
Research Article
BFEDroid: A Feature Selection Technique to Detect Malware in
Android Apps Using Machine Learning

Collins Chimeleze ,1 Norziana Jamil ,1 Roslan Ismail ,1 Kwok-Yan Lam ,2

Je Sen Teh ,3 Joshua Samual ,4 and Chidiebere Akachukwu Okeke 5

1College of Computing and Informatics, Universiti Tenaga Nasional, Selangor, Malaysia
2School of Computer Science and Engineering, Nanyang Technological University, Singapore
3School of Computer Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
4School of Technology, Faculty of Computing, Engineering & Technology, Asia Pacific University of Technology and Innovation,
Kuala Lumpur, Malaysia
5Department of Electrical and Electronics Engineering, Faculty of Engineering, Universiti Putra Malaysia,
Seri Kembangan, Malaysia

Correspondence should be addressed to Collins Chimeleze; chimeleze@uniten.edu.my

Received 17 June 2022; Revised 18 September 2022; Accepted 27 September 2022; Published 11 October 2022

Academic Editor: Mian Ahmad Jan

Copyright © 2022 Collins Chimeleze et al. &is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Malware detection refers to the process of detecting the presence of malware on a host system, or that of determining whether a
specific program is malicious or benign. Machine learning-based solutions first gather information from applications and then use
machine learning algorithms to develop a classifier that can distinguish between malicious and benign applications. Researchers
and practitioners have long paid close attention to the issue. Most previous work has addressed the differences in feature
importance or the computation of feature weights, which is unrelated to the classification model used, and therefore, the
implementation of a selection approach with limited feature hiccups, and increases the execution time and memory usage.
BFEDroid is a machine learning detection strategy that combines backward, forward, and exhaustive subset selection. &is
proposed malware detection technique can be updated by retraining new applications with true labels. It has higher accuracy
(99%), lower memory consumption (1680), and a shorter execution time (1.264SI) than current malware detection methods that
use feature selection.

1. Introduction

&e feature selection process is an important process in high-
dimensional data mining applications. It involves selecting a
subset of relevant features and applying them to the given
learning algorithm. &e benefits of using feature selection
methods include data reduction and better visualization of the
trend of the data. It can also be used to handle noisy and
irrelevant data in the dataset to obtain accurate results.

Methods of feature selection are categorized according to
their organization of search: exponential, sequential, and ran-
dom. (i) Generation of successors (subset) is as follows: there are
five possible operations for generating successors: forward,
backward, compound, weighted, and random selection. (ii)

Evaluationmeasure is as follows: theseinclude the probability of
error, divergence, dependence, interclass distance, uncertainty
of the information, and consistency evaluation.

Subset search algorithms iterate over possible feature
subsets, as guided by a unique evaluation measure that
captures the quality of each subset. &e number of reduced
features and their influence on learning can be evaluated,
analyzed, and compared by using many methods. To define
the goal of learning concepts of the process, the feature
selection technique that is used should choose the best
feature subset from the feature space.&e following variables
must be considered during feature selection: (1) starting
point, (2) search strategy, (3) evaluation of subsets, and (4)
stopping criteria. A comparison of feature selection

Hindawi
Security and Communication Networks
Volume 2022, Article ID 5339926, 24 pages
https://doi.org/10.1155/2022/5339926

mailto:chimeleze@uniten.edu.my
https://orcid.org/0000-0003-0595-2214
https://orcid.org/0000-0002-7363-1466
https://orcid.org/0000-0003-2746-0683
https://orcid.org/0000-0001-7479-7970
https://orcid.org/0000-0001-5571-4148
https://orcid.org/0000-0002-9091-6420
https://orcid.org/0000-0002-5164-7379
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5339926


algorithms based on these parameters is shown in Table1.
We define techniques of feature selection to provide a
comparative analysis of the relevant methods in terms of
search organization, feature generation, and measure of
evaluation. &is can help practitioners choose a technique
that is appropriate for their goals and resources.

Section 2 provides a brief survey of literature in the area.
Section 3 provides a detailed description of the proposed
work (BFEDroid), and how the models are designed. Section
4 reports the accuracy of the proposed method. Section 5
summarizes the findings of this study and conclusions, and
offers directions for future work in the area.

2. Literature Survey

Mahindru and Sangal [1] stressed the need for building a
framework for malware detection by utilizing a limited
collection of criteria that can help us determine whether an
Android app contains malware or is benign. &e framework
was executed by 30 kinds of Android applications. A model
subsequently developed by using the nonlinear ensemble
decision tree, forest approach, multilayer perception, deep
neural network, and farthest first clustering was able to
identify 98.8% of malware in the given apps.&e work in this
study can be improved by constructing a model for malware
detection that predicts whether a certain attribute is capable
of identifying malware. Furthermore, Mahindru and Sangal
can be duplicated across Android app repositories that use
soft computing models to obtain a higher rate of detection of
malware. Ma et al. [2] reported a method for detecting
Android malware, which decompiled Android applications
and built a CFG of each. &ey then developed three system
API datasets based on the CFG: datasets of API usage (the
API contained in the CFG), API frequency (number of times
the CFG uses the corresponding API), and API sequence
(the API sequence appearing in the CFG). &ey then built a
dataset of API sequences for Android applications and
created a two-class classification model for each data col-
lection to determine whether the incoming application was
malicious. Next, the authors evaluated the accuracy of each
model by using standard classification metrics, that is,
precision, recall, and F-score, to compare the performance of
the three models. Finally, they used a combination of the
models. Finally, they used a combination of methods to
create an ensemble model that achieved a precision of de-
tection of malicious apps of 98.98%.

Cai et al. [3] developed a feature weighting technique
(JOWM) and a system to detect malware in Android apps
(JOWMDroid). &e JOWMDroid scheme uses static anal-
ysis in five steps. APK files are first used to extract the
original features in eight categories. IG is then used to choose
a subset of features with the most important characteristics.
Following this, three ML models are used to generate an
initial weight for each selected characteristic. Five weight
mapping functions have been developed to map the be-
ginning weight of each feature to its end weight. Finally, the
DE approach is used to jointly optimize the weight mapping
function and parameters of the classifier. Cat et al. also
compared the performance of four weight-aware classifiers

and four cutting-edge feature weighting techniques with that
of the JOWM. &eir experimental findings showed that the
fundamental weights performed very well. Furthermore,
changes in weight mapping and the joint parameter sig-
nificantly enhanced the accuracy of malware detection.&eir
approach outperformed the four cutting-edge methods
against which it was compared. Furthermore, a combined
optimization could quickly yield a set of optimum settings.
Weight-aware classifiers outperform weight-unaware clas-
sifiers when the appropriate feature weighting approach is
used.

Fallah and Bidgoly [4] investigated machine learning
methods in various ways: the number of characteristics that
needed to be learned, the kind of machine learning tech-
niques used, the volume of recorded data, the ability to
identify the family of malware, and the ability to recognize a
new type of malware family. &e sensitivity of the assessed
techniques, namely, decision tree, random forest, KNN,
linear regression, SVM, MLP, and Gaussian naive Bayes, to
the number of attributes was examined. &e algorithms
performed poorly in terms of identifying the malware
families even when ideal conditions from previous evalua-
tions were used. &e machine learning algorithms consid-
ered thus had a limited ability to learn. Alzaylaee et al. [5]
introduced DL-Droid, an automated framework for the
dynamic detection of malware in Android apps. It involves
deep learning with a state-basedmethod of input generation,
but it can also use the state-of-the-art Monkey tool (stateless
method). &e authors tested DL-Droid on 31,125 Android
applications using 420 static and dynamic characteristics,
and compared its performance with that of classical machine
learning classifiers and prevalent DL-based frameworks. &e
results clearly showed that DL-Droid outperformed the
prevalent deep learning-based frameworks to detect mal-
ware in Android apps in terms of accuracy. To the best of our
knowledge, this is the first study to use deep learning to
examine the dynamic characteristics of apps. &eir findings
also highlight the importance of improving input generation
for a system of dynamic analysis that employs machine
learning to detect malware in Android apps.

Rathore et al. [6] proposed a one-of-a-kind single-policy
attack for a white-box scenario in which an adversary has
complete information about the detection system.&ey used
a single Q-table strategy to build a reinforcement agent that
launches an aggressive attack. &e assault had a rate of
average fooling of 44.28% with eight models of detection,
with a maximum of five changes. When the parameters were
equivalent, the attack had the highest fooling rate (54.92%)
compared with the DTmodel, while the GB had the lowest
fooling rate (37.77%). Overall, the experimental results
demonstrated that even with minimal adjustments, a single-
policy assault may successfully evade systems of malware
detection to achieve a high fooling rate. &e authors also
developed a cutting-edge adversarial strategy: a multipolicy
assault in grey-box environments in which the attacker does
not know the model architecture and the process of clas-
sification. &is multipolicy approach yielded the highest
fooling rate for the DTmodel (86.09%) with a maximum of
five changes, followed by the ETmodel (75.23%). Even with

2 Security and Communication Networks



limited knowledge, the average fooling rate rises to 53.20%,
which is higher than that of the single-policy attack.

Kouliaridis et al. [7] proposed Androtomist, an auto-
mated and configurable hybrid analytical tool that combines
static analysis with dynamic instrumentation to analyze app
behavior on the Android platform. Its outcomes on the three
datasets suggest that this dual analysis of mobile applications
may significantly improve the detection capabilities of the
model. A comparison of static and hybrid analyses resulted
in asymmetry, demonstrating that the latter was capable of
generating better results in classification across various
datasets. Finally, Androtomist provides an easy-to-use en-
vironment for almost anyone to analyze mobile apps and is
highly configurable, thus allowing researchers to import
hooks and scripts for customized dynamic instrumentation.

Wang et al. [8] proposed a technique for detecting
malware by analyzing harmful URLs. &e vectorization
method divides each URL into many segments by using
certain characters and then trains the embedding of each
segment by using the skip-gram algorithm. &is method of
vectorization solves the problems of data sparsity and loss of
meaning in previous encoding methods. We feed the URL
vector into a multiview neural network that can generate
numerous views by constructing various values of S+ au-
tomatically from the input data. Each view focuses on a
different part of the data. Combining many views completes
the URL-based vector classification. &e network favors
depth while emphasizing width and can automatically select
items from different levels.&e authors conducted a series of
studies to assess the effectiveness of their strategy and
compared it with other methods. &eir model performed
well on the test set. &ey also evaluated it in terms of wild
malware detection and observed that it was effective.

