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Crystals-Dilithium is one of the digital-signature algorithms in NIST’s ongoing post-quantum cryptography (PQC) stan-
dardization final round. Security and computational efficiency concerning software and hardware implementations are the
primary criteria for PQC standardization. Many studies were conducted to efficiently apply Dilithium in various environments;
however, they are focused on traditionally used PC and 32-bit Advanced RISCMachine (ARM) processors (Cortex-M4). ARMv8-
based processors are more advanced embedded microcontrollers (MCUs) and have been widely used for various IoTdevices, edge
computing devices, and On-Board Units in autonomous driving cars. In this study, we present an efficient Crystals-Dilithium
implementation on ARMv8-based MCU. To enhance Dilithium’s performance, we optimize number theoretic transform (NTT)-
based polynomial multiplication, the core operation of Dilithium, by leveraging ARMv8’s architectural properties such as large
register sets and NEON engine. We apply task parallelism to NTT-based polynomial multiplication using the NEON engine. In
addition, we reduced the number of memory accesses during NTT-based polynomial multiplication with the proposed merging
and register-holding techniques. Finally, we present an interleaved NTT-based multiplication simultaneously executed with ARM
processor and NEON engine. -is implementation can further optimize performance by eliminating the ARM processor latency
with NEON overheads. -rough the proposed optimization methods, for Dilithium 3, we achieved a performance improvement
of about 43.83% in key pair generation, 113.25% in signing, and 41.92% in verification compared to the reference implementation
submitted to the final round of the NIST PQC competition.

1. Introduction

In the communication network field, sensor nodes and
devices use cryptographic protocol with digital-signature
and key-exchange algorithms for integrity and confidenti-
ality [1, 2]. With the development of technology, the number
of sensor nodes has increased dramatically compared to the
past, and accordingly, research on the definition of security
standards and vulnerabilities for the increased nodes has
been actively conducted [2–5]. In addition, various appli-
cations that use encryption systems have emerged in relation
to privacy protection, such as image encryption [6, 7].

However, as Google developed a 72 q-bit quantum
computer, a fatal issue arose for the existing cryptographic
system. It is solved in polynomial time in a public-key
cryptography security system based on the factorization and

discrete logarithm using the Shor algorithm [8] within a
quantum environment. Recognizing this issue, NIST held
the post-quantum cryptography standardization for key
encapsulation mechanism (KEM) and digital signature in
2016 to replace the international standard public-key
cryptography. Candidates for the final round of the PQC
standardization were recently announced. -e KEM algo-
rithms are Crystals-Kyber, SABER, NTRU, and Classic
McEliece, and the digital signatures are Rainbow, Falcon, and
Crystal-Dilithium. Except for Classic McEliece and Rainbow,
all finalists use lattice-based cryptography.

-e multivariable-based Rainbow has fast signature
generation and verification and a very short signature length
among the digital-signature algorithms [9]. However, due to
the high key generation cost caused by the huge key size of
10KB or more, mounting Rainbow on constrained
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embedded devices is challenging. Furthermore, Rainbow’s
security is being reconsidered in light of the intersection and
rectangular MinRank attacks recently proposed in [10].

Falcon with NTRU lattice is compact and has an efficient
operation. Compared to other digital-signature algorithms
proposed in PQC competition, it has the shortest key length
and the highest verification speed [11]. However, Falcon
requires a high key generation cost because it has to solve the
NTRU equation. Also, since the floating-point operation was
introduced, embedded devices that do not support floating-
point operation performed poorly.

Crystals-Dilithium is a lattice-based algorithm that
employs the hardness of the Learning With Error (LWE)
problem [12]. In addition, compared to other digital-sig-
nature algorithms, its key generation performance, signature
generation, and signature verification are uniformly dis-
tributed. Specifically, in the 2nd Round of the PQC com-
petition, a method for implementing the algorithm more
efficiently was proposed, where the security analysis for
QROM is well applied to the Crystals-Dilithium, making it
the most promising candidate among the final ones [13].
However, it is necessary to consider the cost of the appli-
cation layer/program for the application of PQC-DSA on
secure protocols and block-chain systems. -erefore, opti-
mization of the NTT-based polynomial multiplication al-
gorithm in Crystals-Dilithium is essential.

Optimization studies for PQC in various environments
have been conducted. Efforts have been made to mount
KEM and digital signatures from Advanced RISC Machine
(ARM)-based MCUs to CPU and GPU environments. In
general, because the PQC algorithm has a longer key and
signature length than ECDSA, research into mounting the
PQC algorithm in constrained devices is an important issue
in terms of future applicability. ARM cores, which are the
most widely used in the embedded environment, are used in
a variety of boards, depending on their performance. Since
the ARM-Cortex-M4 using ARMv7 was chosen by NIST as
one of the performance evaluation equipment of the PQC
competition, various optimization studies, including the
PQM4 project, have been conducted on ARMv7-based
equipment [14–16]. Similarly, research on PQC imple-
mentation in the ARMv8 environment is ongoing. In
ARMv8-based devices, optimization studies on algorithms
such as Newhope, a two-round KEM algorithm, SABER, and
Kyber were carried out [17–19].

ARMv8 is a key device in the Internet of -ings (IoT)
society, serving as a core MCU for high-end computers in
addition to MCUs for mobile, tablet, and desktop com-
puters. As a result, it is expected that the use of ARMv8-
based boards will increase in the future. -e Jetson Xavier
with an ARMv8.2 core is our study’s target device. Jetson
Xavier is currently in use for a variety of IoT/Cloud plat-
forms, including autonomous driving environments that
require digital signatures. As a result, in this study, we
present an optimized Crystals-Dilithium implementation in
the ARMv8 environment. We propose the parallel logic of
the NTT-based polynomial multiplication algorithm, which
is the core operation of Crystals-Dilithium, by fully utilizing
the ARM processor and NEON engine.

