
Research Article
Research on Intelligent Scheduling Mechanism in Edge
Network for Industrial Internet of Things

Zhenzhong Zhang,1,2 Wei Sun,1 and Yanliang Yu 3

1Center of Quantitative Economies, Jilin University, Changchun Jilin 130012, China
2Zhuhai College of Science and Technology, Zhuhai, Guangdong 519041, China
3School of Law and Social Work, Dongguan University of Technology, Dongguan, Guangdong 523000, China

Correspondence should be addressed to Yanliang Yu; yyl3039@email.poe.edu.pl

Received 13 August 2021; Accepted 21 October 2021; Published 5 January 2022

Academic Editor: Xuyun Zhang

Copyright © 2022 Zhenzhong Zhang et al. 'is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

With the vigorous development of the Internet of 'ings, the Internet, cloud computing, and mobile terminals, edge computing
has emerged as a new type of Internet of'ings technology, which is one of the important components of the Industrial Internet of
'ings. In the face of large-scale data processing and calculations, traditional cloud computing is facing tremendous pressure, and
the demand for new low-latency computing technologies is imminent. As a supplementary expansion of cloud computing
technology, mobile edge computing will sink the computing power from the previous cloud to a network edge node. 'rough the
mutual cooperation between computing nodes, the number of nodes that can be calculated is more, the types are more
comprehensive, and the computing range is even greater. Broadly, it makes up for the shortcomings of cloud computing
technology. Although edge computing technology has many advantages and has certain research and application results, how to
allocate a large number of computing tasks and computing resources to computing nodes and how to schedule computing tasks at
edge nodes are still challenges for edge computing. In view of the problems encountered by edge computing technology in
resource allocation and task scheduling, this paper designs a dynamic task scheduling strategy for edge computing with delay-
aware characteristics, which realizes the reasonable utilization of computing resources and is required for edge computing
systems. 'is paper proposes a resource allocation scheme combined with the simulated annealing algorithm, which minimizes
the overall performance loss of the system while keeping the system low delay. Finally, it is verified through experiments that the
task scheduling and resource allocation methods proposed in this paper can significantly reduce the response delay of
the application.

1. Introduction

'e rapid development of technologies such as the Internet
of 'ings has brought mankind into a new era of intelli-
gence. 'e rapid popularization of high-speed Internet has
brought about continuous growth in the amount of websites
and data. 'e massive amount of data has promoted the
evolution of the entire computing model and also put
forward higher requirements on data storage and processing
technology [1]. However, due to the disadvantages of tra-
ditional cloud computing technology, such as insufficient
bandwidth, real-time performance, and high energy con-
sumption, it has been unable to efficiently process massive

amounts of data [2]. 'erefore, edge computing emerged as
a new computing model, which extends data to the edge of
the network on the basis of cloud computing to achieve the
overall performance of the Internet of 'ings technology
[3, 4].

Edge computing brings convenient services in the face of
complex network environments and diverse application
services, but it also brings a series of new problems and
challenges, such as the configuration of computing resources
and task scheduling. Literature [5] puts forward the theory of
edge computing on the basis of cloud computing and
transmits data to the edge of the Internet to improve the
overall availability and scalability of the system; literature [6]

Hindawi
Security and Communication Networks
Volume 2022, Article ID 5358873, 14 pages
https://doi.org/10.1155/2022/5358873

mailto:yyl3039@email.poe.edu.pl
https://orcid.org/0000-0001-8083-0378
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5358873