Manzanares et al. [9] introduced KronoDroid, a data
collection of Android malware that combines and supple-
ments data sources, covers a long time span, and describes
each sample by using static and dynamic features. Research on
and datasets for Android malware have ignored its dynamic
nature to present rigid and confined images of it over a short
period of time. Notwithstanding, the concept of drift time has
received the attention that it deserves in this context. Fur-
thermore, the sources of dynamic data and their character-
istics have been overlooked. Abuthawabeh and Mahmoud
[10] proposed a model for the detection, classification, and
categorization of the family of malware in the Android en-
vironment. &e model gathers information on conversation-
level network traffic from the “CICAndMal2017” dataset,
which is both current and empirical. During the feature ex-
traction process, the Peer Shark tool extracts conversion-level

features. &e dataset is subjected to numerous preprocessing
stages. &e ensemble learning technique is applied by three
feature selection algorithms, namely, random forest, RFE, and
light GBM classifiers, to determine the most valuable features.
&ree classifiers were used to train and assess the built model:
the decision tree, random forest, and extra trees.

With insufficientmemory and other resource constraints
(e.g., CPU availability), many of the state-of-the-art feature
subset selection methods cannot be extended to high-di-
mensional data or datasets with an extremely large volume of
instances. In this brief, Ditzler et al. [11] extend online
feature selection (OFS), a recently introduced approach that
uses partial feature information to make predictions, by
developing an ensemble of online linear models. Wang and
Shao [12] proposed an improved hybrid feature selection
technique (IHFST), which combines a distance evaluation
technique (DET), Pearson’s correlation analysis, and an ad
hoc technique. Lakshmipadmaja and Vishnuvardhan [13]
present an improvement to the existing random subset
feature selection (RSFS) algorithm for randomly selecting
feature subsets and improving stability. Nayar et al. [14]
discuss the problems encountered during the feature se-
lection process and how swarm intelligence was used to
extract the optimal set of features. Chakraborty and
Kawamura [15] proposed a wrapper fitness function that
combines classification accuracy with another penalty term
that penalizes for a large number of features. Hichem et al.
[16] introduced a new binary variant of the grasshopper
optimization algorithm and used it for the feature subset
selection problem. Saidi et al. [17] present a feature selection
method that incorporates the genetic algorithm (GA) and
the Pearson correlation coefficient (PCC). Yu et al. [18]
examine the effectiveness of feature selection in CPDP using
feature subset selection and feature ranking approaches. In
contrast to conventional feature selection methods that only
focus on finding a single discriminating feature, Mao and
Yang [19] present a multilayer feature subset selection
method that uses randomized searches and multilayer
structures to select discriminative subsets. (MLFSSM) has
been proposed. Other influential works include Shukla et al.
[20].

Cai et al. [21] introduce DroidCat, a new dynamic app
classification technology that complements existing ap-
proaches. By using various dynamic functions based on
method calls and ICC (intercomponent communication)
intents, DroidCat is static and provides greater robustness
than dynamic approaches that rely on approaches and
system calls. Cai [22] plan to build an infrastructure that can
systematically and continuously mine the mobile software

Table 1: LSSVM linear kernel (classifier) with rough set analysis (FS4) and principal component analysis (PCA) (FR6) (detection
technique).

Datasets ERR FM Running time (SI) WFM AUC Precision FPR FNR Accuracy Memory
DS1 0.0793 0.92 0.721 0.92 0.90 0.90 0.50 0.090 0.9054 1510
DS2 0.0900 0.91 0.832 0.91 0.89 0.89 0.50 0.099 0.8921 1650
DS3 0.0793 0.92 1.095 0.92 0.90 0.90 0.50 0.090 0.9073 1824
DS4 0.0400 0.96 1.450 0.96 0.94 0.94 0.50 0.056 0.9414 2010
DS5 0.0489 0.95 1.520 0.95 0.95 0.95 0.50 0.047 0.9544 2175

Security and Communication Networks 3



ecosystem. &is infrastructure is then used to conduct large-
scale longitudinal characterization studies of the ecosystem
to understand its evolutionary dynamics. &is includes
mobile platforms, user apps built on top of the platform, and
users (including end users and developers) connecting to the
apps. In addition, the characterization results enable pro-
active app quality and sustainable app security. Kim et al.
[23] introduce a reliable malware detection method, in-
cluding zero-day attacks, and generated and learned fake
malware, called transferred deep-convolutional generative
adversarial network (tDCGAN), to detect real malware. Sohi
et al. [24] propose a new way to distinguish such traffic
generation, which has been identified in the literature as one
of the main obstacles in evaluating the effectiveness of NIDS.
To address these issues, we introduced RNNIDS. RNNIDS
applies recurrent neural networks (RNNs) to find complex
patterns of attacks and generate similar patterns. By using
advanced MLA such as deep learning, you can entirely avoid
the feature engineering phase.

Vinayakumar et al. [25] recently published a research
study in this direction that demonstrated the algorithm’s
performance with biased training data, limiting its practical
use in real-time situations. As reported in [23], 76% of
successful attacks on enterprise endpoints in 2018 were
based on zero-day sampling. Anticipating these types of
attacks and preparing solutions are an open challenge. &is
document presents a deep generative adversarial network
for generating signatures for invisible malware samples.
Moti et al. [26] generated signatures that may resemble
malware samples released in the future. Sharmeen et al. [27]
propose two different detection models using a semi-
supervised approach of deep learning and adaptive
frameworks. Wang and Zheng [28] evaluate the perfor-
mance of different one-class feature selection and classi-
fication methods for zero-day Android malware detection.
Wen and Chow [29] propose using a CNN-based model to
detect malware from very small sequences of binary frag-
ments in PE files. Wu and Kanai [30] propose an Android
malware detection method based on deep learning. It uses
obfuscation labels in training to let a deep learning model
learn to detect obfuscation technology and malware fea-
tures simultaneously from part of the input. &e features
with similar behaviors in the data engineering phase based
on prior domain knowledge risk becoming ineffective in the
face of new threats [31] isolate this human expertise and
instead encapsulate the knowledge in deep learning neural
networks without prior knowledge of their malicious
properties. Experimental results show that the proposed
approach by applying AdaBoost ensemble learning to the
random forest classifier as the regular classifier achieves
92% F-measure and 95% TPR, and is superior to zero-day
malware detection using only the top. Despite using a small
number of microarchitectural features captured at run-time
by existing HPCs, He et al. [32] propose an ensemble
learning-based technique to improve the performance of
standard malware detectors. &e experimental results show
that using only the top four microarchitectural features, our
proposed approach of using AdaBoost ensemble learning
on the Random Forest classifier as a regular classifier

achieves 92% F-measure and 95% TPR with only 2% false
positive rate in detecting zero-day malware.

Carlin et al. [33] proposed a new analyzed run-tracking
dataset of more than 100,000 labeled samples that would
address these shortcomings, and we are making the dataset
itself available to the research community to use. Xu et al. [34]
provide DroidEvolver, an Android malware detection system
that can automatically and continuously update itself when
malware is detected without any human intervention. Cai
et al. [35] study how benign Android apps execute in every
other manner from malware over time, in terms of their
execution structure measured via the distribution and in-
teraction among functionality scopes, app components, and
callbacks. We systematically characterised the execution
structure of malware versus benign apps and revealed pre-
viously unknown similarities and disparities by tracing the
method calls and inter-component communications (ICCs)
of 15,451 benign apps and 15,183 malware developed over
eight years (2010-2017). Among other findings, our results
show that (1) despite their similarity in execution distribution
across functionality scopes, malware accessed framework
functionalities primarily through third-party libraries,
whereas benign apps were dominated by calls within the
framework; (2) use of the activity component has been in-
creasing in malware, while benign apps have seen a contin-
uous drop in such uses; (3) malware invoked significantly
more services but significantly fewer content providers than
benign apps during both groups’ evolution; (4) malware
carried ICC data significantly less frequently than benign apps
via standard data fields, despite the fact that both groups did
not carry any data in most ICCs; and (5) newermalware had a
even more distribution of callbacks among event-handler
categories, whereas benign apps’ distribution remained
constant over time. Cai and Ryder [36] propose a longitudinal
observation of Android applications to systematically ex-
amine how they can be built and executed over time.&rough
lightweight static assessment andmethodical step tracking, we
tested the code and execution of 17,664 apps, sampled from
advanced apps over the next 8 years, with a high rating of
metrics in 3 additional sizes. Our research found that (1) app
functionality is heavily dependent on the Android/SDK
framework and the dependency continues to grow; (2) per-
sistent add-ons rule utility categories. &is is responsible for
the maximum number of callbacks in the lifecycle. (3)
Callback event handling is increasingly focused on UI oc-
casions rather than utility events. (4) &e use of callbacks has
generally decreased over time, (5) the majority of user in-
terfaces (ICCs) have now ceased to carry any stat payload, and
(6) complex reagents and sink indexes focus on the most
effective or dominant events or activities, and ratings of
source or sink classes, which have remained relatively stable
for the past 8 years.

2.1. Research Gap in Related Works. Previous work in this
direction [33] has shown that static analysis cannot unravel the
obfuscated code. &e previous studies mentioned above have
the following limitations: highermemory consumption, limited
dataset, higher detection rate on limited dataset, high

4 Security and Communication Networks



computational complexity, implementation of a selection ap-
proach, with limited features, limited implementation of 100%
classification algorithms on datasets, and no advancedmalware
detection capabilities. Tomitigate these problems, we proposed
a new feature-based detection technique. &is proposed mal-
ware detection technique can be updated by retraining new
applications with true labels. We will discuss more about the
proposed technique in the methodology section.

2.2. Research Questions. We explore the challenges stated
below to develop techniques to select an important subset of
features and a model for detecting malware in Android apps
with satisfactory accuracy.

RQ1: Which of the offered algorithms for malware
detection is most suited for detecting malware in real-
world apps?

Answering this question assists in the selection of the
optimal model for malware detection in Android apps. In
this paper, we examine ten methods of feature selection and
machine learning algorithms in order to build a new model.
Furthermore, we consider various performance-related
parameters (accuracy and the F-measure in the case of
supervised, semisupervised, and hybrid machine learning
algorithms; and intracluster and intercluster distances in the
case of unsupervised machine learning algorithms) to de-
termine the model that is best suited for malware detection.