1.1. Contribution

1.1.1. First Work of Crystals-Dilithium on ARMv8. Until
now, an official Crystals-Dilithium study has only been
conducted in ARM-Cortex-M3 and ARM-Cortex-M4 [15],
but optimization studies on more diverse platforms are
needed before it can be used in real-world applications. -e
ARMv8-A series, in particular, is being developed not only
as a core MCU for mobiles and tablets, but also as an MCU
for autonomous driving and high-end computers. Since the
ARMv8-A series is becoming more popular as a core MCU
in the embedded industry, optimization studies of PQC-
based digital signatures in the ARMv8-A series should be
considered. For the first time, we discuss in-depth optimi-
zation of NTTmultiplication, the core operation of Crystals-
Dilithium in the ARMv8-A series. As a result of the proposed
methods, our Crystals-Dilithium software improved its
performance by 43.83% in KeyGen, 113.25% in Sign, and
41.92% in Verify when compared to previous research [13]
based on Crystals-Dilithium level 3.

1.1.2. Proposing Memory Optimization Techniques.
Memory access not only has a high-performance overhead
in an embedded environment, but it is also an expensive
instruction. As a result, our goal is to reduce the number of
memory accesses. We present an optimal path for NTT to
minimize memory access in it. Memory access was mini-
mized from Depth 0 to 2 in the NTT using the merging
method, which was able to reduce memory access in-
structions (LD1 and ST1) by about 32 when compared to the
standard implementation. Furthermore, for Depths 2–7 in
the NTT, all coefficients required for conversion are stored
in NEON vector registers and held until the NTT is com-
pleted. Because all coefficients are handled by holding into
vector registers, the register hold technique has the ad-
vantage of avoiding memory access. We reduce the number
of memory accesses that can occur in the NTT by using the
proposed memory optimization techniques.

1.1.3. Optimizing NTTs for ARMv8. We present a method
for designing the NTT multiplication of Crystals-Dilithium
considering the resources of the ARMv8-A series. Our target
device has ARM processor modules and a NEON engine,
and we optimize NTT multiplication leveraging these fea-
tures. We present NEON-based and ARM-based butterfly
methods for NTT and inverse NTTs, respectively. -e
NEON-based butterfly method uses an Advanced Single
Instruction Multiple Data (ASIMD) instruction and a vector
register to efficiently perform four coefficients in parallel.
-e ARM-based butterfly method employs a barrel shifter to
process two coefficients. ARM processors are not as pow-
erful as the NEON engine, but they are adequate for small
tasks. Finally, we combine all of the butterfly method
implementations. -is software converts the latencies of
ARM operations into NEON overheads, improving per-
formance even further. -e same optimization technique as
described above is used in point-by-point multiplication.We
achieved performance improvements of 251% in NTT, 20%
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in point-wise multiplication, and 304% in inverse NTTusing
the proposed methods, and NTT multiplication overall
achieved a 260% performance improvement compared to
previous work [13].

1.2. 3e Necessity for PQC-DSA in the 5G Communication
Network. As social networks based on the 5G industry
develop, so does the importance of communication security
and personal information protection. Social network web-
sites and applications are actively used in the user’s closest
space through IoT devices. For the security of communi-
cations in SocialNet-oriented cyberspace, we consider three
things in this article.

-e first is to minimize the load on the cryptographic
algorithm. Users want more rapid responses; however, the
cost of using a cryptographic system is fixed. -erefore, it is
important to optimize the key-exchange and digital-signa-
ture algorithms used for cryptographic protocols. -e sec-
ond consideration is the IoT devices used in SocialNet-
oriented cyberspace. In mesh with the first consideration, we
implement cryptographic algorithms to match the charac-
teristics of IoTdevices. Optimization methods that take into
account the characteristics of the device further accelerate
the cryptographic algorithm. Finally, we consider the se-
curity of future-oriented communications. Currently, the 5G
industry is accelerating, and various countries have started
to develop the 6G industry. In addition, the PQC algorithm
must be mounted on the cryptographic protocol to address
the threat of quantum computing.

-erefore, In this article, we propose an implementation
of the PQC-DSA algorithm, Crystals-Dilithium, optimiza-
tion on the ARMv8 platforms used in the most popular. Our
research accelerates the speed of mobile Internet and social
networks.

1.3. Organization. -e rest of the study is summarized as
follows. Section 2 introduces the Crystals-Dilithium and
analysis profiling of the reference code, as well as a de-
scription of the ARMv8 platforms. Section 3 discusses and
analyzes existing implementation research for PQC. Section
4 presents an optimized NTT implementation on ARMv8-A
series. Section 5 evaluates our works. Finally, in Section 6, we
conclude this study.

2. Preliminaries

2.1. Crystals-Dilithium. Crystals-Dilithium is one of the
most promising digital-signature algorithm candidates for
the NIST PQC conference’s final algorithm. Crystals-
Dilithium is based on the difficulty of the Module Learning
with Error problem and shares basic characteristics and
structure with Crystals-Kyber [12, 13]. Crystals-Dilithium
employs Fiat–Shamir with an abort method and borrows
Module-LWE; as a result, it provides a higher level of se-
curity than other ring-LWE-based ciphers. Furthermore, for
all security levels, Crystals-Dilithium employs the same ring
and modulus. -is has an advantage in terms of imple-
mentation over other competitors.

