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Complexity of blocks is one of the key factors to influence the performance of reversible data hiding. By embedding data into
blocks with smaller complexity, the invalid shifting in pixel value ordering (PVO) based reversible data hiding is largely reduced,
thus increasing the imperceptibility. However, the existing techniques are not always accurate in complexity calculation, since
context pixels are usually treated equally. As a result, a great number of invalid pixels are assigned too large a weight in complexity
calculation, which inevitably affects the precision. In this paper, we propose a weighted average based novel strategy in complexity
calculation. In this scheme, we calculate the weight of a certain context pixel with the help of its adjacent neighbors, which ensures
the one in a smooth area is assigned a larger weight, and otherwise the opposite. Experimental results show that invalid shifting is
largely reduced, thus our scheme is better in imperceptibility compared with the state of the art and has potential application in a
lot of fields such as medical imaging.

1. Introduction

Reversible data hiding [1–4] is a novel technique to achieve
convert communication, which enables the cover signal to
be completely recovered to its original state once the em-
bedded data are extracted. Because of its lossless nature,
reversible data hiding has been widely employed in a lot of
high fidelity required scenarios, such as medical images and
military communications [5–9]. However, in order to
achieve lossless data hiding, the maximum embedding ca-
pacity of a certain cover signal is significantly lower than that
achieved by conventional data hiding algorithms, which
usually leads to poor imperceptibility under the same
amount of secret data embedded [10, 11]. As a result, how to
achieve high fidelity reversible data hiding is becoming a big
challenge.

Pixel value ordering (PVO) [12–15] is an emerging
method to deal with this problem, which works by pre-
dicting both the maximum and minimum pixels with the
help of the second largest and smallest ones before
expanding the obtained appropriate prediction errors to
achieve secret data embedding. Specifically, if the prediction

error is too large, the embedding condition is usually not
satisfied. As a result, invalid shifting has to be performed,
which in turn brings about a lot of distortions in imper-
ceptibility. For texture blocks with complex features, the
disadvantages are more obvious because of the inaccuracy in
prediction. As one of the effective means to ensure the
performance of reversible data hiding, block selection is
widely employed [16–19]. A general principle is to select
smooth blocks to embed data at first, thus ensuring the
obtained prediction error at a low level. Nevertheless, the
actual performance is seriously restrained by the smoothness
of selected blocks, which is defined to be their complexity
value. Even though a lot of works [20–24] focus on this
problem, the actually obtained result is not always accurate
in reflecting the real smoothness. +e main reason is that
those invalid context pixels are still assigned too large a
weight to participate in the calculation, which inevitably
introduces a lot of uncertainty.

In this paper, we propose a weighted average based
complexity calculation method for block selection oriented
reversible data hiding. To the best of our knowledge, the
method proposed is the first work to well distinguish smooth
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blocks from texture ones according to the defined com-
plexity value. Specifically, for ordered pixels inside of a
certain block, the valid context pixels are defined to be the
second largest pixel itself and neighbors of the largest pixel
with both the largest and smallest pixels eliminated, no
matter which block they belong to. In order to eliminate the
unnecessary error in predicting the largest pixel, those
smaller than the second maximum of the current block are
considered to be invalid ones and also eliminated. +en we
assign a distinct weight to each one of the remaining pixels,
according to their fluctuation in a small neighborhood.
According to our design, context pixels in smooth areas are
assigned relative larger weights, otherwise the opposite. Next
the complexity value in the maximum side of the current
block is defined to be the difference between the weighted
average values of valid surrounding pixels and the second
largest pixel itself. Experimental results demonstrate that the
proposed scheme is better in imperceptibility than the state
of the art, which is thus more suitable to high fidelity re-
quired fields such as medical imaging. Our main contri-
butions are summarized as follows:

(1) We put forward a novel block selection strategy-
based framework to support the proposed com-
plexity calculation method for blocks. With the help
of the proposed framework, those blocks better in
smoothness are selected to embed data at first, which
largely reduces the invalid shifting and ensures the
imperceptibility before full embedding.

(2) We propose an improved method to calculate
complexity value. Specifically, we assign a distinct
weight to each one of the valid context pixels,
according to their fluctuation in a small neighbor-
hood, which largely improves the accuracy in
complexity evaluation. +us, blocks with large
complexity could be skipped in data embedding, and
high imperceptibility is ensured.