RQ2: Is the proposed malware detection technique
applicable to Android devices?&e goal of this research
is to determine how effective our malware detection
technique is. To do so, we compare its performance
with prevalent approaches in the literature.
RQ3: Is a subset of characteristics better than all re-
trieved features in determining if an app is dangerous?

&e purpose of this inquiry is to assess the performance
metrics and examine the link between benign and malicious
applications. Various feature reduction techniques are
studied to identify a subset of traits that are capable of
detecting malicious apps.

RQ4: Which of the implemented feature ranking al-
gorithms performs the best in terms of distinguishing
between malicious and benign Android apps?

&e performance of machine learning algorithms in
terms of feature ranking is influenced by the features and the
type of malware data collected. Multiple techniques with
diverse criteria have been developed to rank the gathered
feature sets. We use several performance criteria to compare
the performance of the implemented feature ranking
techniques.

RQ5: Which strategy to select a feature subset out-
performs the others in terms of identifying malware in
Android apps?

We investigated methods for selecting a feature subset to
identify the subset that is most appropriate for detecting
malicious Android apps. We weighted the approaches based

on F-measure and accuracy for supervised, semisupervised,
and hybrid machine learning algorithms, and on intracluster
and intercluster distances in the case of unsupervised ma-
chine learning algorithms.

(RQ6: How do the techniques for feature ranking and
feature subset selection compare?

&e pairwise t-test was used to determine whether the
techniques for selecting feature subsets were better than those
for feature ranking or whether they performed similarly well.

RQ7: Do techniques of feature selection have an impact
on the outcomes of machine learning-based
approaches?

A variety of approaches to feature selection work well
with particular machine learning algorithms. &is study
assesses such techniques by using a diversity of machine
learning-based approaches to gauge their effectiveness.

3. Methodology

To ensure clarity and direction in this section, we first
discuss the preliminaries and definitions. Second, we discuss
the methodology, which is subdivided into two sections: the
flowchart and the proposed methodology (framework),
respectively. In the flowchart subsection, we discuss the
sequential flow of the proposed technique, which starts with
task 4 as stated in Figure1. In the proposed methodology
(framework) subsection, we discuss the experimental setup,
datasets, structure, and pseudocode.

3.1. Preliminaries and Definition. In this section, we go over
the basic definitions of the performance-related parameters
used to evaluate our proposed technique for selecting feature
subsets and for malware detection. All factors were calcu-
lated by using a confusion matrix that was composed of
classification-related information extracted by using the two
techniques. (Table2)

3.1.1. Accuracy. Accuracy is defined as the corrected pre-
diction of malware-infected apps with respect to the total
number of benign and malware-infected apps. For super-
vised, semisupervised, and hybrid machine learning tech-
niques, it is given by

Accuracy �
a + d

Nclasses
, (1)

where Nclasses� a+ b+ c+ d, and

d � NBenign⟶ Benign. (2)

3.1.2. F-Measure. We use several machine learning methods
to create the feature subset andmodels of malware detection.
Comparingmodels with high recall and low accuracy, or vice
versa, thus becomes challenging. We compared by using the
F-measure, which is useful for measuring precision and
recall at the same time.

Security and Communication Networks 5



F-measure is defined by

F − measure � 2∗ Precision∗
Recall

Precision
+ Recall

�
2∗ a

2∗ a
+ b + c.

(3)

3.1.3. 4e Weighted FM. &e weighted FM combined
measure is defined as follows:

FM � 2∗ recall∗ precision recall + precision,

W − FM � (Fm.Nm) +(Fb.Nb)Nm + Nb,
(4)

where Fb and Fm represent the FMof the benign andmalware
datasets, respectively, and Nb and Nm represent the number
of samples in the benign and malware datasets. All experi-
ments presented used the 5-fold cross-validation method.

3.2. Methodology

3.2.1. Flowchart. In this section, we discuss the flowchart of
our technique. &is flowchart depicts the sequential flow of
coordinates to ensure clarity, efficiency improvement, long-
term effective analysis, and problem-solving. First, we review
and study various approaches for feature subset selection
purposes, observe and study the problem, and replicate the
existing approach to investigate more. Second, we developed

1.Review & Study
Various FS Techniques.
2. Observe& study the 

Problem.
3. Replicate the existing

Techniques to 
Investigate more. 

4. Dev a new FS
Technique

5. Test the new FS 
Technique 

6. New comparison 
Analysis is proposed 

6.a. LSSVM +
3Kernels VS new

Technique+3Kernels

6.b. BFE (FS) VS 
ExistingFS 
Technique 

7 . Analysis 

8.New tech
Better? 

9. Re-dev, test & 
Record

10. Design a new Tech.
10.2 . Integrate & record all 
The performance metrics 

11 . File patent & register for 
Copyright. 

11.2 . Produce a report & 
Journal 

a new test is recommended 

Test is proposed Dev new Tech is
Proposed 

Figure 1: &e proposed feature selection-based malware detection technique flowchart.

Table 2:

Dataset abbreviations used Corresponding names References
DS1 Dataset partition 1 Mahindru and Sangal [1]
DS2 Dataset partition 2 Mahindru and Sangal [1]
DS3 Dataset partition 3 Mahindru and Sangal [1]
DS4 Dataset partition 4 Mahindru and Sangal [1]
DS5 Dataset partition 5 Mahindru and Sangal [1]

6 Security and Communication Networks



a new embedded feature subset selection technique (em-
bedded BFEDroid). &is is where our main contribution to
this research starts. &ird, we test the new embedded tech-
nique. Fourth, we proposed a new comparison analysis. Fifth,
we compare the LSSVM +3 kernels + existing feature subset
selection model to the newly proposed model LSSVM +3
kernels + embedded feature subset selection technique (BFE-
Droid). Sixth, we compare and analyze the embedded BFE
feature subset selection model with the existing feature subset
selection model. Seventh, a newly proposed technique (BFE-
Droid) is developed if the technique satisfies 7 of our research
goals. Lastly, we develop and record the newly proposed
technique (BFEDroid). &e flowchart is shown in Figure 1.

3.2.2. Proposed Methodology (Framework). We propose an
embedded analysis for the detection of malware using a new
feature subset selection technique (BFEDroid). &e pro-
posed embedded BFEDroid detection technique is paired
with the best among the feature ranking techniques (prin-
cipal component analysis (FR6)), the LSSVM, and the radial
basis function kernel (best among the three kernels). &is
proposed malware detection technique can be updated by
retraining on new applications with true labels. We first
performed the analysis of LSSVM with 3 kernels using the
prevalent feature subset selection and found out the pos-
sibilities and limitations of this technique, and then intro-
duced a new technique. &is proposed technique uses
LSSVM radial basis function with embedded feature subset
selection (BFEDroid) (FS) and principal component analysis
(FR6) (best among feature ranking techniques) to analyze
and overcome the limitations found in the research gap.
Note, among these 3 kernels, we used radial basis function
(best among the kernels), BFEDroid (FS), and principal
component analysis (best among feature ranking tech-
niques) (FR6) in the proposed detection technique.

&e permissions and API calls were extracted by using an
emulator (Android Studio). It offers the same emulator and
offers the same API level and execution environment as
mobile phones in the flowchart task number (5). We used
the Android system version 6.0 Marshmallow (i.e., API level
23) to extract permissions and API calls from Android apps
and construct our dataset for testing. Previous developed
frameworks or approaches used the previous version of
Android to extract features from them. We chose this
particular version of Android for two reasons: it initially
requests the user to revoke or allow the permission to use
smart phone resources, and then covers 28.1% of Android
gadgets, which is higher than other versions of Market23, is
very effective in battery life with “deep sleep,” and provides
App Permission Management update, which is very critical
in sustainability. In recent feature-based detection research
[1], this Android studio version faired very well in terms of
accuracy, precision, and F-measure when embedded with
other classifiers and feature subset selection techniques. In
the follow-up study [37, 38], this version still performed well
with other feature-based detection techniques in terms of
accuracy, precision, and F-measures. Following this, if the
SDK version is older than 23, the Android prompts the user

to grant or remove permission for the app. If the user grants
the permission, the call instruction is executed; otherwise, it
is not, and other versions can increase runtime and memory
usage. &is feature has been unavailable in past versions of
Android. &e detailed framework is represented in Figure 2.

Dataset. We collected datasets from the Mendeley
repository.
Dataset Structure. We extracted features from Android
apps. In the first phase, to extract features from col-
lected. apk, and extract permissions and API calls from
them and save them into the.csv file. D1, D2, . . ., Dn
partitions, the datasets are divided into D1 = 1000,
D2 = 1000, . . ., Dn= 1000 partitions.

Our contribution focuses on number four (4) in our
methodology flowchart in Figure 1. We propose a new
feature selection-based detection technique that segregates
the training data for two purposes, namely, the feature
ranking module and the feature subset selection module.
Only a few subset features will be selected to proceed with
the normalization process together with the output from the
feature subset selection and feature ranking modules. &e
selection is based on the embedded BFEDroid (FS). Our
proposed framework technique is represented in Figure 2.

In the proposed feature selection-based malware de-
tection technique framework (Figure 2), we combined the
least-square support vector machine (LSSVM), radial basis
function (the best among the kernels) with an embedded
BFEDroid (backward, forward, and exhaustive), and prin-
cipal component analysis (the best among the feature
ranking techniques) to select the best feature set for the best
detection module. We discuss the pseudocode of the pro-
posed technique, embedded BFEDroid, as follows: embed-
ded BFE feature selection (EBFE).

Step 1: Choose a significance level (e.g., SL� 0.05 with
95% confidence).
Step 2: Fit a full model including all features.
Step 3: Consider the feature with the average attribute
value. If the attribute value> significance level, then go
to step 4; otherwise, terminate the process.
Step 4: Remove the feature that is under consideration.
Step 5: Fit a model without this feature. Repeat the
entire process from step 3.

(1) LSSVM Classifier. RBF kernel (radial basis function), the
hyperparameter denotes c, the kernel parameter denotes σ,
and the test.

Set performances of the binary LSSVM classifier are
estimated using the following steps:

Input: selected feature set using EBFE ()
Output: optimal classified set.
Step 1. Set aside 2/3 of the data for the training/vali-
dation set and the remaining 1/3 for testing.
Step 2. Starting from i� 0, perform 10-fold cross-val-
idation on the training/validation data for each (σ, c)

Security and Communication Networks 7



Training Data

Testing Data

Feature Ranking
Module

Feature Subset
Selection Module

Normalization

Normalized
Features

Detection Module
(LSSVM)

Malware

Benign

Performance
Evaluation Module

Selected Subset
Features

Figure 2: &e proposed feature selection-based malware detection technique framework.

