he wants to get service from an edge
server ESj (where the user Ui has not performed her/his
registration), in such case, in the log-in process the edge
server asks the user to enter her/his ID, Pwd, and the ID of
the edge server ESi. ,e server ESj sends an encrypted

message (where plain text is ID, Pwd of the user, and the ID
of ESj with a nonce which is used to authenticate the
message) to ESi to authenticate the user Ui. Next, ESi au-
thenticates the user and sends an encrypted response to ESj.
Here, all the edge servers in a cluster use public key cryp-
tosystem such as RSA or elliptical curve cryptography for
secret messaging. ,e above scenario is depicted in Figure 5.
In Figure 5, CTes denotes ciphertext, which is generated
using the private key of ESj where plain text is ID and Pwd of
the user, ID of ESj, and a nonce (n1). ESi decrypts the
message using the public key of ESj and finds the au-
thentication request to authenticate the user Ui. ESi sends an
authentication message (AMes) with n1 to ESj. In this way,
ESj authenticates the user Ui.

Now, when an edge server itself wants to get service
from the service server of the same cluster (cluster
master), the edge server is authenticated by the service
server. ,e edge server sends an encrypted message using
the secret key of the edge server where plain text is ID and
AT of the edge server. After receiving the message, the
service server will authenticate the edge server and accept
the request for the service if the requesting edge server is
an authentic one.

When an edge server wants to get service from a service
server (cluster master) of a different cluster, the edge server
sends the request to the cluster master of its cluster with its
ID andATand the ID of the server fromwhich it wants to get

Table 6: Dialogues of different entities.

User Edge server Service server Central server
1. Requests ANu 1.1 Sends requested ANu
2. Requests with (IDu +ANu) for
Ksec-u 2.1 Generates Ksec-u

3. Requests ANes 3.1 Sends ANes
4. Requests with (IDes +ANes) for

Ksec-es 4.1 Generates Ksec-es

5. Requests ANss 5.1 Sends ANss
6. Requests with (IDss +ANss) for

Ksec-ss
6.1 Generates Ksec-

ss
7. Generates Ksec-

cs

…

Service Server

ES1

ES2

ES3 ES4

ESn-1

ESn

Figure 4: A cluster of edge servers and the respective service server.

Table 5: Symbols with their definitions.

Symbol Definition
‖ Concatenation
ES, SS, CS Edge server, service server, and central server
IDu, IDes, IDss, IDcs ID of a user, edge server, service server, and central server, respectively
Pwd Password of a user
ATu, ATes, ATss Authentication Token for a user, edge server, and service server, respectively
RNcs Random number of the central server
ANu, ANes, ANss,
ANcs Authentication number of user, edge server, service server, and the central server, respectively

ESsec, SSsec, CSsec Secret key of edge server, service server, and central server, respectively

TSu, TSes, TSss, TScs
Time stamp for the user, edge server, service, and central server, respectively. Times tampmeans date and time. In a
time stamp an, k and AT represent authentication number, key, and authentication token, respectively. For

example, TSu-an is the time stamp for generating the authentication number of a user
Ksec-u, Ksec-es,
Ksec-ss Private key of the user, edge server, and service server, respectively
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service. Suppose an edge server ESe (cluster member of
cluster e) wants to get service from SSg (cluster master of
cluster g). Let the cluster master of cluster e is SSe. In this
case, ESe encrypts its ID and ATand sends a request message
to SSe to get the service from SSg. ,en, SSe opens the
message and finds ID and AT, and authenticates ESe. If ESe

is an authentic member, then SSe sends an encrypted
message using its private key and a nonce. SSg receives the
message and opens it using the public key of SSe. In this way,
ESe can reach out SSg for the desired service. ,is scenario is
depicted in Figure 6.

In the cluster-based authentication process, there exists
another cluster where members are all the service servers
and cluster master is the central server or an authentication
server connected with the central server (see Figure 7). ,is
cluster is mainly used to authenticate the service server when
interservice server communication is needed. Suppose a
service server SSb wants to get service from the service server
SSc. In this situation, the SSc uses its private key and sends an
encrypted message to the central server to authenticate SSb.
,e central server will then send a message to SSb to send his
ID and AT. ,en, SSb sends its ID and AT as a ciphertext
using its secret key. ,e central server opens it and au-
thenticates SSb if its AT is in the central server.