+e structure of the rest of the paper is organized as
follows. We introduce the related work in Section 2 and
present our weighted average-based complexity calculation
scheme in Section 3. Next, the experimental evaluation is
performed in Section 4, followed by the security analysis in
Section 5. Finally, we conclude this paper in Section 6.

2. Related Works

In order to evaluate the complexity of the blocks to support
the block selection-oriented reversible data hiding, Li et al.
[12] first proposed to utilize internal pixels to participate in
calculation. According to their method, the complexity value
of a certain block is defined to be absolute difference of the
second maximum pixel and second minimum one inside,
each of which is ensured to be consistent even though the
secret data is embedded. By selecting blocks smaller in
complexity to embed data at first, the invalid shifting is
largely reduced thus the imperceptibility is ensured. How-
ever, the rather limited number of pixels participating in
calculation largely restrains the performance to predict the
prediction error. Moreover, according to their design, a

single fluctuation value is utilized to predict both the
maximum and minimum sides simultaneously, which also
inevitably introduces uncertainty. Based on their work, Ou
et al. [14, 15] introduced outside pixels to participate in
complexity calculation. Specifically, they select two columns
of pixels on the right side of a block and two rows of pixels on
the bottom as context ones to calculate complexity, which is
able to achieve a better performance. Similar to their design,
Weng et al. [20] employed a column and a row. In particular,
the complexity of a block is defined to be the summation of
adjacent pixels’ absolute difference in both vertical and
horizontal directions. However, take the maximum side for
example, once the largest and second largest pixels are
positioned at the top left corner of the block, their difference
actually cannot be inferred by context pixels which are
faraway. To deal with the problem, Xiang et al. [21] proposed
a full-closed strategy to select context pixels. Specifically,
nonoverlapped blocks are alternatively classified to two
groups in a rhombus pattern. In each one of the groups, the
complexity value of a block is determined by its surrounding
blocks that belong to the other group. However, the internal
pixels are actually neglected in the calculation. Moreover, a
single complexity value is also employed to evaluate both
sides, which is similar to Li et al.’s work [12].

As a follow-up work, Pan et al. [22] take internal pixels
into account on the basis of Xiang’s work. Take the maxi-
mum side for example, the valid neighbors of both the
largest and second largest pixels are defined to be context
pixels.+en the second largest and second smallest pixels are
selected in calculation. In addition, Tang et al. [23] intro-
duced an average strategy, which evaluates the difference of
both the largest and smallest pixels by employing the dif-
ference between the average value of their valid neighbors.
As a result, a single complexity value is not utilized for both
sides anymore. Furthermore, Tang et al. [24] provided an
improved scheme to further eliminate those invalid pixels.
However, the average strategy is still utilized, which means
each one of the neighbors is treated equally. For texture
images, this approach is obviously inappropriate.

On the other hand, Jana et al. [25] proposed a dual
image-based steganography scheme by combining the ad-
jacent two pixels together and calculating their difference
before expansion. As a result, more pixels are employed in
data embedding, which means a larger potential capacity
could be achieved. Similar to their work, Mukherjee et al.
[26] further achieved pixels filtering by calculating their
correlations. However, both methods are not good enough
in visual quality. Based on their works, Jana et al. [27]
employed (7, 4) Hamming code to obtain a better perfor-
mance in PSNR. Specifically, they created a redundant
position to embed data at first and recovered the original
cover image by Hamming code-based error correction. In
order to further improve the performance, Jana et al. [28, 29]
proposed the first weighted average-based work. In partic-
ular, they defined a weighted matrix to perform multiple
rounds of modular summation with original pixel blocks
and achieved data embedding based on the results of cal-
culation. As a follow-up work, Chowdhuri et al. [30] ex-
tended the design to DCT coefficient and achieved a better
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imperceptibility. However, in these works, the weighted
values are not utilized in complexity calculation.

3. The Proposed Scheme

In this section, we introduce a general framework to support
the proposed method before presenting the whole process in
detail. Specifically, in the part of scheme description, we
begin with weight definition for context pixels, followed by
the weighted average-based complexity value calculation. At
last, according to the value obtained, we describe the pro-
cedures of data embedding and extracting, respectively.

3.1. Framework. As shown in Figure 1, the cover image is
divided into nonoverlapping blocks of equal size at first, and
then the complexity values for both sides are calculated
according to the procedure introduced in Section 3.2. We
compare each one with the predefined threshold value to
determine whether a secret bit should be embedded in the
corresponding position. Once the embedding process is
completed, the receiver enables to extract the embedded data
and restore the cover image according to the method in-
troduced in Section 3.4.