Table 3: LSSVM polynomial kernel (classifier) with rough set analysis (FS4) and principal component analysis (PCA) (FR6) (detection
technique).

Datasets ERR FM Running time (SI) WFM AUC Precision FPR FNR Accuracy Memory
DS1 0.1137 0.89 0.956 0.89 0.86 0.93 0.133 0.142 0.8612 1416
DS2 0.1023 0.90 0.624 0.90 0.88 0.94 0.133 0.114 0.8832 1540
DS3 0.128 0.88 1.265 0.88 0.86 0.93 0.133 0.142 0.8659 1745
DS4 0.0561 0.94 1.384 0.94 0.90 0.92 0.142 0.153 0.9022 1950
DS5 0.0745 0.93 1.748 0.93 0.92 0.95 0.142 0.153 0.9265 2080

Table 4: LSSVM RBF kernel (classifier) with rough set analysis (FS4) and principal component analysis (PCA) (FR6) (detection technique).

Datasets ERR FM Running time (SI) WFM AUC Precision FPR FNR Accuracy Memory
DS1 0.0458 0.95 0.465 0.95 0.92 0.93 0.108 0.0625 0.9234 1350
DS2 0.0275 0.93 0.578 0.93 0.90 0.90 0.111 0.090 0.9066 1471
DS3 0.047 0.95 0.873 0.95 0.93 0.934 0.075 0.0654 0.9372 1621
DS4 0.022 0.98 1.218 0.98 0.98 0.967 0.050 0.0322 0.9831 1857
DS5 0.022 0.98 1.487 0.98 0.982 0.967 0.049 0.029 0.9825 1959

Table 5: LSSVM linear kernel (classifier) with embedded BFEDroid (FS) and principal component analysis (PCA) (FR6) (detection
technique).

Datasets ERR FM Running time (SI) WFM AUC Precision FPR FNR Accuracy Memory
DS1 0.0427 0.95 0.4920 0.95 0.94 0.952 0.088 0.047 0.9421 1202
DS2 0.059 0.94 0.5643 0.94 0.92 0.937 0.111 0.062 0.9274 1378
DS3 0.045 0.95 0.895 0.95 0.94 0.952 0.081 0.047 0.9469 1587
DS4 0.018 0.98 1.200 0.98 0.97 0.975 0.038 0.024 0.9784 1696
DS5 0.0289 0.97 1.360 0.97 0.98 0.983 0.025 0.016 0.9815 1811

Table 6: LSSVM polynomial kernel (classifier) with embedded BFEDroid (FS) and principal component analysis (PCA) (FR6) (detection
technique).

Datasets ERR FM Running time (SI) WFM AUC Precision FPR FNR Accuracy Memory
DS1 0.0679 0.93 0.723 0.93 0.93 0.913 0.857 0.015 0.9304 1110
DS2 0.0482 0.95 0.456 0.95 0.95 0.955 0.6 0.029 0.9515 1250
DS3 0.070 0.93 0.965 0.93 0.93 0.913 0.857 0.015 0.9382 1487
DS4 0.0464 0.95 1.100 0.95 0.95 0.955 0.6 0.029 0.9534 1612
DS5 0.0682 0.93 1.570 0.93 0.93 0.913 0.857 0.015 0.9323 1750

8 Security and Communication Networks



combination of the initial candidate tuning sets 0�

{0.5, 5, 10, 15, 25, 50, 100, 250, 500}. . .√n and τ0�

{0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000}.
Step 3. Choose the optimal (σ, c) from the tuning sets
i and τi by looking at the best cross-validation per-
formance for each (σ, c) combination.
Step 4. If i� imax, go to Step 5; else i:� i+ 1, construct a
locally refined grid.
i× τi around the optimal hyperparameters (σ, c) and
go to Step 3.
Step 5. Construct the LSSVM classifier using the total
training/validation set for the optimal choice of the
tuned hyperparameters (σ, c).
Step 6. Assess the test set accuracy by means of the
independent test set.

We explain the embedded BFEDroid literally as follows:

(i) First, the best single feature is selected (i.e., using
some criterion function).

Table 7: LSSVM RBF kernel (classifier) l with embedded BFEDroid (FS) and principal component analysis (PCA) (FR6) (proposed
detection technique).

Datasets ERR FM Running time (SI) WFM AUC Precision FPR FNR Accuracy Memory
DS1 0.0168 0.98 0.325 0.98 0.96 0.961 0.041 0.038 0.9642 1040
DS2 0.0275 0.97 0.492 0.97 0.94 0.943 0.068 0.056 0.9446 1154
DS3 0.018 0.98 0.754 0.98 0.97 0.970 0.030 0.029 0.9714 1396
DS4 0.010 0.99 1.159 0.99 0.99 0.990 0.010 0.009 0.9923 1540
DS5 0.010 0.99 1.264 0.99 0.99 0.990 0.010 0.009 0.9945 1680

Table 8: Forward subset selection (feature selection technique) (FS).

Datasets ERR FM Running time (SI) WFM AUC Precision FPR FNR Accuracy
DS1 0.0178 0.92 0.589 0.98 0.98 0.970 0.030 0.009 0.9833
DS2 0.1045 0.91 0.698 0.97 0.90 0.884 0.139 0.065 0.9021
DS3 0.0600 0.89 0.952 0.98 0.94 0.923 0.128 0.016 0.9452
DS4 0.0100 0.95 1.312 0.99 0.93 0.967 0.057 0.076 0.9332
DS5 0.0100 0.95 1.471 0.99 0.95 0.960 0.066 0.04 0.9556

Table 9: Backward subset selection (feature selection technique) (FS).

Datasets ERR FM Running time (SI) WFM AUC Precision FPR FNR Accuracy
DS1 0.047 0.89 0.362 0.89 0.95 0.943 0.0625 0.038 0.9544
DS2 0.070 0.94 0.454 0.94 0.93 0.909 0.104 0.038 0.9384
DS3 0.073 0.93 0.787 0.93 0.92 0.961 0.0454 0.107 0.9239
DS4 0.090 0.96 1.265 0.96 0.91 0.943 0.0566 0.107 0.9123
DS5 0.020 0.97 1.317 0.97 0.98 0.980 0.020 0.019 0.9876

Table 10: Exhaustive subset selection (feature selection technique) (FS).

Datasets ERR FM Running time (SI) WFM AUC Precision FPR FNR Accuracy
DS1 0.0124 0.96 0.258 0.96 0.99 0.990 0.010 0.009 0.9942
DS2 0.0425 0.95 0.352 0.95 0.96 0.952 0.051 0.029 0.9646
DS3 0.0587 0.95 0.524 0.95 0.94 0.925 0.083 0.038 0.9414
DS4 0.0100 0.94 1.092 0.94 0.99 0.990 0.010 0.009 0.9923
DS5 0.0100 0.99 1.035 0.99 0.99 0.990 0.010 0.009 0.9945

Table 11: Feature ranking techniques on different datasets (F-
measure) (FR).

Datasets FR1 FR2 FR3 FR4 FR5 FR6
DS1 87 90 89 91 97 98
DS2 85 88 89 85 93 94
DS3 85 90 92 89.4 96 97.5
DS4 82 84 86.6 89.7 85 96.2
DS5 80 85 89 91.2 93 94

Table 12: Feature ranking techniques on different datasets (ac-
curacy) (FR).

Datasets FR1 FR2 FR3 FR4 FR5 FR6
DS1 85 89.4 87.2 90.6 95 96
DS2 83 86 87 83 91 92
DS3 83.5 87 90 88 93 95.8
DS4 80 81 85.3 87 83 94
DS5 78 83 87 89 91 92

Security and Communication Networks 9



Table 13: Prevalent feature subset selection techniques on different datasets (accuracy and precision) (FS).

Datasets FS1 (acc) FS2 (acc) FS3 (acc) FS4 (acc) FS1 (prec) FS2 (prec) FS3 (prec) FS4 (prec)
DS1 94.5 97.3 94.9 96.8 92.0 91.7 92.7 93
DS2 94.5 97.6 96.2 97.5 84.4 85.9 90 90
DS3 92.1 84.9 83 90.7 88.3 91.2 91 93.4
DS4 87.6 84.8 85 89.7 94.7 91.4 96 96.7
DS5 93 95.7 92 96.5 94.0 94.0 95.5 96.7

Table 14: Prevalent feature subset selection techniques on different datasets (F-measure and WFM) (FS).

Datasets FS1 (F-M) FS2 (F-M) FS3 (F-M) FS4 (F-M) FS1 (WFM) FS2 (WFM) FS3 (WFM) FS4 (WFM)
DS1 95.3 98.3 95.3 95 95 94 93.4 95
DS2 95.3 96.6 98.2 93 93 95 95 96
DS3 94.7 87.9 88 95 95 88 86 96
DS4 89.4 85.9 80 98 98 87 90 97
DS5 95.1 96.7 94 98 98 93 94 97

Table 15: Prevalent feature subset selection techniques on different datasets (error ratio and AUC) (FS).

Datasets FS1 (ERR) FS2 (ERR) FS3 (ERR) FS4 (ERR) FS1 (AUC) FS2 (AUC) FS3 (AUC FS4 (AUC)
DS1 5.5 2.7 5.1 3.2 94.5 97.3 94.9 96.8
DS2 5.5 2.4 3.8 2.5 94.5 97.6 96.2 97.5
DS3 7.9 15.1 17 9.3 92.1 84.9 83 90.7
DS4 12.4 15.2 15 10.3 87.6 84.8 85 89.7
DS5 7.0 4.3 8 3.5 93 95.7 92 96.5

Table 16: Feature selection technique (FS) compared with proposed and proposed individual techniques (accuracy and precision).

Datasets FS1 (acc) FS2 (acc) FS3 (acc) BFE (acc) FS1 (prec) FS2 (prec) FS3 (prec) BFE (prec)
DS1 95 99 97.8 99 97.0 94.3 95.7 99
DS2 96.2 99.2 98.9 99.3 88.4 90.9 91 95.2
DS3 93 90 86 94.5 92.3 96.1 92 92.5
DS4 90 88 90 92.6 96.7 94.3 97 99
DS5 93 97 95 99.4 96 98 98.5 99

Table 17: Feature selection technique (FS) compared with proposed and proposed individual techniques (F-measure and WFM).