-e polynomial ring used by Dilithium is
Zq[x]/< 2256 + 1> , where q is 223 − 213 + 1, and the pa-
rameters are maintained by simply changing the dimension
of the public matrix A according to the security level.
-erefore, the core process of Crystals-Dilithium is the
operation to generate the open matrix A and polynomial
multiplication to generate the LWE-based problem. Similar
to the general digital-signature algorithm, the structure of
Crystals-Dilithium consists of KeyGen, Sign, and Verify
processes.

-e KeyGen process of Crystals-Dilithium is depicted in
Algorithm 1. Using random seeds ρ and K, this process
generates the public matrix A as well as the secret infor-
mation s1 and s2. -rough SHAKE-based rejection sam-
pling, the ExpandA operation extracts a very small range of
numbers. In all algorithms, the SHAKE algorithm serves as
the collision-resistant hash (CRH).

Algorithm 2 depicts the Crystals-Dilithium’s Sign Pro-
cess. Because the size of the public matrix in Crystals-
Dilithium is greater than 1KB, it is more efficient to re-
generate the public matrix via ρ during the Sign process. A
masking vector for polynomial y is generated during the
signing process, andAy is calculated. In this case, a challenge
is generated by hashing the message with w1, which is the
Ay’s high-order bit. In the Verify process, MakeHintq and
UseHintq are in charge of reconstructing the bits. -e public
key can be reduced by about 2.5 times using this method, at
the cost of a slight increase in signature size.

Algorithm 3 depicts the Crystals-Dilithium’s Verify
process. -e signature verifier determines whether w1′ is
accepted and whether the signature z is within the acceptable
range.

2.2. Core Operation

2.2.1. NTT-Based Multiplication. -e number theoretic
transform (NTT) is a variant of the fast Fourier transform
and an algorithm used by many lattice-based cryptographic
algorithms that have advanced to the PQC contest 3 Round
[20]. NTT’s main feature is that it reduces the complexity of
polynomial multiplication from O(n2) to O(n · logn). NTT
divides polynomials to the smallest unit through n-th of
unity and performs point-wise multiplication in O(n)

complexity using the divide and conquer algorithm. Finally,
it entails transforming the result into an O(n · logn) com-
plexity coefficient representation. -e condition that NTT
can be used in a general polynomial ring using Zq[x]/< 2n +

1> is that n must be a power of 2, and q must be congruent
to 1 modulo 2 n. Based on the NTT, the formula for
polynomial multiplication is

f(x) × g(x) � NTT− 1(NTT(f)⊙NTT(g)), where ⊙ is
the point-wise multiplication of the coefficients.

-e depth of logn of NTT varies depending on the
polynomial ring used. Due to the size of q, first-order
multiplication must be performed during point-wise mul-
tiplication in the case of Crystals-Kyber, which is the same
family of Crystals algorithms. However, in the case of
Crystals-Dilithium, q is 223 − 213 + 1 and n is 256; hence,
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NTT can be performed up to 32-bit coefficients. Finally,
because Crystals-Dilithium can transform up to the 8-th
square root, 32-bit multiplication occurs 256 times for point-
wise multiplication.

-ere are numerous methods for computing the NTT.
Crystals-Dilithium employs the bit-reverse-based algorithms
Cooley–Tukey [21] and Gentlemen–Sande [22]. -e but-
terfly’s method is used to match the two transform methods,
and because both algorithms are bit-reverse based, there is
no need to invert additional bits.

2.2.2. Profiling of Crystals-Dilithium Reference Codes. In this
section, we profile the final submission Crystals-Dilithium’s
code and discuss the optimization strategy of this study.
Reference code is compiled in the Jetson Xavier with
ARMv8.2, our target platform. Although reference code has
reference and optimization implementations, AVX2-based
source code cannot be built in the ARMv8 environment;

additionally, as far as we know, the Crystals-Dilithium de-
velopment team has not implemented code in the ARMv8-A
series. As a result, the code submitted to the finals is the best
option.

Table 1 shows a profiling performance of Crystals-
Dilithium reference code on Jetson Xavier. -e Crystals-
Dilithium algorithm is made up of three parts: KeyGen, Sign,
and Verify. -e ExpandA operation performs rejection
sampling based on SHA-3, and it is a common operation in
each Dilithium component. Because the Keccak algorithm is
used repeatedly in rejection sampling, it requires a lot of
computation resources. According to our findings, the
ExpandA operation took 46.4%, 29.8%, and 45.4% of the
computational load in the KeyGen, Sign, and Verify pro-
cesses, respectively. As a result, an optimization method
capable of efficiently parallelizing rejection sampling is re-
quired. Optimization studies for the Keccak algorithm in
embedded devices exist [25], but studies on optimal
implementations in ARMv8 environments do not exist, to

(1) ρ, K← 0, 1{ }256

(2) (s1, s2) ∈ Sℓη × Sk
η :� ExpandA(K)

(3) A ∈ Rk×ℓ
q :� ExpandA(ρ)

(4) t :� As1 + s2
(5) (t1, t0) :� Power2Round(t, d)

(6) tr ∈ 0, 1{ }384 :� CRH(ρ ‖ t1)
(7) return pk � (ρ, t1), sk � (ρ, K, tr, s1, s2, t0)

ALGORITHM 1: Key generation keyGen ().