For the ith (1≤ i≤K) block, we sort its n pixels to obtain
an ascending sequence (xi

σ(1), xi
σ(2), . . . , xi

σ(n)), in which
σ: (1, 2, . . . , n)⟶ (1, 2, . . . , n) is a one-to-one mapping
ensuring that: xi

σ(1) ≤xi
σ(2) ≤ , . . . , ≤ xi

σ(n). For any
u, v ∈ [1, n], if xi

σ(u) ≤xi
σ(v) and u< v, we make σ(u)< σ(v).

Take the maximum side for example, we first eliminate those
largest and smallest pixels from eight neighbors of xi

σ(n), no
matter which block they belong to. In addition, pixels
smaller than the second largest one are removed as well since
they are actually invalid to predict the largest one. As a result,
the remaining pixels are defined to be valid context ones of
the maximum side. +en we assign a certain weight to each
one of the context pixels, according to their fluctuation in a
small neighborhood, and employ a weighted average-based
strategy to calculate the complexity value in this case. If the
result is lower than the predefined threshold value, secret
data are able to be embedded in the corresponding position,
and then the auxiliary information accordingly.

3.2. Calculation of Weight Value. Consider the same block
mentioned in Section 3.1, suppose the context pixels for xi

σ(n)

are obtained as shown in Figure 2(a). As is shown in the
figure, the pixel marked by the black dot is supposed to be
the largest or the smallest one of this or other blocks, and the
pixel marked by the gray dot is the one whose value is lower
than the second largest one. In order to ensure reversibility,
both of them are removed. +en the remaining pixels
Xi

1, Xi
2, . . . , Xi

6 are defined to be valid context pixels of
xi
σ(n). Take Xi

j(0≤ j≤ 6) for example, its adjacent pixels are
defined to be a, b, c, andd, which is shown in Figure 2(b). If
a, b, c, andd are valid neighbors, each one of them is neither
the largest nor the smallest pixel of other blocks. Similar as in
[31], the fluctuation value Fi

j of Xi
j is defined in (1).

F
i
j � |a − b| +|c − d| +|a + d − b − c| +|a + c − b − d|. (1)

If any one of a, b, c, and d is an invalid one, the
corresponding absolute value relating to this value in
(1) is removed from the definition to ensure reversibility.
On the other hand, if more than a half of a, b, c, and d
are invalid, (1) is no longer applicable. In this case, add
Xi

j to set B, otherwise to set A. Define p to be the
number of elements in B and q the total number in both A
and B.

It is clear that context pixels with smaller fluctuation
value usually appears in the smooth regions of the image and
thus should be assigned a larger weight. In contrast, those
with larger fluctuation value should be assigned a smaller
weight.+is is because the values of pixels in textural regions
can vary widely, which increases the uncertainty when
predicting the maximum pixel value. In order to ensure the
prediction accuracy, their weights in complexity computa-
tion should be reduced as a result.

As a means to achieve this feature, for a context pixel
Xi

j(1≤ i≤K, 1≤ j≤ q) in set A, we define the normalized
initial weight wi

j to be (1/Fi
j + 1)/( 1/Fi

j + 1). According
to the definition, a larger Fi

j is ensured to associate to a
smaller result and vice versa. On the other hand, if Xi

j is in
Set B, the weight wi

j is initiated to be 1. To ensure the sum
of weights for context pixels of xi

σ(n) is 1, we further
normalize them as

W
i
j �

w
i
j.

q − p

q
, if X

i
j ∈ A,

w
i
j.

1
q
, if X

i
j ∈ B.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

In addition, if all pixels in a certain block are identical in
value, the weights of context pixels can still be distinct
according to (1) and (2). Since they could be determined by
both inside and outside pixels simultaneously. Specifically, if
the valid context pixel is an external one, their weight is
mainly affected by outside pixels. On the other hand, even
though a valid context pixel is an internal one, its valid
neighbors may still contain outside pixels.