Secured communication between two service servers can
be performed using public cryptography such as RSA [19] or
elliptical curve cryptography. According to Chatzigiannakis
et al. [20], elliptical curve cryptography is a better alternative
to RSA as elliptical curve cryptography requires less com-
putational resources. In the paradigm of the proposed ap-
proach, the majority of devices will have enough resources
required. Suppose an edge server ESp is a member where the
cluster master is SSc and ESp wants to get service from
another service server SSg. In this case, ESp sends a request
message to SSg with the ID of SSc. ,en, SSg sends the
encrypted request message of ESp using the public key of SSc.
SSc opens it and finds the ID and AT of the edge server ESp

and proceeds accordingly.
Verification of phases 3, 3.1, 3.2, and 3.3 from Table 7 is

simulated using AVISPA and Scyther separately. For the
phases mentioned, the secrecy of messages is verified using
both AVISPA and Scyther. In addition, AVISPA also checks
the authentication of messages. We achieve the following
goals when the protocol from mentioned table is simulated
using AVISPA and Scyther.

(1) Secrecy of ID, Pwd, and AMes using AVISPA and
Scyther when ESj and ESi pass messages between
them

(2) Authentication of the sender using AVISPAwhen ID
and Pwd of user sent from ESj from ESi

(3) No attack by an intruder when checking authenti-
cation using AVISPA when (ID+Pwd) of user are
sent by ESj

When ESj sends PEes to ESi, it is encrypted using the
public key of ESi and the private key of ESj. ,e target is to
ensure the authenticity of the sender and maintain the se-
crecy of themessages within the cipher. Figures 8 and 9 show
that AVISPA and Scyther verify the secrecy of plain texts (ID
and Pwd), respectively, inside PEes cipher. At this phase, the
receiver receives the cipher and decrypts using the public key
of the sender and the private key of the receiver. Authen-
tication of the sender at the same phase is maintained, which
is verified by AVISPA, and Figure 8 shows the result. In the
same figure, AVISPA also verifies that due to this authen-
tication process no intruder can attack. On the other hand,
when ESi sends AMes to ESj, the secrecy of AMes is
maintained in both sender and receiver ends. At this phase,
the sender encrypts the message using a symmetric key

Encrypted
(ID+AT) of ESe

ESe

SSe Request Message

SSg

Figure 6: Communication between an edge server and a service
server of a different cluster.

Healthcare
Server

Education
Server

Power
Server

Environment
Server

Emergency
Medical
Server

Water
Server

Central Server

Figure 7: A cluster of service servers and the central server.

Ui

(ID+Pwd) of Ui  + ID of ESi

ESi ESj

CTes

AMes

Figure 5: Authentication of a user from a different edge server.
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shared by the sender and receiver. AVISPA and Scyther both
verify this result in Figures 8 and 9.

Verification of phases 1, 1.1, 2, and 2.1 in Table 8 is
simulated using AVISPA and Scyther separately. For all the
phases mentioned, the secrecy of messages is verified using
both AVISPA and Scyther. In addition, AVISPA also checks
the authentication of messages. We achieve the following
goals when the protocol from the mentioned table is sim-
ulated using AVISPA and Scyther.

(1) Secrecy of ATes and PEss using AVISPA and Scyther
when ESe, SSe, and SSg pass messages among them

(2) Authentication of the sender using AVISPA when
PEss is sent from ESe to SSg

(3) No attack by intruder occurs when checking au-
thentication using AVISPA when PEss is sent by ESe

When ESe sends a service request to SSe, the secrecy of
the message checked from sender and receiver sides, both

AVISPA and Scyther in Figures 10 and 11, respectively, show
that secrecy ofATes is maintained. At this phase, the message
is encrypted using a symmetric key shared between sender
and receiver. On the other hand, the secrecy of PEss is
maintained when ESe sends an encrypted message to SSg. At
this phase, the sender encrypts the message using the private
key of ESe and SSg decrypts the cipher using the public key of
SSe. ,is result of secrecy is verified by AVISPA and Scyther,
which are shown in above mentioned figures. In addition,
authentication of the sender of PEss also verified by AVI-
SPA, which is depicted in Figure 11.

3. Comparison and Discussion

In this paper, based on some predefined comparison criteria,
we present a qualitative comparison between the proposed
cluster-based authentication process and some other similar
processes that involves authentication. We consider the
following contenders in the comparison spectrum.

Table 7: Dialogue for user authentication.