Datasets FS1 (FM) FS2 (FM) FS3 (FM) BFE (FM) FS1 (WFM) FS2 (WFM) FS3 (WFM) BFE (WFM)
DS1 98 98 98.8 98 98 98 98.8 98
DS2 97 99 99 97 97 99 99 97
DS3 95 91 89 98 95 91 89 98
DS4 92 92 94 99 92 92 94 99
DS5 96 99 98 99 96 99 98 99

Table 18: Feature selection technique (FS) compared with proposed and proposed individual techniques (error rate ratio and AUC).

Datasets FS1 (err) FS2 (err) FS3 (err) BFE (err) FS1 (AUC) FS2 (AUC) FS3 (AUC) BFE (AUC)
DS1 5.0 1.0 2.2 1.0 91 93.4 95.2 96
DS2 3.8 0.8 1.1 0.7 97 92 92 95
DS3 7.0 10 14.1 5.5 96 94 90 97
DS4 10.0 12 10.0 7.4 90 94 96 99
DS5 7.0 3 5 0.6 97 99.2 98.4 99

10 Security and Communication Networks



(ii) &en, pairs of features are formed using one of the
remaining features and this best feature, and the
best pair is selected.

(iii) Next, triplets of features are formed using one of the
remaining features and these two best features, and
the best triplet is selected and a contiguous number
of features (n) are selected.

(iv) &en, each feature is deleted one at a time, the
criterion function is computed for all subsets with
n-1 features, and the worst feature is discarded.

(v) Next, each feature among the remaining n-1 is
deleted one at a time, and the worst feature is
discarded to form a subset with n-2 features.

(vi) &is procedure continues until a predefined number
of features are left.

&e feature selection technique’s core goal is to find the
feature subset that provides the best ability to discriminate
across various feature subset groups. Inmany circumstances,
including all characteristics in a classifier does not result in
the optimum performance. Feature selection also assists
users in gaining better knowledge of qualities that are critical
to diagnosing the data of interest.

&e forward feature selection procedure begins by
evaluating all feature subsets that contain only one input
attribute. Forward selection finds the best subset consisting
of two components, X(1), and one other feature from the
remaining M-1 input attributes. Hence, there are a total of
M1 pairs. Let us assume that X(2) is the other attribute in the
best pair besidesX(1). Input subsets with three, four, or more
features are subsequently evaluated. According to forward
selection, the best subset with m features is the m-tuple
consisting of X(1), X(2), . . ., X(m), while the best feature set
overall is the winner of all M steps.

&e LSSVM is a supervised machine learning technique
that has been applied to a variety of domains, including
regression, classification, and outlier identification. &e
essential concept of the SSVM involves two-class issues, in
which data are sorted into classes based on the optimal
hyperplane generated by support vectors. &e support
vectors between classes determine the boundary of the
training set. We used the LSSVM with unique kernels as a
classifier to develop a model that can distinguish between
benign and malicious applications.

4. Results and Discussion

In this section, we evaluate our newly proposed (BFEDroid)
feature selection-based malware detection technique against
the prevalent techniques. &e seven core goals of our ex-
periments were to develop a detection technique that could
decrease the execution time and memory usage, and im-
prove the FPR, FNR, precision rate, and detection rate of
resilience to obfuscation. Highlights of the evaluation are as
follows:

(a) Tables 1, 3, and 4 list the detection empirical
comparative results of prevalent detection tech-
niques for different categories of Android apps by
considering the LSSVM with three distinct kernel
functions, i.e., linear, RBF, and polynomial func-
tions. &e detection technique with LSSVM, radial
basis function kernel (RBF), principal component
analysis (FR6), and rough set analysis (FS4) out-
performed other prevalent detection techniques.
Tables 1, 3, and 4 depict the detection results of
LSSVM with each kernel with rough set analysis
subset selection and principal component analysis
(FR6). Tables 1, 3, and 4 depict the detection

Table 19: Prevalent and proposed feature subset selection technique (FS) comparison based on runtime (SI).

Datasets Correlation best
feature selection

Classifier
subset

evaluation

Filtered subset
evaluation

Rough set
analysis
(RSA)

Forward_ F-
selection

Backward F-
selection

Exhaustive F-
selection

Proposed
BFE

DS1 0.952 0.891 0.873 0.712 0.299 0.181 0.143 0.115
DS2 1.432 1.058 0.987 0.932 0.358 0.254 0.172 0.162
DS3 1.543 1.342 1.243 1.132 0.506 0.397 0.264 0.211
DS4 1.675 1.598 1.521 1.514 0.659 0.625 0.521 0.494
DS5 1.854 1.791 1.725 1.685 0.714 0.661 0.514 0.456

Table 20: Prevalent and proposed feature subset selection technique (FS) comparison based on memory.

Datasets Correlation best
feature selection

Classifier
subset

evaluation

Filtered subset
evaluation

Rough set
analysis
(RSA)

Forward F-
selection

Backward F-
selection

Exhaustive F-
selection

Proposed
BFE

DS1 987 859 654 542 312 285 250 208
DS2 1032 913 784 648 580 498 365 280
DS3 1243 1100 1032 845 716 652 547 489
DS4 1375 1259 1105 1051 956 845 685 610
DS5 1554 1371 1272 1165 1071 961 821 786

Security and Communication Networks 11



Ta
bl

e
21
:P

ro
po

se
d
te
ch
ni
qu

e
co
m
pa
re
d
w
ith

ot
he
r
fe
at
ur
e-
ba
se
d
de
te
ct
io
n
te
ch
ni
qu

es
(d
et
ec
tio

n
co
m
pa
ra
tiv

e
re
su
lts
).

Re
fe
re
nc
es

D
et
ec
tio

n
te
ch
ni
qu

es
Fe
at
ur
e
se
le
ct
io
n
te
ch
ni
qu

es
Pl
at
fo
rm

ER
R

Ru
nt
im

e
(S
I)

W
FM (%
)

A
U
C

(%
)

Pr
ec

FP
R

FN
R

A
cc

(%
)

M
em

or
y

FM (%
)

M
ah
in
dr
u
an
d

Sa
ng

al
[3
9]

D
ee
p
le
ar
ni
ng

m
od

el
(D

N
N
)
w
ith

PA
RU

PA
RU

(p
er
m
iss

io
ns
,A

PI
ca
lls
,r
at
in
g
of

an
ap
p,
an
d
us
er
sd

ow
nl
oa
d
th
e
ap
p)
.S
el
f-
w
ri
tte

n
al
go
ri
th
m

A
nd

ro
id

x
x

93
x

x
x

x
98
.9

x
93

Ta
he
ri
et

al
.[
40
]

Li
gh

tG
BM

w
ith

fu
zz
y

Fu
zz
y
C
-m

ea
ns

al
go
ri
th
m

A
nd

ro
id

x
x

x
98
.7
4

97
.7
0

x
x

94
.6
3

x
90
.3
7

M
ah
in
dr
u
an
d

Sa
ng

al
[4
1]

H
yb
ri
D
ro
id

Fe
at
ur
e
se
le
ct
io
n
va
lid

at
io
n
al
go
ri
th
m

A
nd

ro
id

x
14

x
98

x
x

x
98
.8

x
x

M
ah
in
dr
u
an
d

Sa
ng

al
[3
8]

SO
M
D
RO

ID
Pr
in
ci
pa
lc

om
po

ne
nt

an
al
ys
is
(P
C
A
)
fe
at
ur
e

se
le
ct
io
n
al
go
ri
th
m

A
nd

ro
id

x
x

x
x

x
x

x
92
.4

x
91

Pr
op

os
ed

te
ch
ni
qu

e
BF

ED
ro
id

Em
be
dd

ed
BF

E
al
go
ri
th
m

A
nd

ro
id

0.
01

1.
26
4

99
99

99
0.
01
0

0.
00
9

99
.4
5

16
80

99

12 Security and Communication Networks



performance of each LSSVM kernel (linear, poly-
nomial, and radial basis function) with principal

Table 22:

Matrix abbreviations used Corresponding names
ERR Error rate ratio
F-M F-measure/score
AUC Area under the ROC curve
FPR False-positive ratio
FNR False-negative ratio
W-FM Weighted F-measure

Table 23:

Classifier abbreviations used Corresponding names
RBF Radial basis function
LSSVM Least-square support vector machine

Table 24:

Existing feature selection approach abbreviations used Corresponding names References
FS1 Correlation best feature selection Akram et al. [42]
FS2 Classifier subset evaluation Fiky [43]
FS3 Filtered subset evaluation Shafiq et al. [44]
FS4 Rough set analysis (RSA) Mahindru and Sangal [1]

Table 25:

Proposed feature selection approach abbreviations used Corresponding names References
FS1 Forward feature subset selection Fiky [43]
FS2 Backward feature subset selection Fiky [43]
FS3 Exhaustive feature subset selection Fiky [43]
FS4 Embedded (FS1, FS2, and FS3) BFE feature subset selection Fiky [43]

Table 26:

Feature ranking approach abbreviations used Corresponding names References
FR1 Chi-square test Nassar et al. [45]
FR2 Gain ratio feature evaluation Karegowda et al. [46]
FR3 Filtered subset evaluation Vinutha and Poornima [47]
FR4 Information gain feature evaluation Omuya et al. [48] and vinutha and Poornima [47]
FR5 Logistic regression analysis Abawajy et al. [49]
FR6 Principal component analysis (PCA) Omuya et al. [48]

Table 27:

Feature subset selection technique (prevalent) abbreviations used Corresponding names References
FS1 Correlation best feature selection Mahindru and Sangal [1]
FS2 Classifier subset evaluation Mahindru and Sangal [1]
FS3 Filtered subset evaluation Mahindru and Sangal [1]
FS4 Rough set analysis (RSA) Mahindru and Sangal [1]

Security and Communication Networks 13



component analysis (i.e., best functional ranking
technique) and rough set analysis (best among the
existing feature subset selection).