3.3. Complexity Value Calculation and Block Selection.
For the ith block of the certain cover image, according to the
weights defined in Section 3.2, the value of the largest pixel
xi
σ(n) is estimated to be pi

σ(n) as follows, in which m denotes
the number of valid context pixels:

P
i
σ(n) � 

m

j�1
W

i
j · X

i
j. (3)

Correspondingly, the complexity value Ci
max for the ith

block is defined as

C
i
max � P

i
σ(n) − X

i
σ(n−1)



. (4)
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Figure 1: +e framework of the proposed block-level complexity calculation-based reversible data hiding.
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Similarly, the definitions for the minimum side are
presented in (5) and (6) accordingly, in whichm′ denotes the
number of valid context pixels in this case:

P
i
σ(1) � 

m′

j�1
W

i
j · X

i
j, (5)

C
i
min � P

i
σ(1) − X

i
σ(2)



. (6)

According to the definitions above, the complexity of a
block is equal to the difference between the predicted largest
(smallest) pixel value and the second largest (smallest) one,
which reflects its smoothness. +e smaller the complexity
value, the smoother the block. Actually, the smoothness of a
certain block is defined to be the similarity degree of pixels
inside. In PVO-based reversible data hiding, the difference
between the value of the largest (smallest) pixel and that of
the second largest (smallest) one is usually employed to
evaluate the smoothness of a block. In smooth blocks, the
difference is small enough to satisfy the embedding con-
dition, thus most of the largest (smallest) pixels are used to
embed data. On the other hand, textural ones are skipped to
eliminate invalid shifting. Considering the variability in data
embedding process, in the definition of complexity, the
largest (smallest) pixel is replaced by its predicted value.
Clearly, the more accurate the prediction, the more closer
the evaluated difference to the true result. In order to well
predict the largest (smallest) pixels, the weights of their
context pixels should be considered, since if they are con-
sidered equally, a high level of uncertainty would be in-
troduced inevitably. According to our design, a smaller
weight is assigned to context pixels in textural regions, and a
larger weight is to those in smooth regions. As a result, the
complexity value obtained by weighted average strategy is
able to better reflect the smoothness of the corresponding
block.

In the process of block selection, take the maximum side
for example, blocks of the cover image are scanned in the
order from top to bottom, and left to right. Only those with a
complexity value lower than the predefined threshold value
t1 are selected to embed data. Otherwise, the blocks are
skipped. +e same process is also applied to the minimum
side as well with assistance of the threshold value t2. In order
to support such a design, the ith (1≤ i≤K) block corre-
sponds to two complexity values ci

max and ci
min, respectively.

It is worth mentioning that in the choice of t1 and t2, a trade-
off between embedding capacity and imperceptibility is
considered. On one hand, we desire a large threshold value
to obtain more available blocks for embedding. On the other
hand, a larger threshold value means that more textural
blocks have to be selected, which inevitably introduces a lot
of invalid shifting as a result.

3.4. Secret Data Embedding. In this section, we introduce
how to achieve secret data embedding by utilizing the block

selection strategy demonstrated in Section 3.3. +e process
of our design is described in detail as follows:

Step 1: prediction error calculation and overflowing
determination. Take the ith block selected for example,
suppose its complexities for both sides are smaller than
t1 and t2, respectively, the prediction errors can be
defined as

e
i
max � x

i
σ(n) − x

i
σ(n−1),

e
i
min � x

i
σ(1) − x

i
σ(2).

(7)

Suppose the number of valid cases on both sides are K1

and K2, the prediction errors are denoted as Emax �

(e1max, e2max, . . . , e
K1
max) and Emin � (e1min, e2min, . . . , e

K2
min).

Considering the possible overflowing problem, we
employ the same disposal as in [32] to generate and
record the location maps as a part of auxiliary
information.
Step 2: secret data and auxiliary information em-
bedding. Take the ith block for example, if the
complexity values for both sides are appropriate, and
the positions are not in the location map, the process
of secret data embedding on the maximum side can
be denoted as

x
i
σ(n) �

x
i
σ(n) + b, if e

i
max � 1,

x
i
σ(n) + 1, if e

i
max > 1.

⎧⎪⎨

⎪⎩
(8)

+e similar procedure is also applied for the other side as
follows:

x
i
σ(1) �

x
i
σ(1) − b, if e

i
min � −1,

x
i
σ(1) − 1, if e

i
min < − 1.

⎧⎪⎨

⎪⎩
(9)

On finishing secret data embedding, we record end
positions and define them to be another part of auxiliary
information, which is further embedded into least significant
bits from the beginning of the cover image. In order to
ensure reversibility, the original LSBs whose length is known
to the receiver are embedded together with secret data
sequence.

3.5. Secret Data Extraction. On receiving a stego-image, we
present how to extract the secret data and recover the cover
image in this section.