(1) A ∈ Rk×ℓ
q :� ExpandA(ρ)

(2) μ ∈ 0, 1{ }384 :� CRH(tr ‖ M)

(3) κ :� 0, (z, h) :� ⊥
(4) while (z, h):�⊥ do
(5) y ∈ Sℓc1−1 :�ExpandMask(K ‖ μ ‖ κ)

(6) w: � Ay
(7) w1:� HighBitsq(w, 2c2)

(8) c ∈ B60:� H(μ ‖ w1)

(9) z:� y + cs1
(10) (r0, r1):� Decomposeq(w − cs2, 2c2)

(11) if ‖z‖∞ ≥ c1 − β or ‖r0‖∞≥ c2 − β or r1 ≠w1 then (z, h):�⊥
(12) else
(13) h:� MakeHintq(−ct0,w − cs2 − ct0, 2c2)

(14) if ‖ct0‖≥ c2 or the # of 1’s in h is greater than w then (z, h):�⊥
(15) κ � κ + 1
(16) return σ � (z, h, c)

ALGORITHM 2: Signing sign (sk, M).

(1) A ∈ Rk×ℓ
q :� ExpandA(ρ)

(2) μ ∈ 0, 1{ }384 :� CRH(CRH(ρ ‖ t1) ‖ M)

(3) w1′ :� UseHintq(h,Az − ct1 · 2d, 2c2)

(4) return ‖z‖∞ < c1 − β and c :� H(μ‖w1) and # of 1’s in h is ≤w

ALGORITHM 3: Verification verify(pk, M, σ � (z, h, c)).

4 Security and Communication Networks



the best of our knowledge. In order to reduce the perfor-
mance load of ExpandA in the ARMv8 environment, it is
recommended to use the fully assembled XKCP library made
by the Keccak development team. -is study does not take
this into account.

Aside from the ExpandA operation, the NTT and the
point-wise multiplication process consume the most com-
putational resources in Crystals-Dilithium. -e NTT and
point-by-point multiplication processes are responsible for
23.5%, 65.7%, and 50.4% of the KeyGen, Sign, and Verify
processes, respectively. Despite the fact that NTT -based
multiplication is the fastest polynomial multiplication
method, the public matrix has a maximum size of (8,7) and
thus incurs a performance load.

Accordingly, in Jetson Xavier, the Crystals-Dilithium
implementation logic must be redesigned by considering
registers and instruction sets. As much information as
possible should be kept in a small number of registers,
operations should be performed, and the memory access
cycle should be as short as possible. Furthermore, because
some embedded processors support parallel instruction sets,
this must be considered when determining the optimal load.
In Section 4, we propose optimization methods for Crystals-
Dilithium in the ARMv8 environment.

2.3.TargetDevices:ARMv8-AProcessor. ARM is widely used
in the embedded industry due to its low power con-
sumption and high performance when compared to pre-
vious low-end processors, AVR and MSP. According to
their performance, ARM processors are classified into
M-series, R-series, and A series levels. Among them, the
ARM-A series provides the best performance. Furthermore,
the most recent version of an ARM processor is the ARMv8
architecture.

-e ARMv8-A series includes an ARM processor as well
as a NEON engine. Unlike the NEON engine, the ARM
processor does not support parallel processing, but it is
adequate for small tasks. Furthermore, the ARM processor
includes a barrel shifter, which can hide clock cycles for shift
operations in the operand, making it a very powerful
technology. -e ARM processor’s register structure is made
up of 64-bit general-purpose registers x0-x30, and an A64
instruction set architecture [23] is provided. -e NEON
engine is a powerful parallel processing engine that supports
128bit vector register v0-x31 and ASIMD instructions set
architecture [24]. Within a 128-bit vector register, this
parallel processing can be done in 64-bit, 32-bit, 16-bit, and
8-bit units.

Furthermore, the ARM processor and NEON engine are
separate modules that operate independently of one another.
In other words, for the sequential instruction order of an
ARM/NEON processor, it is the sum of the execution times
of the ARM/NEON processor, but for the interleaving ap-
proach, the pipeline stall of each instruction can be hidden
and performance-optimized efficiently [26]. Table 2 de-
scribes the ARM/NEON instructions and clock cycles used
in this study to optimize NTT multiplication.

3. Related Works

Since the proposal of Crystals-Dilithium, implementation
studies on Crystals-Dilithium in various embedded envi-
ronments have been conducted. Submissions of current
quantum-resistant cryptography implementations are
mostly done on a CPU. -e implementations used Intel
instructions or the AVX2 parallel processing instruction. In
the CPU environment, quantum-resistant cryptography
implementations show no significant difference or slower
performance than the elliptic curve-cryptographic system.

-e environment in which the actual encryption
equipment is used, on the other hand, is primarily com-
prised of low-spec embedded equipment. Because these
devices have limited flash memory, RAM, and operation
speed, it is critical to investigate the optimization of
quantum-resistant cryptography’s core operations.-ere are
implementation results for the ARM-Cortex-M4 targeted by
the NIST software performance evaluation model. An op-
timization study for Crystals-Dilithium in ARM-Cortex M3
and M4 environments was proposed at CHES’2021 [15]. By
converting the unsigned expression to the signed expression
in the M4 environment, the additional operation that pre-
vents negative representation from appearing in the positive
representation is omitted. It was also implemented by
combining two NTT layers and maximizing SIMD in-
structions to fit the M3/M4 environment. -e NTT process
improved performance by reducing data access to a bare
minimum through the integration of two layers. Finally, [15]
presented three implementation strategies based on public
and secret information storage space.

Except for Crystals-Dilithium in the ARMv8 environ-
ment, other PQC optimization studies have been conducted
on Newhope, Crystals-Kyber, and SABER. An optimization
implementation study for Newhope in the ARMv8 envi-
ronment was carried out in 2017 [9]. Currently,Newhope is a
PQC alternative candidate, and an ARMv8-based parallel-
based NTTmultiplication implementation is relevant to our
research. To reduce NEON instruction and computational
division, an unsigned 16-bit integer representation is used.
Furthermore, the parallel logic is newly designed so that no
conversion to the Montgomery domain is required, and the
existing load of Barrett-reduction was removed by sug-
gesting a method to perform subtraction in the multipli-
cation process by point. -rough this, [17] achieved an 8.3
times performance improvement over the existing C-based
reference implementation in the ARM-Cortex-A53 core.