User (Ui) Edge server (ESi) Edge server (ESj)

1. Login to ESi with
(ID, Pwd, AT) 1.1 Finds AT and authenticates Ui

2. Sends log-in request
to ESj

2.1 Asks (ID +Pwd) of Ui and ID of ESi

2.2. Sends (ID+Pwd)
of Ui and ID of ESi

2.3 Received necessary information

3. Encrypts (ID +Pwd) of user and ID of ESj with a nonce
using the public key of ESi and private key of ESj and sends

PEes to ESi to authenticate Ui

3.1 Decrypts PE the public key of ESj and private
key of ESi and finds an authentication request

3.2 Authenticates Ui, encrypts AMes by symmetric
key (ESi, ESj), and sends encrypted message AMes

to ESj

3.3 AMes is received and decrypts by symmetric key (ESi,
ESj) and authenticate Ui

Figure 8: Simulation result of the protocol in Table 7 using AVISPA verifies secrecy and authentication.
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(i) Contender 1: secure remote user authenticated key
establishment protocol for smart home environ-
ment [21]

(ii) Contender 2: effective authentication for restricting
unauthorized user [22]

(iii) Contender 3: a secure remote user authentication
scheme for smart cities e-governance applications
[23]

(iv) Contender 4: a secure IoT architecture for smart
cities [24]

Table 8: Dialogue for getting service from the different cluster master.

Cluster member (ESe) Cluster master (SSe) Cluster master (SSg)

1. Sends encrypted service request using E ((IDes ‖

ATes), ID of SSg) by symmetric key (ESe, SSe)
1.1 Decrypts the encrypted request and
finds IDes, ATes, and authenticate ESe

2. Creates an encrypted message (PEss) using the
private key of SSe and a nonce

2.1 Receives encrypted message and
decrypts using the public key of SSe

2.2 Accepts service request

Figure 10: Simulation result of the protocol in Table 8 using AVISPA verifies secrecy and authentication.

Figure 9: Simulation result of the protocol in Table 7 using Scyther verifies secrecy.
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From Table 9, we see that the proposed cluster-based
authentication process uses more secured public key en-
cryption system with a framework of key hierarchy. Besides,
together with trust evaluation, the proposed cluster-based
authentication process can provide a shield against DoS and
Insider Attack.

We now evaluate the proposed cluster-based authenti-
cation process in terms of execution time(s). Table 10 shows
the mean execution times of generating authentication
numbers (ANcs, ANss, ANes, and ANu), secret keys (Ksec-
u, Ksec-es, Ksec-ss, and Ksec-cs) and authentication tokens
(ATu, ATes, and ATss) using PHP as a scripting language.
We conduct five rounds of executions for each of the au-
thentication numbers, secret keys, and authentication to-
kens, and then calculate the mean of execution times, where
values of IDs (e.g., IDcs, IDss, IDes and IDu) and password
are assumed to be six characters long for the above-
mentioned generation processes. For the same generation
processes, Apache server time is used for time stamp (e.g.,
TSu, TSes, TSss, and TScs) values as we use PHP for above
experiment. PHP script generates the abovementioned time
stamp values within in Apache server using an Intel Core i5
CPU with 2.30GHz processor and 8GB RAM. We use PHP
benchmark tool to record the execution times in micro-
seconds. Among the first set that shows authentication
number generation times; generation of ANss takes the
highest time, where the fastest one is ANcs. In the second set,
which shows secret key generation times, close competitors
are Ksec-u and Ksec-cs with almost equal time. In the same
set, the slowest time is taken by Ksec-es to be generated. In
the third set, ATss takes the slowest time among three where
ATes is the fastest to be generated. All these keys mentioned
in Table 10 are used in variety of dialogues, next paragraphs
show detailed comparisons.

Next, we compare the secret key generation times
using variety of hashing algorithms required for “dia-
logues of different entities,” which is shown in Figure 10.
We use MD5, SHA256, SHA384, SHA512, and Snefru as
hashing algorithms to generate secret keys (Ksec-u, Ksec-
es, and Ksec-ss) as shown in Table 6. We calculate the
total time required to generate secret keys (shown in
Table 6) using each of the hashing algorithms (see

Figure 12). Our experiment shows that SHA384 and
SHA512 perform the best (takes less time) among all the
algorithms used, whereas SHA256 and Snefru take more
time in execution, and MD5 takes moderate time com-
pared to all others.

Figure 13 shows the comparison of total time taken for
both encryption and decryption using variety of key length
of RSA and elliptic curve cryptography (ECC). We use
these two asymmetric algorithms for “dialogue for user
authentication.” We execute all encryption and decryption
shown in Table 7 with 1024-, 2048-, and 3072-bit keys
separately for RSA, and for the same operations using ECC,
we use 160-, 224-, and 256-bit keys. ,ese are the com-
parable key sizes of these two asymmetric algorithms
considering security strengths [25]. For example, 256-bit
ECC key will provide same level of security as 3072-bit key
of RSA.,e figure shows total time required for encryption
and decryption with RSA always faster than ECC in all the
test cases above. It is shown in [25] that key generation time
of ECC is faster than RSA as ECC uses shorter keys to
provide same level of security strength. Hence, if en-
cryption and decryption take place more frequently than
the key generation process, then use of RSA is a good
choice. However, when the situation is opposite, the use of
ECC is a better choice.