Step 1: auxiliary information extraction and block se-
lection. Extract the auxiliary information according to
the predetermined length from the beginning of the
cover image. And divide the stego-image into blocks of
the same size as in secret data embedding. +en cal-
culate the complexity value for each one of the block
and obtain the complexity sequences Cmax′ and Cmin′ as
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well as prediction error sequences Emax′ � (e1max′ ,

e2max′ , . . . , e
K1
max′ ) and Emin′ � (e1min′ , e2min′ , . . . , e

K2
min′ ).

Step 2: overflowing pixels locating and data extraction.
According to the location map, locate the corre-
sponding positions that are at risk of overflowing. And
then extract the secret data to recover the original cover
image. Take the ith block for example, suppose both
sides are appropriate, the process of data extraction and
pixel value recovery on the maximum side are shown
follows:

b �
0, if e

i
max′ � 1,

1, if e
i
max′ � 2,

⎧⎨

⎩

x
i
σ(n) �

x
i
σ(n) − 1, if e

i
max′ ≥ 2,

x
i
σ(n), if e

i
max′ � 1.

⎧⎪⎨

⎪⎩

(10)

Similarly, the process on the minimum side is as

b �
0, if e

i
min′ � −1,

1, if e
i
min′ � −2,

⎧⎨

⎩

x
i
σ(1) �

x
i
σ(1) + 1, if e

i
min′ ≤ − 2,

x
i
σ(1), if e

i
min′ � −1.

⎧⎪⎨

⎪⎩

(11)

3.6. Discussion. According to the design of the proposed
scheme, in order to ensure visual quality, only those blocks
good in smoothness are selected to embed data, which in-
evitably affects the maximum embedding capacity. Actually,
how to achieve the trade-off between embedding capacity
and imperceptibility is an important issue, which is nec-
essary to explore in future research. Based on this work, it is
suggested to investigate more accurate complexity calcula-
tion methods and seek solutions to increase the embedding
capacity with the imperceptibility guaranteed at the same
time.

4. Experimental Evaluation

In this section, we take experiments to evaluate the ef-
fectiveness and performance of our proposed scheme.
Specifically, we employ a workstation with Intel Core i5-
6500 CPU@ 3.20GHz, 4 GB RAM, and a 1 TB hard drive to
implement all algorithms using Python version 3.0. We
select three images Boat, Man, and Airport from the USC-
SIPI image data set [33]; three high definition images
Vanessa, Philipp, and Mohammad from the UNSPLASH
image data set [34]; and three medical images 8FDE,
Aweek, and RXtorace from the real world ChestX-ray14
image data set [35] separately as test images to perform our
experiments, each of which is shown in Figures 3(a)–3(h),
and 3(i), respectively. Our scheme is compared with PVO
scheme [12], Pan et al.'s scheme [22], and Tang et al.'s two
schemes [23] in performance. All results are on average of
20 tries.

4.1. Comparison of the Prediction Error Histogram. First, we
calculate the maximum capacities of nine test images under
the block size of 2× 2. For a certain appropriate block, whose
complexity is less than the predefined threshold value, take
the maximum side for example, only when the prediction
error obtained by equation (7) is 1, the largest pixel is able to
embed 1 bit according to (8). Otherwise, pixel value shifting
is performed instead. Check both sides for each one of the
blocks and count the total number of embeddable cases. +e
results are shown in Table 1.

According to the table, the maximum capacities of the
nine test images are 7,226, 16,406, 51,399, 2,251,398,
2,130,241, 1,940,066, 21,413, 25,397, and 24,081 bits, re-
spectively. In order to intuitively exhibit the advantage of
proposed scheme, we first select 5,000 blocks from the 9 test
images, respectively, through block selection strategy for
data embedding or pixel value shifting and present the
corresponding prediction error histograms in Figures 4(a)–
4(h), and 4(i) for comparison among our proposed scheme
and the other four schemes.

As shown in Figure 4, five prediction error histograms
are plotted in a single coordinate system, each of which is
centered at zero. Compared with other methods, the PEH
generated by our proposed method is obviously higher in
height, which means a smaller prediction error is obtained.
To a certain extent, it indicates that the complexity value
calculated by our proposed method is much closer to the
true situation in reality. According to our design, more
smooth blocks are selected based on the obtained complexity
value, thus a larger percentage of smaller prediction errors
could be obtained as a result.