Crystals-Kyber implementation in the ARMv8 envi-
ronment has recently been proposed [18]. -e NTT oper-
ation for 16-bit coefficients is optimized in the same way that
Newhope is. Because the modulus q is different, the tech-
niques used in Newhope cannot be used. Vectorization is
used to optimize almost all core operations, including
sampling and reduction operations. It also accelerates
Crystals-Kyber’s core work of symmetric functions via
ARMv8 cryptographic extensions. [18] achieved a perfor-
mance improvement of up to 8.6 times over the reference
code through this optimization study.
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Chung et al. [19] proposed a method for applying the
NTT to the SABER polynomial ring of power of 2. -is
resulted in a performance improvement of about 60% in
SABER when compared to Toom–Cook-based multiplica-
tion. Benchmarking and research of SABER using NEON in
the ARM-Cortex A series was carried out in [27]. -e NTT
technique and the NEON instruction proposed in [19] were
used, and benchmarking was performed on the Apple M1
core and the ARM-Cortex A72.

4. Optimization Strategies of NTT

In this section, we present an optimized method of NTT
multiplication, the core operation of Crystals-Dilithium, to
accelerate signature processing in the ARMv8-A series.
Because NTT multiplication is divided into NTT, inverse
NTT, and point-wise multiplication, we introduce detailed
optimization strategies by categorizing it as NTT/InvNTT
and point-wise multiplication. We present a memory op-
timization technique and a parallel optimization method in
NTT and inverse NTT. Furthermore, we present the in-
terleaving concept of the butterfly method, which was
codesigned with the ARM/NEON processor. In the point-
wise multiplication, the same optimized methods used in
NTT and inverse NTTs are used except for the memory
optimization.

4.1. NTT and NTT−1. -e most computationally expensive
parts of NTTmultiplication are the NTT and inverse NTTs.
Due to the limited resources of the embedded environment,
the amount of memory access varies depending on how it is
implemented, and memory access is an expensive instruc-
tion in the embedded environment. As a result, we present
memory optimization techniques, such as merging and
register-holding, to reduce these memory accesses. In ad-
dition, we present an efficient parallel implementation using
the NEON engine. Finally, by utilizing the target devices’
independent cores, we further optimize our parallel
implementation using the butterfly method, which was
codesigned with the ARM/NEON processor. Figure 1 de-
picts the overall structure of the proposed optimization
techniques for the NTT. As a result, not only the memory
access was minimized through the merging and register-
holding method, but also the performance was further
enhanced by processing the NTTof some coefficients by the
ARM processor, concealing the latencies of some ARM
operations with NEON overheads.

4.1.1. Memory Optimization: Merging and Holding.
Figure 2 shows a comparison of standard and merging
implementations. At each depth, the standard imple-
mentation performs the butterfly method sequentially.

Table 1: Profiling performance of Crystals-Dilithium reference code on Jetson Xavier (ARMv8.2)·(ExpandA).

ALG All M · E NTT Others
KeyGen 34,087 (100%) 15,816 (46.4%) 8,010 (23.5%) 10,260 (30.1%)
Sign 106,331 (100%) 31,687 (29.8%) 69,859 (65.7%) 4,785 (4.5%)
Verify 33,761 (100%) 15,327 (45.4%) 17,016 (50.4%) 1,418 (4.2%)
M · E means matrix expand (ExpandA), and NTTmeans NTT-based multiplication.

Table 2: Summary of A64 and ASIMD instruction set in the ARMv8 platform [23, 24].

Instructions Operand Description Cycles
ARM A64 instructitons

SMULL Xn, Wm, Wd
Signed multiplying two 32-bit registers, and writing the 64-bit destination register Xn �

Wm × Wd
3

SMSUBL Xn, Wm, Wd
Signedmultiplying two 32-bit registers, subtracts the product from a 64-bit register value Xn �

Xn-(Wm × Wd)
3

ADD, SUB Xn, Xm, Xd Arithmetic operations (addition, subtraction) Xn � Xm + Xd, Xn � Xm-Xd 1
LSR Xn, #n Logical shift right (Xn, #n) Xn 1

LDP, STP Xn, [Xd]
Loading and storing the data from memory to the pair of general-purpose registers and the

pair of general-purpose registers to memory, [Xd] Xn
2

NEON ASIMD instructions
MULL Vn, Vm, Vd Multiplying two vector register, Vn � Vm × Vd 2
SMULL Vn, VmH, VdH Signed multiplying two vector registers (upper half ), Vn � VmH × VdH 3
SMULL2 Vn, VmL, VdL Signed multiplying two vector registers (lower half ), Vn � VmL × VdL 3

SMLSL Xn, WmH, WdH
Signed multiplying two vector registers (upper half ), subtracts the product from a 64-bit

register value Xn � Xn-(WmH × WdH)
3

SMLSL2 Xn, WmL, WdL
Signed multiplying two vector registers (lower half ), subtracts the product from a 64-bit

register value Xn � Xn-(WmL × WdL)
3

XTN, XTN2 VnH, VmH, VdH, VnL,
VmL, VdL

Narrowing half in each vector register, and writes the vector to the lower or upper half, [VmH,
VdH] ⟶ NarrowVnH