Figure 14 shows the comparative result of total exe-
cution times for encryption and decryption required for
the steps shown in Table 8. ,ese encryption and de-
cryption processes require combination of asymmetric
and symmetric keys both. We calculate the total time for
two combinations asymmetric and symmetric keys: one
set contains RSA and AES with variety of key length and
another set contains ECC and AES, where RSA and ECC
are asymmetric algorithms and AES is a symmetric one.
We use variety of key lengths for each of the sets. RSA with
512-bit key and AES with 128-bit key combination is the
fastest in terms of execution time than all other pairs of
RSA and AES combination, whereas the combination of
RSA (2048) and AES (256) is the slowest in terms of
execution time among all the combinations. On the other
hand, combination of ECC and AES with variety of key
lengths encrypts and decrypts even faster than all the

Figure 11: Simulation result of the protocol in Table 8 using Scyther verifies secrecy.
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combinations of RSA and AES. ,e combination of ECC
and AES has a decreasing trend in total encryption and
decryption time as the key length increases for each ex-
ecution. For example, ECC with 256-bit key and AES with
256-bit key show the fastest total of encryption and de-
cryption time.
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Figure 12: Total secret key generation times using variety of
hashing algorithms for “dialogues of different entities.”

Table 9: Comparison between the proposed cluster-based authentication process and some other similar processes.

Comparison Criteria Contender 1 Contender 2 Contender 3 Contender 4 ,e proposed cluster-based
authentication process

1. Applicability in smart city
paradigm Yes Yes Yes Yes Yes

2. Applicability in edge computing
paradigm No No No No Yes

3. Applicability in device level No Yes No No No
4. Use of authentication token No No No No Yes
5. Use of one time password No Yes No No No
6. Hierarchical key management No No No Yes Yes

7. Type of encryption Symmetric
key

Symmetric
key Symmetric key Symmetric key Public key

8. Algorithm detail AES-CBC AES-512 AES-512 or
AES-128

AES-512 or
AES-128

RSA or Elliptical Curve
Cryptography

9. Protection against denial of
service (DoS) attack Yes No Yes No Yes

10. Resistance to insider attack No No Yes No Yes
11. Trust evaluation on user
activity No No No No Yes

12. Low latency with high
availability No Not

applicable No No Yes

Table 10: Mean execution time.

Numbers, keys, and tokens Mean execution time
ANcs 1.46 × 10− 5

ANss 3.24 × 10− 6

ANes 2.34 × 10− 6

ANu 3.00 × 10− 6

Ksec-u 2.96 × 10− 6

Ksec-es 2.72 × 10− 6

Ksec-ss 2.81 × 10− 6

Ksec-cs 2.96 × 10− 6

ATu 2.77 × 10− 6

ATes 2.57 × 10− 6

ATss 2.96 × 10− 6
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Figure 13: Secret key generation times using variety of key length
(1024, 2048, and 3072 bits) in RSA for asymmetric encryption
measured for “dialogue for user authentication.”
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4. Conclusion

In this paper, we have proposed a cluster-based authen-
tication process for the users, edge servers, and service
servers, which are engaged in storing, processing, and
accessing data. All the necessary processes have been
presented using necessary figures and tables. A trust
evaluation process is used to evaluate the user trusts before
and after the registration to control the activities of the
members in the system. ,e proposed trust evaluation
process can be further augmented through fusion of soft
information with already existing hard information. Soft
information for the proposed trust evaluation process can
be collected from three different kinds of platforms such as
authority’s complaint platform, users’ review platform, and
social media platform. Moreover, simulation of the pro-
posed trust evaluation process has not been conducted for
time-advance mechanism using a large number of alter-
native system configurations. In the future, we intend to
extend our work by exploiting the aforementioned scopes.
Also, we shall extend our work by comparing with some
similar ones such as [26,27].

,e proposed authentication process is secured enough
in the context of a smart city. As such, the authentication
token of a user is simulated using the secret key and secret of
the generating entity (edge server). Even if the secret key is
compromised, authentication token cannot be generated
without the secret of the edge server. Similarly, authenti-
cation tokens of other entities are secured according to the
proposed method.We have done simulations of the protocol
using AVISPA and Scyther. ,e simulation results have
shown that the sessions in the process are safe.

Data Availability

Operations of proposed solution (algorithms) are imple-
mented and verified using some existing verification tools,

where no data are required for the experiments. So, only
computer scripts (source code) for the experiments are
available. ,e source codes of this study are available from
the corresponding author upon reasonable request.
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