4.2. Comparison of the Imperceptibility

4.2.1. Subjective Evaluation. In order to compare the
imperceptibility of test images, we first employ subjective
evaluation to determine the quality of the stego image based
on the intuitive feeling of human observers. Specifically, we
embed the maximum amount of secret bits into the nine test
images and show the results in Figures 5(a)–5(h), and 5(i),
respectively. It is clear that there is no obvious difference in
visual quality compared with the original ones in
Figures 3(a)–3(h), and 3(i).

4.2.2. Objective Evaluation. In this part, we employ the peak
signal-to-noise ratio (PSNR) to measure the objective dis-
tortion introduced by data embedding.+e higher the PSNR
value, the better the imperceptibility is achieved. Specifically,
we embed different amount of secret bits into the nine test
images and show the results in Figures 6(a)–6(h), and 6(i),
respectively. It is clear from these figures that our scheme
exhibits a better performance in imperceptibility than any
other schemes for most of the time. For instance, under the
embedding capacity of 2,705, 8,115, 13,526, 18,936, 24,346,
29,757, 32,462, 37,872, 43,283, and 51,399 bits, the PSNRs of
airport obtained by our scheme are 66.82, 61.82, 59.76, 58.29,
57.31, 56.50, 55.84, 55.31, 54.79, and 54.37 dB, each of which
is obviously higher than 65.76, 60.90, 58.53, 56.94, 55.82,

6 Security and Communication Networks



(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 3: Test images: (a) Boat, (b) Man, (c) Airport, (d) Vanessa, (e) Philipp, (f ) Mohammad, (g) 8FDE, (h) Aweek, and (i) RXtorace.

Table 1: +e maximum capacities (MC) of nine test images from USC-SIPI data set [33], UNSPLASH data set [34], and ChestX-ray14 data
set [35].

Image Boat Man Airport Vanessa Philipp Mohammad 8FDE Aweek RXtorace
MC (bits) 7,226 16,406 51,399 2,251,398 2,130,241 1,940,066 21,413 25,397 24,081

Security and Communication Networks 7
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Figure 4: Continued.
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54.97, 54.29, 53.77, 53.26, and 52.77 dB in PVO scheme,
65.62, 60.56, 58.28, 56.96, 55.90, 55.06, 54.45, 53.87, 53.31
and 52.85 dB in Pan et al.’s scheme, and 65.97, 60.91, 58.71,
57.37, 56.30, 55.53, 54.85, 54.22, 53.69, 53.27 dB in Tang
et al.’s average-based strategy, 66.37, 61.35, 59.18, 57.78,
56.74, 55.94, 55.21, 54.61, 54.14, and 53.68 dB in Tang et al.'s
median based strategy. +e reason is that in PVO scheme,
only two internal pixels participate in complexity calcula-
tion, which is not accuracy enough to evaluate the real
smoothness of blocks. Similar to PVO scheme, even though
Pan et al.’s scheme considers both the internal and external
pixels, the number participates in calculation is still rather
limited. When it comes to Tang et al.’s schemes, more
context pixels participating in calculation contribute to a
better performance. However, those invalid ones are still
treated equally, which is another factor to restrain the
performance.

As a comparison, our proposed weighted average-based
complexity calculation scheme not only ensures enough
number of context pixels to participate in complexity calcu-
lation but also eliminates those invalid ones to improve per-
formance. Furthermore, we assign different weights to each one
of the valid context pixels to distinguish its contribution to the
final complexity value. +us, the result of complexity calcu-
lation is able to well reflect the real smoothness of the block,
which is exhibited in the experimental results. Even though the
maximum embedding capacity is achieved, thanks to the
threshold value of block level complexity employed, our
scheme is still better in imperceptibility. In this case, every one
of the appropriate blocks, whose prediction error equals to 1 at
the maximum side or -1 at the minimum side are selected to
embed data. Take the test image airport for example, the PSNR
value obtained by our scheme is 54.37 dB, higher than 52.77dB
in PVO scheme, 52.85dB in Pan et al.’s scheme, 53.27dB and
53.67dB in Tang et al.’s two schemes.

It is worth noting that the results in real-world medical
data set provide a novel way to expand the application of the
proposed scheme. In fact, the proposed scheme, thanks to
the high imperceptibility achieved, is able to be widely used
in any occasions requiring high quality of cover signals, such

as the scenario of reversible data hiding in medical images.
For privacy protection and convenience of reference, many
medical images carry basic information such as patient
identity, creation time, and so on. Since most physician
consultations andmedical records use printed case images, if
the embedding of the information causes a significant dis-
tortion in image quality, it will inevitably affect the pro-
fessional judgement of the physician and even endanger the
health of patients. While, our method eliminates these risks.