2

ADD, SUB Vn, Vm, Vd Arithmetic operations (addition, subtraction) Vn � Vm + Vd, Vn � Vm-Vd 1

LD1, ST1 {Vm-Vn}, [Xd]
Loading and storing the data frommemory to vector registers and vector registers to memory,

[Xd]Vm-Vn
2
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Given the target device’s resources, this implementation
necessitates multiple memory accesses. -e standard
implementation is distinguished by the fact that it neces-
sitates multiple load and stores instructions for each depth.
Specifically, 48 LD1 and ST1 instructions are required to
convert the 256-degree polynomial to the 64-degree poly-
nomial. Because these memory access instructions are very
expensive in the embedded environment, memory accesses
must be reduced to minimize costs. -e primary goal of
merging implementation is to reduce memory accesses. -e
merging implementation, on the other hand, performs NTT
of 1 depth without memory access by concurrently pro-
cessing coefficients of a specific order required for the
butterfly method of the next depth. Many LD1 and ST1
instructions are saved as a result of this. Since the 256-degree
polynomial is transformed without memory access up until
the 64-degree polynomial, 16 LD1 and ST1 instructions are
saved using the merging method. As a result, in an em-
bedded environment, this merging method is an efficient
way to reduce memory access overheads. Following that, the
register-holding method is used to minimize memory ac-
cesses until the NTT is completed. In other words, all

coefficients of the 64-degree polynomial are stored in vector
registers v0-v31, and operations are performed by holding
them in the register without accessing memory until the
NTT is completed.

4.1.2. Butterfly Method on the ARM Processor. Barrel shifter
and 64-bit general-purpose registers are supported by ARM
processors. Furthermore, due to backward compatibility with
the previous version, the lower part of the 64-bit can be used
as a 32-bit general-purpose register. Using these features, we
describe the ARM-based butterfly method for processing two
coefficients. Algorithm 4 shows how the proposed ARM-
based butterfly method works with two coefficients. Step 3
involves performing signed multiplication on the input and
Zetas, where Zetas is the twiddle factor of NTT.

Step 4 is a signed multiplication of Zetas, the first op-
eration of the Butterfly operation, and one input. Because a
signed multiplication was performed, a Montgomery re-
duction is required to return it to the ring’s elements. Steps
5–9 are a proposed Montgomery reduction based on an
ARM processor, and we process the multiplication and
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Figure 1: Overall structure of the proposed optimized NTT.
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subtraction operations required for Montgomery reduction
at the same time using the SMSUBL instruction. Steps 8–9
perform the remaining addition and subtraction operations
of the butterfly operation, and the butterfly operation for
each coefficient of the inputs is completed.

To prepare for the next butterfly method, the upper 32-
bit is shifted to the lower 32-bit using the barrel shifter in
steps 11–12. -e ARM-based butterfly method described
above does the same thing in the following step to process
one coefficient from each remaining input. Finally, to reduce
memory access, we concatenate two coefficients on which
the butterfly method is performed into a 64-bit general-
purpose register, and the concatenated process can be simply
performed with an ARM processor’s barrel shifter.

4.1.3. Butterfly Method on the NEON Engine. ARMv8-A
series supports a powerful NEON engine, which is a SIMD
instruction architecture. -e NEON engine provides vec-
torization of 16 8-bit, 8 16-bit, 4 32-bit, and 2 64-bit within a
128-bit vector register. Since the modulus of Crystals-
Dilithium is 8380417, each coefficient of the polynomial
should be an element within the modulus 8380417. Con-
sidering the modulus of Crystals-Dilithium and the parallel
unit of NEON engine, we present task parallelism for the
NTT multiplication of Crystals-Dilithium leveraging the
NEON engine. Within a 128-bit vector register, it processes
four coefficients at the same time.-e task parallelism for the
butterfly method, which is the basic operation of NTT
multiplication, is demonstrated in Algorithm 5. In steps 4-5,

Load Instructions (LD1 × 16)

Store Instructions (ST1 × 16)

Load Instructions (LD1 × 8) Load Instructions (LD1 × 8)

Store Instructions (ST1 × 8) Store Instructions (ST1 × 8)

Load Instructions (LD1 × 8) Load Instructions (LD1 × 8)

Store Instructions (ST1 × 8) Store Instructions (ST1 × 8)

Load Instructions (LD1 × 32)

Store Instructions (ST1 × 32)

256 Degree

128 Degree

64 Degree

256 Degree

128 Degree

64 Degree

Depth 0
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Standard Implementation
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Figure 2: Comparison between standard implementation and the proposed merging method of NTT.

(1) Input:in1 (x8), in2 (x9) ⊳ 4 (in1:2, int2:2) coefficient on ARM
(2) Output: out1, out2 ⊳ 4 (out1:2, out2:2) coefficient on ARM
(3) // Butterfly 1
(4) SMULLx7, w9, w11 ⊳ a1 � in2 (w9 : 1 coefficient ▽) × zetas (x11)

(5) SMULLx12, w20, w7 ⊳ t1 � Q− 1(x20) × a1
(6) SMSUBLx7, w12, w21, x7 ⊳ t1 � a1 − t1 × Q(x21)

(7) LSRx7, x7, #32 ⊳ t1 � t1≫ 32
(8) ADDw10, w8, w7 ⊳ Addition: w10 � in1 ▽ + t1
(9) SUBw13, w8, w7 ⊳ Subtraction: w13 � in1 ▽ − t1
(10) // Masking
(11) ANDx8, x6, x8, LSR#32 ⊳ w8 (in1: 1 coefficient △)� (x8&0xFFFFFFFF)≫ 32
(12) ANDx9, x6, x9, LSR#32 ⊳ w9 (in2: 1 coefficient △)� (x9&0xFFFFFFFF)≫ 32
(13) // Butterfly 2
(14) SMULLx7, w9, w11 ⊳ a2 � in2 (w9 : 1 coefficient △) × zetas (x11)