(b) Tables 5–7 depict the detection empirical compar-
ative results using the proposed BFE feature selection
technique (FS) on different categories of Android
apps by considering the LSSVM with three distinct
kernel functions, i.e., linear, RBF, and polynomial
with principal component analysis (FR6). Note that
the proposed detection technique is composed of
LSSVM, RBF with principal component analysis
(FR6), and BFEDroid (FS). &e proposed technique
was compared by considering LSSVM with poly-
nomial, RBF, and linear kernels, and each individual
LSSVM kernel was embedded with BFEDroid and
principal component analysis (PCA) (FR6) (best
among feature ranking techniques). &e proposed
detection technique with embedded BFEDroid (FS)
(proposed feature subset selection technique) with
LSSVM, radial basis function kernel (RBF), and
principal component analysis (FR6) outperforms
others. Tables 5–7 depict the detection performance
of the newly proposed BFE with each LSSVM kernel
(linear, polynomial, and radial basis functions) with
principal component analysis (i.e., best functional
ranking technique).

(c) Tables 8–10 show the proposed individual feature
subset selection techniques’ comparative results for
different categories of Android apps by comparing
the forward, backward, and exhaustive feature subset
selection techniques. Based on the findings, the
exhaustive subset selection technique (FS) outper-
forms other proposed individual (FS) techniques,
which make up our proposed embedded model
(BFEDroid) as shown below.

(d) Tables 11 and 12 show the feature ranking tech-
niques’ (FR) comparative results for different cate-
gories of Android apps in terms of the correlation of
the best feature and the assessment of subsets ob-
tained by the classifier. &e principal component
analysis (FR6) outperformed other (FR) techniques
as shown below. Tables 13–15 show the existing
feature subset selection techniques (FS), comparative
results for different categories of Android apps in
terms of the correlation of the best features, and the
assessment of subsets obtained by the classifier. &e
rough set analysis (FS4) outperformed other prev-
alent techniques (FS) as shown below.

(e) Tables 16–18 list the proposed feature subset selec-
tion technique (FS) comparative results for different
categories of Android apps in terms of forward,
backward, exhaustive, and embedded BFE-based
subset selection (forward, backward, and exhaus-
tive). &e proposed BFE (FS) technique outperforms
the other proposed individual techniques (FS),
which make up the proposed technique (BFEDroid),
which is shown below.

(f ) Table 19 compares the prevalent and proposed
feature subset selection techniques BFE (FS) in terms
of execution time. &e proposed embedded BFE-
Droid (FS) outperforms other (FS) techniques in
terms of execution time.

(g) Table 20 compares the prevalent and proposed
feature subset selection techniques (FS) in terms of
memory consumption. &e proposed embedded
BFEDroid (FS) outperforms other (FS) techniques in
terms of memory consumption.

(h) In this section (Table 21), the proposed feature se-
lection-based detection technique (LSSVM, RBF
with principal component analysis (FR6), and
BFEDroid (FS)) is compared with other recent
feature-based detection techniques. &e proposed
technique outperformed other detection techniques
in terms of memory consumption, runtime, accu-
racy, precision, AUC, ERR, and others.
(Tables22–24)

(A) Tables 1, 3, and 4 list the detection empirical
comparative results on prevalent detection
techniques for different categories of Android
apps by considering the LSSVM with three
distinct kernel functions, i.e., linear, RBF, and
polynomial functions. &e detection tech-
nique with LSSVM, radial basis function
kernel (RBF), principal component analysis
(FR6), and rough set analysis (FS4) out-
performed other prevalent detection tech-
niques. Tables 1, 3, and 4 depict the detection
results of LSSVM with each kernel with the
rough set analysis feature selection technique
and principal component analysis (FR6). Ta-
bles 1, 3, and 4 depict the detection perfor-
mance of each LSSVM kernel (linear,
polynomial, and radial basis function) with
principal component analysis (i.e., best func-
tional ranking technique) and rough set

Table 28:

Feature subset selection technique (proposed)
abbreviations used Corresponding names References

FS1 Forward feature subset selection Wen and Chow [29]
FS2 Backward feature subset selection Wen and Chow [29]
FS3 Exhaustive feature subset selection Wu and Kanai [30]

BFE Embedded technique
(backward + forward + exhaustive)

Our proposed
technique

14 Security and Communication Networks



analysis (best among the existing feature
subset selection). Figure 5 depicts the accuracy
comparison of existing FSDroid detection
with rough set analysis (FS) and principal
component analysis (FR) on each of the SVM
kernels. Figure 6 shows existing malware de-
tection techniques’ accuracy, while Figure 7
depicts their respective F-measure.

(B) Tables 5–7 depict the malware detection em-
pirical comparative results using the proposed
BFE feature selection technique (FS) on dif-
ferent categories of Android apps by consid-
ering the LSSVM with three distinct kernel
functions, i.e., linear, RBF, and polynomial

with principal component analysis (FR6).
Note that the proposed detection technique is
composed of LSSVM, RBF with principal
component analysis (FR6), and BFEDroid
(FS). &e proposed technique was compared
by considering LSSVM with polynomial, RBF,
and linear kernels, and each individual
LSSVM kernel was embedded with BFEDroid
and principal component analysis (PCA)
(FR6) (best among feature ranking tech-
niques). &e proposed detection technique
with embedded BFEDroid (FS) (proposed
feature subset selection technique) with
LSSVM, radial basis function kernel (RBF),

Figure 3: Execution time (SI) comparison of existing feature selection (FS) techniques and proposed BFE (FS) techniques. Proposed FS4
depicts the Embedded BFE (FS4), while other proposed FSs depict the individual units of the BFE (FS).

Figure 4: Memory consumption (kb) comparison of existing feature selection (FS) techniques and proposed BFE (FS) techniques. Proposed
FS4 depicts the Embedded BFE (FS4), while other proposed FSs depict the individual units of the BFE (FS).

Security and Communication Networks 15



and principal component analysis (FR6)
outperforms others. Tables 5–7 depict the
detection performance of the newly proposed
BFE with each LSSVM kernel (linear, poly-
nomial, and radial basis functions) with
principal component analysis (i.e., best func-
tional ranking technique). Figure 3 depicts the
execution time (SI) comparison of existing
feature selection (FS) techniques and pro-
posed BFE (FS) techniques. Proposed FS4
depicts the embedded BFE (FS4), while other
proposed FSs depict the individual units of the

BFE (FS). Figure 4 shows a memory con-
sumption (kb) comparison of existing feature
selection (FS) techniques and proposed BFE
(FS) techniques. Proposed FS4 depicts the
embedded BFE (FS4), while other proposed
FSs depict the individual units of the BFE (FS).
&ese LSSVM 3 kernels with principal com-
ponent analysis (FR6) and BFE (FS4) are
shown in Figures 10 and 11. &ese Figures 10
and 11 depict their respective accuracy and F-
measure.

Figure 5: Accuracy comparison of existing FSDroid detection with rough set analysis (FS) and principal component analysis (FR) on each of
the SVM kernels.

Figure 6: Accuracy comparison of existing FSDroid detection with rough set analysis (FS) and principal component analysis (FR) on each of
the LSSVM kernels.

16 Security and Communication Networks



(C) Tables 8–10 show the proposed individual
feature subset selection techniques’ compar-
ative results for different categories of Android
apps by comparing the forward, backward,
and exhaustive feature subset selection tech-
niques. Based on the findings, exhaustive
subset selection (FS) outperforms other pro-
posed individual (FS) techniques, which make
up our proposed embedded model (BFE-
Droid) as shown below. Figures 12 and 13
depict the accuracy and F-measure results.

(D.1) Tables 11 and 12 compare the feature ranking
technique (FR) results for different categories
of Android apps in terms of the correlation

between the best feature and the classifier’s
assessment of subsets. &e principal compo-
nent analysis (FR6) outperformed other (FR)
techniques as shown below. Figure 8 depicts
the respective F-Measure for both the feature
ranking techniques and existing feature se-
lection techniques. Figure 9 shows the feature
ranking techniques and existing feature se-
lection techniques' accuracy.

(D.2) Tables 13–15 present existing feature subset
selection techniques (FS), comparative results
for different categories of Android apps in
terms of the correlation of the best features, and
evaluation of subsets obtained by the classifier.

Figure 8: (FR) Droid F-measure comparison for various datasets and existing (FS) feature selection.

Figure 7: F-measure comparison of existing FSDroid detection with rough set analysis (FS) and principal component analysis (FR) on each
of the LSSVM kernels.

Security and Communication Networks 17



&e rough set analysis (FS4) outperformed
other prevalent techniques (FS), as shown be-
low. Figure 8 depicts the respective F-Measure
for both the feature ranking techniques and
existing feature selection techniques. Figure 9
shows the feature ranking techniques and
existing feature selection techniques' accuracy.

(E) Tables 16–18 list the proposed feature subset
selection technique (FS) comparative results
for different categories of Android apps in
terms of forward, backward, exhaustive, and
embedded BFE-based subset selection (for-
ward, backward, and exhaustive). &e pro-
posed BFE (FS) technique outperforms the
other proposed individual techniques (FS),

which make up the proposed technique
(BFEDroid), which is shown below. Figure 3
depicts existing Feature selection (FS) tech-
niques, proposed individual BFE units (FS)
techniques, and proposed embedded BFE
(FS4) techniques’ consumption time (SI),
while Figure 4 shows existing feature selection
(FS) techniques, proposed individual BFE (FS)
techniques, and proposed embedded BFE
(FS4) techniques’ memory consumption (kb).

(F) Table 19 compares the prevalent (FS) and
proposed feature subset selection technique,
BFE (FS), in terms of execution time. &e
proposed embedded BFEDroid (FS) outper-
forms other (FS) techniques in terms of

Figure 9: (FR) Droid accuracy comparison for various datasets and existing (FS) feature selection.

Figure 10: Accuracy comparison of the proposed BFE (FS) Droid with LSSVM different kernels, BFE (FS), and principal component
analysis (FR).

18 Security and Communication Networks



execution time. Figure 3 depicts existing
Feature selection (FS)techniques, proposed
individual BFE units (FS) techniques, and
proposed embedded BFE(FS4) techniques’
consumption time (SI). Figure 14 shows the
execution time comparison of existing and
proposed individual BFE unit (FS) techniques.
Figure 15 depicts a comparison of memory
consumption (kb) between existing and pro-
posed individual BFE units (FS) techniques.