5. Security Analysis

In this section, we take experiments to analyze the security of
the proposed scheme. Specifically, we validate the revers-
ibility at first, and then perform the universal steganalysis by
comparing the normalized cross correlation (NCC), bit error
rate (BER), and the targeted steganalysis by analyzing the
regular singular (RS).

5.1. Reversibility Verification. In order to verify the revers-
ibility of the proposed scheme, we extract secret data from
the stego image and recover the cover image before com-
paring with the original one. Take Boat in Figure 3(a) for
example, we divide it into 2× 2 fixed size blocks at first, each
of which is sorted according to the calculated complexity
value before embedding 7,226 bits of data in order. On
finishing data embedding, we perform the same procedures
to the stego image and extract 7,226 bits successively. +en,
the recovered image is obtained and shown in Figure 7(b),
which is compared with the original one in Figure 7(a) under
the exclusive OR operation. +e result is shown in
Figure 7(c), which is a binary image. It is clear that the result
image is all black, which means the recovered image is
completely consistent with the original one. +us, the re-
versibility of our proposed scheme is validated.

5.2. Steganalysis. Steganalysis focuses on detecting whether a
certain cover image has already been embedded, which is able
to be utilized to evaluate the security of the proposed scheme.
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Figure 4: Comparison of PEH between our method and PVO scheme [12], Pan et al.’s scheme [22], and Tang et al.’s two schemes [23]: (a)
Boat, (b) Man, (c) Airport, (d) Vanessa, (e) Philipp, (f ) Mohammad, (g) 8FDE, (h) Aweek, and (i) RXtorace.
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According to whether it is focused on a particular embedding
algorithm, steganalysis can be classified into universal steg-
analysis and the targeted one. In particular, we employ NCC
and BER to achieve universal detection and RS analysis to
achieve targeted detection. NCC measures the correlation
between the cover image and the stego one. +e larger the
value, the better the concealment of the designed steganog-
raphy scheme since the two images are more similar. Besides,
BER exhibits the difference between the cover image and the
stego one at the pixel level. A smaller BER means less

modification is introduced to the cover image after data
embedding. In addition, RS analysis checks the existence of
secret data by analyzing the statistical characteristics of least
significant bits of pixels after data embedding. +e details of
steganalysis from the three aspects are as follows.

5.2.1. NCC. NCC is employed to evaluate similarity between
the original cover image and the stego one at the maximum
capacity. Suppose the size of both images is M × N, the value
is defined as

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 5: Stego images: (a) Boat, (b) Man, (c) Airport, (d) Vanessa, (e) Philipp, (f ) Mohammad, (g) 8FDE, (h) Aweek, and (i) RXtorace.
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In the definition, X(i, j) and Y(i, j) and
i ∈ [1, M], j ∈ [1, N] represent pixel values at the ith row
and jth column of the original cover image and stego
image, respectively. It is clear that the value of NCC ranges
in [−1, 1]. When NCC is equal to −1, the two images are
negatively correlated. On the contrary, when NCC ap-
proaches to 1, the two images are positively correlated,
which means they are completely consistent. +e closer
this value is to 1, the more similar the two images are. For
our proposed scheme, the NCCs of nine test images are
shown in Table 2.

According to the table, the values of NCC range from
0.9998856 to 0.9999726, each of which approaches to 1. In
particular, for test images Vanessa and Philipp, even though
more secret bits are embedded, the values of NCC are still
large enough. It means that the original cover image is
similar to the stego one. It is to say, our scheme achieves high
concealment after data embedding.

5.2.2. BER. In this part, we utilize BER to exhibit the
difference between the cover image and the stego one at
the pixel level in the case of completely embedded.
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Figure 6: Comparison of imperceptibility between our method and PVO scheme [12], Pan et al.’s scheme [22], and Tang et al.’s two schemes
[23]: (a) Boat, (b) Man, (c) Airport, (d) Vanessa, (e) Philipp, (f ) Mohammad, (g) 8FDE, (h) Aweek, and (i) RXtorace.
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Specifically, BER measures the percentage of modified
pixels during the process of data embedding, which is
defined as

BER �
MP

M × N
, (13)

where MP is the number of modified pixels and M × N

denotes the total number.
According to the results shown in Table 3, the values of

BER for the nine test images range from 0.0275650 to
0.1450843, each of which approaches to 0. In particular, for
test images Vanessa and Philipp with large maximum
embedding capacity, even though more secret bits are
embedded, the values of BER are as low as 0.0938082 and
0.0990778, since the invalid shifting is reduced according to
our scheme. It means that few modifications are introduced

in fact. +us, the concealment of the proposed scheme is
guaranteed.