(15) SMULLx12, w20, w7 ⊳ t2 � Q− 1(x20) × a2
(16) SMSUBLx7, w12, w21, x7 ⊳ t2 � a2 − t2 × Q(x21)

(17) LSRx7, x7, #32 ⊳ t2 � t2≫ 32
(18) ADDw12, w8, w7 ⊳ Addition: w12 � in1 △ + t2
(19) SUBw7, w8, w7 ⊳ Subtraction: w7 � in1 △ − t2
(20) // Concatenation
(21) EORout1, x10, x12, LSL#32 ⊳ out1 � w10⊕w12(x12≪ 32)

(22) EORout2, x13, x7, LSL#32 ⊳ out2 � w13⊕w7(x7≪ 32)

ALGORITHM 4: Butterfly method on ARM processor.
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a signed multiplication is performed between one input and
zetas.-e SMULL (or SMULL2) instruction performs signed
multiplication between the upper (or lower) two 32-bits of
two 128-bit vector registers and stores the result in two 64-
bit vector registers. Following that, Montgomery reduction
is used to make it a part of the ring. Because Montgomery
reduction only requires the lower 32-bits of the multipli-
cation result, steps 7–8 collect the 32-bits of the multipli-
cation result into one vector register using XTN and XTN2
instructions. XTN instructions extract narrow within the
vector register and are divided into XTN and XTN2 in-
structions based on upper and lower.

In steps 10–14, Montgomery reduction is performed in
parallel for four coefficients. Step 10 is a step to perform
multiplication with QINV, which is one of the Montgomery
reduction steps. -rough the previous masking process, we
optimize it to process four multiplications at the same time.
Furthermore, SMLSL and SMLSL2 instructions are similar
to SMLSL and SMLSL2 instructions in that multiplication
and subtraction can be performed in the same clock cycle.
-is allows us to improve the performance of NEON-based
Montgomery reduction. -e result of the Montgomery re-
duction is collected into a single 128-bit vector register in
steps 16–17 using the proposed masking process. Finally, the
NEON-based butterfly method with task parallelism is
completed by performing the remaining butterfly method
operations of addition and subtraction.

4.1.4. Interleaving Butterfly Method Utilizing ARM/NEON.
-eARMv8-A series has two cores: an ARM processor and a
NEON engine. -e two cores are independent modules that
compute independently of one another. -e ARM processor
is not as powerful as the NEON engine, but it is adequate for
some minor tasks. As a result, we present the butterfly
method, which was developed in collaboration with the
ARM/NEON processor. -is codesign aims at interleaving

rather than serializing each implementation of our butterfly
method of the ARM processor and NEON engine. Figure 3
depicts the processing of the butterfly method, which was
codesigned with an ARM/NEON processor. By utilizing
both ARM/NEON processors concurrently, the latencies of
some coefficient operations in the ARM processor are ef-
fectively hidden by NEON overheads, allowing performance
to be further maximized than utilizing a simple single core.

4.2. Point-Wise Multiplication on ARMv8. Point-wise mul-
tiplication is a modular multiplication process that consists
of simple multiplication followed by Montgomery reduc-
tion, similar to zetas multiplication followed by Mont-
gomery reduction in butterfly operations. -us, modular
multiplication can be implemented by performing multi-
plication with one coefficient instead of zetas multiplication
and then performing Montgomery reduction. Except for the
memory optimization in the butterfly operation, the opti-
mization method in point-wise multiplication uses only the
parallel and interleaving methods. Figure 4 depicts the
optimization method proposed in the point-wise multipli-
cation process. -e point-wise multiplication process, like
the interleaving butterfly method, employs both the ARM
core and the NEON engine concurrently. -e NEON engine
processes four coefficients in parallel, whereas the ARM
engine processes two coefficients and mixes them. -e in-
terleaving implementation improves performance by in-
corporating ARM computation latency into NEON
overheads. Furthermore, we can minimize pipeline stalls in
each implementation and use both cores, including parallel
implementation and barrel shifter.

5. Evaluation

5.1. Jetson Xavier. -e Jetson Xavier CPU has 8 ARMv8.2
cores, and the same out-of-order pipeline as ARMv8.

(1) Input:in1, in2 ⊳ 8 (in1:4, int2:4) coefficient on NEON
(2) Output: out1, out2 ⊳ 8 (out1:4, out2:4) coefficient on NEON
(3) // Zetas(twiddle factor) multiplication
(4) SMULLv26.2d, \in2\(⊳).2s, v27.2s ⊳ in2 (2 coefficient △) × zetas (v27)

(5) SMULL2v24.2d, \in2\(⊳).4s, v27.4s ⊳ in2 (2 coefficient ▽) × zetas (v27)

(6) // Masking
(7) XTNv28.2s, v26.2d ⊳ Narrow Extract(Lower)
(8) XTN2v28.4s, v24.2d ⊳ Narrow Extract(Upper)
(9) // Montgomery reduction
(10) MULv28.4s, v28.4s, v30.4s ⊳ t1 � Q−1(v30)× in2 (4 coefficient)
(11) SMLSLv26.2d, v28.2s, v29.2s ⊳ t1 � in2 − t1 (2 coefficient △) ×Q

(12) SSHRv26.2d, v26.2d, #32 ⊳ t1 � t1≫ 32
(13) SMLSL2v24.2d, v28.4s, v29.4s ⊳ t2 � in2 − t1 (2 coefficient ▽) ×Q