(G) Table 20 compares the prevalent and proposed
feature subset selection techniques (FS) in
terms of memory consumption. &e proposed
embedded BFEDroid (FS) outperforms other
(FS) techniques in terms of memory

consumption (kb). Figure 4 shows existing
Feature selection (FS) techniques, proposed
individual BFE units (FS) techniques, and
proposed embedded BFE (FS4) techniques’
memoryconsumption (kb). Tables 8, 9, and 10
show the proposed feature selection technique
(FS) for individual units, respectively.
&e above comparison, in terms of execution
time and memory access, between the prev-
alent and the proposed feature subset selection
technique, (BFE) (FS) shows that the latter was
superior on both measures.
&us, the proposed BFEDroid (FS) with for-
ward, backward, and exhaustive techniques for
selecting a feature subset reduces the execution

Figure 11: F-measure comparison of the proposedBFE (FS)Droidwith LSSVMdifferent kernels, BFE (FS), and principal component analysis (FR).

Figure 12: Accuracy comparison of (FS) individual proposed BFE Droid units with forward, backward, and exhaustive subset selection schemes.

Security and Communication Networks 19



time andmemory access, which renders it more
efficient than prevalent techniques for malware
detection in Android apps.

(H) In this section (Table 21), the proposed feature
selection-based detection technique (LSSVM,
RBF with principal component analysis (FR6),
and BFEDroid (FS)) is compared with other
recent feature-based detection techniques. &e
proposed detection technique outperformed
other detection techniques in terms of memory
consumption, runtime, accuracy, precision,
AUC, ERR, and others. (Tables 25–28)

4.1. Discussion. We now discuss the above findings to de-
termine the best performance among the models
considered.Figures3–15.

RQ1: In this study, we evaluated ten feature selection
strategies and machine learning algorithms to generate
separate models. To identify the model best suited to
malware detection, we considered a number of per-
formance-related parameters (accuracy and the
F-measure in the case of semisupervised, supervised,
and hybrid machine learning algorithms; and these, in
addition to intracluster and intercluster distances in the
case of unsupervised learning methods, are listed in

Figure 13: F-measure comparison of individual proposed BFE units (FS) Droid with forward, backward, and exhaustive subset selection schemes.

Figure 14: Execution time comparison of existing and proposed individual BFE unit (FS) techniques.

20 Security and Communication Networks



Tables 1, 3–7). In terms of feature ranking techniques,
principal component analysis (PCA) (FR) out-
performed the other feature ranking techniques (FR),
and embedded BFE (FS) outperformed other feature
subset selection techniques (FS). For detection pur-
poses, the proposed detection technique (LSSVM, RBF,
principal component analysis (FR) with BFE (FS))
outperformed the other detection techniques.
RQ2: &is question pertains to the proposed malware
detection technique’s effectiveness. It is compared with
prevalent methods for malware detection in Tables 1,
3–7, and 21. &e proposed feature selection-based de-
tection technique (LSSVM, RBF with principal com-
ponent analysis (FR), and BFE (FS)) yielded the best
performance in terms of execution time and accuracy.
RQ3:&is research question sought to assess the feature
selection and examine the link between benign and
malicious applications. Various feature reduction
techniques were compared to identify the subset of
traits capable of detecting whether an app is malicious,
as shown in Tables 16–20.&e feature subset selected by
the BFE (FS) outperforms all other retrieved features in
terms of malware detection.

RQ4: &e machine learning algorithm performance in
terms of feature ranking (FR) is influenced by the fea-
tures and the type of malware data, as shown in Tables 11
and 12. Six variations of feature ranking algorithms (FR)
were used here to find a reduced subset of features. &e
results of the t-test showed that feature selection using
principal component analysis (PCA, i.e., the FR6 tech-
nique) generated the best results. Tables 11 and 12 show
the feature ranking techniques’ comparative results for
different categories of Android apps in terms of the
correlation of the best features and the assessment of
subsets obtained by the classifier. &e principal

component analysis (FR6) outperformed the other fea-
ture ranking techniques in terms of accuracy and
F-measure.
RQ5: In response to this research question, we compared
different approaches to selecting feature subsets in terms
of the F-measure and accuracy in the case of supervised,
semisupervised, and hybrid machine learning algo-
rithms; and two additional performance parameters,
intracluster and intercluster distance, in the case of
unsupervised machine learning algorithms, as shown in
Tables 16–18. &e BFE (FS) recorded a higher perfor-
mance over the rest of the consideration. &e rough set
analysis (FS) outperformed the existing feature subset
selection techniques, while BFE (FS) outperformed the
proposed individual feature subset selection techniques.
Overall, BFS (FS) outperformed the existing feature
subset selection techniques (FS) and the proposed in-
dividual subset selection techniques (FS).
RQ6: Feature subset selection and feature ranking
techniques are compared in Tables 11–15. We used the
pairwise t-test to determine whether the approaches
based on feature subset selection performed better than
those based on feature ranking, or whether both per-
formed equally well. A significant difference between
them was observed, whereby approaches based on
feature ranking yielded better results than those based
on selected feature subsets.
RQ7: To answer this question, we showed that nu-
merous feature selection (FS) techniques work very well
with specific machine learning algorithms. We thus
used different feature selection strategies by using a
variety of machine learning methods to determine their
usefulness. &eir performances in terms of accuracy,
F-measure, and execution time were recorded. &e
results showed that the combined BFE (FS) delivered
the best performance of all feature selection methods in

Figure 15: Memory consumption (kb) comparison of existing and proposed individual BFE unit (FS) techniques.

Security and Communication Networks 21



terms of all parameters. &is BFE (FS) was introduced
early in the data engineering stage with principal
component analysis (FR), thereby improving LSSVM
and RBF (Classifier) overall detection performance,
especially when compared with other detection tech-
niques. &is is shown in Tables 1, 3–7.

Overall, we compare our proposed technique with the
other state-of-the-art methods for Android malware de-
tection in recent years while comparing the efficiency of the
proposed technique. To be more precise, we will focus our
comparison on the other state-of-the-art feature-based
malware detection techniques in recent years. &e proposed
technique outperformed the other state-of-the-art feature-
based malware detection techniques in recent years in terms
of accuracy, memory consumption, accuracy, precision,
AUC, runtime, and error rate ratio, as shown in Table 21.

We will focus on the discussion under these two
headings:

(a). Performance Characteristics. To enhance the de-
tection and performance, we proposed a new em-
bedded feature selection-based detection technique
(embedded BFE (FS) with LSSVM, RBF, and
principal component analysis (FR6)). &e proposed
detection technique improves the accuracy by 1.5%,
the runtime by 12.74(SI), WFM by 6%, AUC by 3%,
and FM by 6%, as shown in Table 21. &is im-
provement comes from the introduction of the
embedded BFE (FS) feature subset selection algo-
rithm, which helps to select the best features needed
for a swift and effective detection process by LSSVM,
and RBF (classifier) with principal component
analysis (FR6).

(b). Security Characteristics. In terms of error rate ratio,
runtime, memory consumption, and other factors,
the proposed feature selection-based detection
technique outperforms other feature selection-
based detection techniques. &is comes from the
introduction of the embedded BFE (FS) feature
subset selection algorithm (improves the feature
subset selection process), thereby easing the clas-
sifier (LSSVM and RBF with principal component
analysis (FR6)) by reducing the runtime, memory
consumption, improving the error rate ratio, and
others.

5. Conclusions

&is research focused on techniques for choosing feature
subsets by applying a preselected set of criteria to help us
determine whether an Android app is malware or benign.
&e execution involved 30 types of Android applications.
Our experiments yielded the following conclusions:

It is possible to determine a limited set of features. &e
model for malware detection developed using such a col-
lection can accurately detect malware in apps. Our exper-
imental findings showed that considering feature selection
helped reduce the size of the feature sets. Models built by

using approaches based on feature selection performed
better than those built by using all extracted features. &e
suggested malware detection system is confined to classifi-
cation and can be extended in future work with additional
deep learning approaches.

Data Availability

&is dataset was collected from the Mendeley repository and
can be assessed by the link: https://data.mendeley.com/
datasets/9b45k4hkdf/1.

Conflicts of Interest

&e authors declare that there are no conflicts of interest
regarding the publication of this article.

Acknowledgments

&e authors sincerely acknowledge and dedicate this paper to
the support of theMinistry ofHigher Education,Malaysia, and
Universiti Tenaga Nasional (UNITEN), under the Transdis-
ciplinary Research Grant Scheme (TRGS) of Grant no.
“TRGS/1/2020/UNITEN/01/1/2.” &e research and publica-
tion of this article were funded by the Ministry of Higher
Education, Malaysia, and Universiti Tenaga Nasional (UNI-
TEN), under the Transdisciplinary Research Grant Scheme
(TRGS) of Grant no. “TRGS/1/2020/UNITEN/01/1/2.”

References

[1] A. Mahindru and A. L. Sangal, “MLDroid: framework for
Android malware detection using machine learning tech-
niques,” Neural Computing & Applications, vol. 33, no. 10,
pp. 5183–5240, 2020.

[2] Z. Ma, H. Ge, Y. Liu, M. Zhao, and J. Ma, “A combination
method for android malware detection based on control flow
graphs and machine learning algorithms,” IEEE Access, vol. 7,
pp. 21235–21245, 2019.

[3] L. Cai, Y. Li, and Z. Xiong, “JOWMDroid: android malware
detection based on feature weighting with joint optimization
of weight-mapping and classifier parameters,” Computers &
Security, vol. 100, Article ID 102086, 2021.

[4] S. Fallah and A. Bidgoly, “Benchmarking machine learning
algorithms for malware detection in smartphones,” Jordanian
Journal of Computers and Information Technology, vol. 5,
no. 3, p. 1, 2019.

[5] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “DL-Droid: deep
learning based android malware detection using real devices,”
Computers & Security, vol. 89, Article ID 101663, 2020.

[6] H. Rathore, S. K. Sahay, P. Nikam, and M. Sewak, “Robust
android malware detection system against adversarial attacks
using Q-learning,” Information Systems Frontiers, vol. 23,
no. 4, pp. 867–882, 2020.

[7] V. Kouliaridis, G. Kambourakis, D. Geneiatakis, and N. Potha,
“Two anatomists are better than one—dual-level android
malware detection,” Symmetry, vol. 12, no. 7, p. 1128, 2020.

[8] S. Wang, Z. Chen, Q. Yan et al., “Deep and broad URL feature
mining for android malware detection,” Information Sciences,
vol. 513, pp. 600–613, 2020.

[9] A. G. Manzanares, H. Bahsi, and S. Nõmm, “KronoDroid:
time-based hybrid-featured dataset for effective android

22 Security and Communication Networks

https://data.mendeley.com/datasets/9b45k4hkdf/1
https://data.mendeley.com/datasets/9b45k4hkdf/1


malware detection and characterization,” Computers & Se-
curity, vol. 110, Article ID 102399, 2021.