5.2.3. RS Analysis. RS analysis measures the statistical
characteristics of least significant bits of pixels to determine
whether secret data are embedded [36]. Take Boat with size
of 512 × 512 in Figure 3(a) for example, we first embed
7,226 bits of data into the image, and then divide pixels into
65,536 disjoint pixel groups, each of which contains 4 pixels.
Consider pixels x1, x2, x3, x4 in any one of the groups, the
corresponding smoothness function is defined in (14). +e
smaller the obtained value, the stronger the correlation
between adjacent pixels. Otherwise, the group of pixels is
more likely to contain secret data.

f x1, x2, x3, x4(  � 
3

i�1
xi+1 − xi


. (14)

+en define 3 flip functions on each one of the groups,
according to the way to change original pixels. Specifically,
in function F0, no operation is required to original pixels. In
function F1, the least significant bits of original pixels are
flipped over, so that the values of which are transformed
between 2 and 3, 4 and 5, . . ., 254 and 255. As to function
F−1, the two least significant bits are entailed in the flipping
process. Take four pixels in a certain group for example, we
first generate four elements m1, m2, m3, andm4 in a set M,
each of which randomly takes a value among −1, 0, 1{ }. In
particular, we define M to be 1, 0, 1, 0{ }, and −M to be
−1, 0, −1, 0{ }. +en calculate the values of corresponding

(a) (b) (c)

Figure 7: Verification of reversibility. (a) Original boat. (b) Recovered boat. (c) XOR result.

Table 2: Comparison of NCC with different images.

Image data sets Images NCC

USC-SIPI [33]
Boat 0.9999289
Man 0.9999365

Airport 0.9998856

UNSPLASH [34]
Vanessa 0.9999282
Philipp 0.9999726

Mohammad 0.9998986

ChestX-ray14 [35]
8FDE 0.9999376
Aweek 0.9999555

RXtorace 0.9999423

Table 3: Comparison of BER with different images.

Image data sets Images BER

USC-SIPI [33]
Boat 0.0275650
Man 0.0625839

Airport 0.0490179

UNSPLASH [34]
Vanessa 0.0938082
Philipp 0.0990778

Mohammad 0.0938662

ChestX-ray14 [35]
8FDE 0.0499127
Aweek 0.1450843

RXtorace 0.1279693
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smoothness functions FM � f(Fm1
(x1), Fm2

(x2), Fm3
(x3),

Fm4
(x4)) and F−M � f(F−m1

(x1), F−m2
(x2), F−m3

(x3),

F−m4
(x4)). If FM is larger than f(x1, x2, x3, x4), the group is

classified as a regular one. On the other hand, if FM is
smaller, the group is considered to be a singular one.
Otherwise, the group is defined to be an invariant group.
Perform the similar process by comparing F−M and
f(x1, x2, x3, x4). Record the number of regular and singular
groups for both cases as RM, R−M, and SM, S−M respectively.
According to the conclusion of Fridrich et al. [36] obtained
by extensive experimental analyses, if RM approximates to
R−M, and SM approximates to S−M, the least significant bits
of pixels in the detected image do not contain secret data
with high probability.

We perform RS analysis to the selected 9 test images and
show the results in Table 4. According to the table, for each
image, RM approximates to R−M, and SM approximates to
S−M, which validates the security of our proposed scheme
under RS analysis.

6. Conclusion

In this paper, we put forward a weighted average-based
complexity calculation strategy for block selection-ori-
ented reversible data hiding. Specifically, we first assign
weights to each one of the pixels with the help of its
adjacent neighbors, to ensure that the context pixel in a
smooth area is assigned a larger weight. By embedding secret
bits into blocks with smaller complexity value at first, the
number of invalid shifting is able to be largely reduced in PVO-
based reversible data hiding, thus the imperceptibility is
guaranteed. Experimental results show that our proposed
scheme is better in imperceptibility comparing with the state of
the art when secret massage is not fully embedded. +erefore,
our scheme is suitable for any field that requires high-quality
cover images.
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