(14) SSHRv24.2d, v24.2d, #32 ⊳ t2 � t2≫ 32
(15) // Masking, Addition, and Subtraction
(16) XTNv25.2s, v26.2d ⊳ Narrow Extract (t1 : Lower)
(17) XTN2v25.4s, v24.2d ⊳ Narrow Extract (t2 :Upper)
(18) ADDout1\.4s, v25.4s, \in1\.4s ⊳ Addition of Butterfly
(19) SUBout2\.4s, \in1\.4s, v25.4s ⊳ subtraction of Butterfly

ALGORITHM 5: Butterfly method on the NEON engine.
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ARMv8.2 supports half-precision floating-point processing,
RAS, statistical profiling, and an improved memory model
architecture when compared to ARMv8 [28]. It has a 64KB
L1 data cache, a 128KB L1 instruction cache, and a 2MB L2
cache, and it can run at up to 2.26GHz. -e software is
compiled with GCC with the -O3 option, and as a result, the
benchmarking reference code uses the NEON engine par-
tially by the compiler for each function. For benchmarking,
the reference code and our code are executed 10,000 times
and the clock cycles on the registers in ARMv8.2 are
measured. A Crystals-Dilithium submission serves as the
reference implementation [13].

5.2. Results for NTT and NTT−1. Table 3 compares the
performance of NTT/InvNTTand point-wise multiplication
in ARMv8.2-based Jetson Xavier between the reference
implementation and the presented implementation. Except
for the multiplication of the twiddle factor in the NTT/
InvNTT conversion process, the reference implementation
was partially executed in parallel through the NEON engine
in addition and subtraction. In our work, we use the
merging, register-holding, and interleaving methods to re-
duce memory access to the input-polynomial and compactly
compare the execution cycle; as a result, we achieve per-
formance improvements of about 251% and 304% in the
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Figure 4: -e proposed interleaving modular multiplication utilizing both the ARM processor and NEON engine.

Table 3: Cycle comparison of the NTT and Crystals-Dilithium on Jetson AGX Xavier.

Works NTT Point-wise multiplication Inverse NTT NTT-based multiplication
Reference code Crystals-Dilithium 3,966 (−) 264 (−) 5,677 (−) 9,907 (−)
Our work 1,128 (+251%) 219 (+20%) 1,403 (+304%) 2,750 (+260%)
Works Security level KeyGen Sign Verify
Reference code Falcon Level-1 21,159,212 864,183 6,546
Reference code Crystals-Dilithium Level-2 136,992 (−) 750,998 (−) 150,687 (−)
Our work 98,972 (+38.41%) 390,918 (+92.11%) 105,367 (+42.99%)
Reference code Crystals-Dilithium Level-3 253,395 (−) 1,257,304 (−) 255,421 (−)
Our work 176,174 (+43.83%) 589,567 (+113.25%) 179,971 (+41.92%)
Reference code Crystals-Dilithium

Level-5
356,908 (−) 1,439,069 (−) 388,523 (−)

Reference code Falcon 64,084,086 1,724,079 13,265
Our work 286,684 (+24.49%) 711,549 (+102.24%) 307,115 (+26.51%)
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NTT/InvNTTs, respectively. All processes for the reference
code of point-wise multiplication were carried out in full
parallel via the NEON engine. We achieve a 20% perfor-
mance improvement on point-wise multiplication by
compactly using interleaving and vector registers of the
NEON engine. Finally, we achieved a 260% percent per-
formance improvement over the reference implementation
in full NTT-based multiplication.

5.3. Results for Full Schemes. We achieved performance
improvements of approximately 43.83%, 113.25%, and
41.92% in KegGen, Sign, and Verify based on Crystals-
Dilithium security level 3, respectively, using our NTT-based
multiplication optimization method. Furthermore, at all
security levels, it outperforms the reference implementation.
To the best of our knowledge, this is the first implementation
of Crystals-Dilithium optimization in an ARMv8 environ-
ment. Additionally, we compare our results with another
finalist algorithm, Falcon. In official reference imple-
mentations, Crystals-Dilithium always outperforms Falcon
in the KegGen and Sign process. Our implementation
further enhances the performance advantages of Crystals-
Dilithium and minimizes the performance gap that occurred
during the Verify process compared to Falcon.

6. Conclusion

We present three implementation strategies for high-speed
NTT implementation in an ARMv8 environment, merging,
register-holding, and interleaving, and demonstrate them in
Crystals-Dilithium. We achieve extremely fast imple-
mentations in ARMv8 platforms as a result of this, making
Crystals-Dilithium a very efficient candidate in the ARMv8
environment. -e parallel load proposal, the use of barrel
shifters, and the use of the interleaving technique, in par-
ticular, are very well-suited implementations for ARM-based
platforms. We achieved 43.83%, 113.25%, and 41.92% in
KegGen, Sign, and Verify, respectively, compared to the
reference implementation of Crystals-Dilithium security
level 3 in the ARMv8 environment.

More broadly, we believe that the approach of merging
multiple NTT layers, register-holding for the remaining
layers, and finally interleaving can be applied to the ring of
PQC variables. It can be used in particular when other PQC
algorithms that have selected NTT high-speed imple-
mentation, such as Crystals-Kyber and Falcon, are imple-
mented in an ARMv8 environment by selecting a special
ring. From the standpoint of implementation design, it is
intriguing that the NEON engine and the ARM processor
collaborate with each other via the new parallel load and
reduce memory access because it can lower computation
costs and define a compact routine that resynchronizes the
algorithm-specific NTT layers.
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