[10] M. Abuthawabeh and K. Mahmoud, “Enhanced android mal-
ware detection and family classification, using conversation-
level network traffic features,”4e International Arab Journal of
Information Technology, vol. 17, no. 4A, pp. 607–614, 2020.

[11] G. Ditzler, J. LaBarck, J. Ritchie, G. Rosen, and R. Polikar,
“Extensions to online feature selection using bagging and
boosting,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 29, no. 9, pp. 4504–4509, 2018.

[12] L. M. Wang and Y. M. Shao, “Crack fault classification for
planetary gearbox based on feature selection technique and
K-means clustering method,” Chinese Journal of Mechanical
Engineering, vol. 31, no. 1, p. 4, 2018.

[13] D. Lakshmipadmaja and B. Vishnuvardhan, “Classification
performance improvement using random subset feature se-
lection algorithm for data mining,” Big Data Research, vol. 12,
pp. 1–12, 2018.

[14] N. Nayar, S. Ahuja, and S. Jain, “Swarm intelligence for feature
selection: a review of literature and reflection on future
challenges,” Advances In Data And Information Sciences,
vol. 39, pp. 211–221, 2018.

[15] B. Chakraborty and A. Kawamura, “A new penalty-based
wrapper fitness function for feature subset selection with
evolutionary algorithms,” Journal of Information and Tele-
communication, vol. 2, no. 2, pp. 163–180, 2018.

[16] H. Hichem, M. Elkamel, M. Rafik, M. T. Mesaaoud, and
C. Ouahiba, “A new binary grasshopper optimization algo-
rithm for feature selection problem,” Journal of King Saud
University - Computer and Information Sciences, vol. 34, no. 2,
pp. 316–328, 2022.

[17] R. Saidi, W. Bouaguel, and N. Essoussi, “Hybrid feature se-
lection method based on the genetic algorithm and Pearson
correlation coefficient,” Machine Learning Paradigms: 4eory
and Application, vol. 801, pp. 3–24, 2018.

[18] Q. Yu, J. Qian, S. Jiang, Z. Wu, and G. Zhang, “An empirical
study on the effectiveness of feature selection for cross-project
defect prediction,” IEEE Access, vol. 7, pp. 35710–35718, 2019.

[19] Y. Mao and Y. Yang, “A wrapper feature subset selection
method based on randomized search and multilayer struc-
ture,” BioMed Research International, vol. 2019, pp. 1–9,
Article ID 9864213, 2019.

[20] A. K. Shukla, P. Singh, andM. Vardhan, “A hybrid framework
for optimal feature subset selection,” Journal of Intelligent and
Fuzzy Systems, vol. 36, no. 3, pp. 2247–2259, 2019.

[21] H. Cai, N. Meng, B. Ryder, and D. Yao, “DroidCat: effective
android malware detection and categorization via app-level
profiling,” IEEE Transactions on Information Forensics and
Security, vol. 14, no. 6, pp. 1455–1470, 2019.

[22] H. Cai, “Embracing mobile app evolution via continuous
ecosystem mining and characterization,” in Proceedings of the
IEEE/ACM 74 International Conference on Mobile Software
Engineering and Systems, Korea, July 2020.

[23] J. Y. Kim, S. J. Bu, and S. B. Cho, “Zero-day malware detection
using transferred generative adversarial networks based on
deep auto encoders,” Information Sciences, vol. 460-461,
pp. 83–102, 2018.

[24] S. M. Sohi, J. P. Seifert, and F. Ganji, “RNNIDS: enhancing
network intrusion detection systems through deep learning,”
Computers & Security, vol. 102, Article ID 102151, 2021.

[25] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran,
and S. Venkatraman, “Robust intelligent malware detection
using deep learning,” IEEE Access, vol. 7, pp. 46717–46738,
2019.

[26] Z. Moti, S. Hashemi, and A. Namavar, “Discovering future
malware variants by generating new malware samples using
generative adversarial network,” in Proceedings of the 2019
94 International Conference on Computer and Knowledge
Engineering (ICCKE), Iran, October 2019.

[27] S. Sharmeen, S. Huda, J. Abawajy, and M. M. Hassan, “An
adaptive framework against android privilege escalation
threats using deep learning and semi-supervised approaches,”
Applied Soft Computing, vol. 89, Article ID 106089, 2020.

[28] Y. Wang and J. Zheng, “An evaluation of one-class feature
selection and classification for zero-day android malware
detection,” Advances in Intelligent Systems and Computing,
pp. 105–111, 2020.

[29] Q. Wen and K. Chow, “CNN based zero-day malware de-
tection using small binary segments,” Forensic Science In-
ternational: Digital Investigation, vol. 38, Article ID 301128,
2021.

[30] J. Wu and A. Kanai, “Utilizing obfuscation information in
deep learning-based Android malware detection,” in Pro-
ceedings of the 2021 IEEE 454 Annual Computers, Software,
and Applications Conference (COMPSAC), Spain, July 2021.

[31] S. Millar, N. McLaughlin, J. Martinez Del Rincon, and
P. Miller, “Multi-view deep learning for zero-day Android
malware detection,” Journal of Information Security and
Applications, vol. 58, Article ID 102718, 2021.

[32] Z. He, T. Miari, H. Makrani, M. Aliasgari, H. Homayoun, and
H. Sayadi, “When machine learning meets hardware cyber
security: delving into accurate zero-day malware detection,”
in Proceedings of the 2021 22nd International Symposium on
Quality Electronic Design (ISQED), Santa Clara, CA, U.S.A,
April 2021.

[33] D. Carlin, A. Cowan, P. O’Kane, and S. Sezer, “&e effects of
traditional anti-virus labels on malware detection using dy-
namic runtime opcodes,” IEEE Access, vol. 5, pp. 17742–
17752, 2017.

[34] K. Xu, Y. Li, R. Deng, K. Chen, and J. Xu, “DroidEvolver: self-
evolving android malware detection system,” in Proceedings of
the 2019 IEEE European Symposium on Security and Privacy
(EuroS & P), Sweden, June 2019.

[35] H. Cai, X. Fu, and A. L. Hamou, “A study of run-time be-
havioral evolution of benign versus malicious apps in An-
droid,” Information and Software Technology, vol. 122, Article
ID 106291, 2020.

[36] H. Cai and B. Ryder, “A longitudinal study of application
structure and behaviors in Android,” IEEE Transactions on
Software Engineering, vol. 47, no. 12, pp. 2934–2955, 2021.

[37] A. Mahindru and A. L. Sangal, “FSDroid: - a feature selection
technique to detect malware from Android using Machine
Learning Techniques,” Multimedia Tools and Applications,
vol. 80, no. 9, pp. 13271–13323, 2021.

[38] A. Mahindru and A. L. Sangal, “SOMDROID: android
malware detection by Artificial Neural Network trained using
unsupervised learning,” Evolutionary Intelligence, vol. 15,
no. 1, pp. 407–437, 2020.

[39] A. Mahindru and A. L. Sangal, “PARUDroid: validation of
android malware detection dataset,” Journal of Cybersecurity
and Information Management, vol. 3, pp. 42–52, 2020.

[40] R. Taheri, M. Shojafar, M. Alazab, and R. Tafazolli, “Fed-IIoT:
a robust federated malware detection architecture in indus-
trial IOT,” IEEE Transactions on Industrial Informatics,
vol. 17, no. 12, pp. 8442–8452, 2021.

[41] A. Mahindru and A. L. Sangal, “Hybridroid: an empirical
analysis on effective malware detection model developed

Security and Communication Networks 23



using ensemble methods,” 4e Journal of Supercomputing,
vol. 77, no. 8, pp. 8209–8251, 2021.

[42] Z. Akram, M. Majid, and S. Habib, “A systematic literature
review: usage of logistic regression for malware detection,” in
Proceedings of the 2021 International Conference on Innovative
Computing (ICIC), Pakistan, November 2021.

[43] A. H. E. Fiky, “Deep droid: deep learning for android malware
detection,” International Journal of Innovative Technology and
Exploring Engineering, vol. 9, no. 12, pp. 122–125, 2020.

[44] M. Shafiq, Z. Tian, A. K. Bashir, X. Du, and M. Guizani, “IoT
malicious traffic identification using wrapper-based feature
selection mechanisms,” Computers & Security, vol. 94, Article
ID 101863, 2020.

[45] M. Nassar, H. Safa, A. A. Mutawa, A. Helal, and I. Gaba, “Chi
squared feature selection over Apache Spark,” in Proceedings
of the 23rd International Database Applications & Engineering
Symposium, pp. 1–5, Athens, Greece, June 2019.

[46] A. G. Karegowda, A. S. Manjunath, and M. A. Jayaram,
“Comparative study of attribute selection using gain ratio and
correlation based feature selection,” International Journal of
Information Technology and Knowledge Management, vol. 2,
pp. 271–277, 2010.

[47] H. P. Vinutha and B. Poornima, “An ensemble classifier
approach on different feature selection methods for intrusion
detection,” Advances in Intelligent Systems and Computing,
vol. 672, pp. 442–451, 2018.

[48] E. O. Omuya, G. O. Onyango, and M. W. Kimwele, “Feature
selection for classification using principal component analysis
and information gain,” Expert Systems with Applications,
vol. 174, Article ID 114765, 2021.

[49] J. Abawajy, A. Darem, and A. A. Alhashmi, “Feature subset
selection for malware detection in smart IoT platforms,”
Sensors, vol. 21, no. 4, p. 1374, 2021.

[50] S. Selvaganapathy, S. Sadasivam, and V. Ravi, “A review on
android malware: attacks, countermeasures and challenges
ahead,” Journal of Cyber Security and Mobility, vol. 10, 2021.

[51] M. Nauman, N. Azam, and J. Yao, “A three-way decision
making approach to malware analysis using probabilistic
rough sets,” Information Sciences, vol. 374, pp. 193–209, 2016.

[52] N. Şahin, “Malware detection using transformers-based
model GPT-2,” Master’s thesis, Middle East Technical Uni-
versity, Turkey, 2021.

[53] H. M. Rouzbahani, H. Karimipour, A. Rahimnejad,
A. Dehghantanha, and G. Srivastava, “Anomaly detection in
cyber-physical systems using machine learning,”Handbook of
Big Data Privacy, Springer, Germany, pp. 219–235, 2020.

24 Security and Communication Networks