puts forward the theoretical basis of fog computing for the
first time, and the technology is also by configuring com-
puting and storage devices at the edge of the Internet to
reduce the amount of Internet data transmission, so as to
achieve the purpose of reducing latency and saving band-
width [7]. Compared with fog computing, edge computing
technology pays more attention to the collaboration of re-
sources between edge nodes and can handle data upstream
of the cloud or downstream of the Internet of 'ings very
well [8]. Resource allocation and task scheduling optimi-
zation in edge computing technology is one of the important
research issues of this technology, and its implementation
plan directly affects the utilization rate of resources and the
service experience of users [9]. Literature [10] integrates
optimization problems in edge computing scenarios and
sorts out a number of optimization indicators according to
the optimization scenarios. For the problem of resource
optimization and allocation of edge computing, Brogi et al.
sorted out the types of optimization algorithms, optimiza-
tion goals, and constraints [11]. Aiming at the task sched-
uling problem, literature [12] specifically studied three task
scheduling methods. 'e first method is concurrent, the
second is FCFS (first come, first served), and the third
method is allocated according to delay priority. In the first
method, the acquired tasks are allocated to edge devices for
processing, and there is no need to care about the usage of
each device. In the second method, the acquired tasks will be
processed in sequence according to the entry order. Only
when the computing power of the edge node cannot handle
the current task will the task be moved to the cloud for
processing. In the delayed priority allocation method, the
arriving tasks will be scheduled in the order of priority.
When the edge computing resources are not enough, the low
priority will be processed by the cloud. Research shows that
although the number of tasks that can be executed at the
same time is the largest in the first method, the equipment
utilization is the highest, but because the resources that can
be used for computing are limited, each task causes a large
delay. In the second method, Since the order of task exe-
cution is carried out in order of priority, some tasks with
lower priority will be sent to the cloud for execution, so this
method cannot cope with some tasks with higher require-
ments for delay, and it also brings data transmission. Energy
consumption is high. For this reason, literature [13] in-
troduced a knapsack algorithm-based symbiosis search
scheduling algorithm based on the above research. 'is
method has significantly improved energy consumption,
network utilization, and execution cost compared with the
traditional knapsack algorithm and the FCFS method.

In order to make full use of the computing power of the
edge server and further reduce the response delay of the
application, literature [14] proposed a delay-aware appli-
cation module management method oriented to the edge
environment. Te-Yi et al. [15] divided the delay priority of
different tasks and used heuristic algorithms to solve the
problem of computing resource allocation, thereby im-
proving the efficiency and quality of edge computing.
According to the above-mentioned research findings, task
scheduling and resource allocation in edge computing

technology have attracted the attention of a large number of
scholars, but the research on the two aspects of true com-
prehensive resource allocation and task scheduling needs to
be further deepened. 'is paper studies the problem of
resource allocation and task scheduling for edge computing.
First, through the realization of collaborative caching be-
tween different edge nodes, each edge node caches differ-
entiated data, so as to train and obtain a submodel with
greater difference. To achieve a more accurate edge inte-
gration model, second, use cache compression records and
record sharing to achieve reasonable data distribution
scheduling and caching, and finally design and implement
the TCP/IP network node cache module in the edge com-
puting framework.

1.1. Principle Analysis of Collaborative Cache for Edge
Computing. In order to improve the performance of edge
computing, the process of edge computing is first studied.
Integrated diversity, that is, the difference between sub-
models, is the key issue of integrated learning methods.
'rough research, it is found that if the same submodels are
combined, there will be no performance improvement; if
there is a performance improvement after the combination,
there must be a difference between the submodels. Tumer
et al. [16] analyzed the simple soft voting integration method
through decision boundary analysis. In order to keep it
simple, assuming that all submodels have the same error rate,
the θ term is introduced to describe the relationship between
the different submodels, and the expected cumulative error
after integration is shown in the following formula:

err(H) �
1 + θ(n − 1)

n
erri hi(, i � 1, 2, . . . , n. (1)

In the above formula, erri(hi) is the expected error rate
of the submodel and n is the size of the integration scale. It
can be seen from the formula that if the submodels are
independent of each other, namely, θ � 0, the ensemble
learning error will be reduced by n times. If each submodel is
associated with all other submodels, namely, θ � 1, the
performance of the integrated submodel will not be effec-
tively improved. 'is analysis clearly reveals the importance
of different submodels in ensemble learning, and the same
conclusion is also applicable to other ensemble methods
[17].

However, it is not easy to generate highly diverse sub-
models [18]. 'e biggest obstacle is that the submodels are
obtained on the same task and the same training set, so there
is often a high correlation between the submodels. Many
theoretically feasible methods, such as the optimal solution
of the weighted average method, are difficult to work in
reality, and the situation may even be worse. In fact, the
performance of the submodels should not be too bad;
otherwise, the combined performance not only will not be
improved but also will be reduced, which makes it more
challenging to generate diverse submodels. If the perfor-
mance of the submodel is poor, the cumulative errors after
simple soft voting integration will continue to increase, and
other integration methods have similar results [19, 20].

2 Security and Communication Networks

If the submodels are independent of each other, the error
of ensemble learning will be reduced. If each submodel is
related to other submodels, the error of ensemble learning
will become larger. 'is analysis clearly reveals the im-
portance of the different submodels. In this case, it is
necessary to implement collaborative caching between dif-
ferent edge nodes, and each edge node caches differentiated
data, so as to train a submodel with larger differences and
realize a more accurate edge integration model.

1.2. Cache Compression Records and Record Sharing. 'e
compressed record of the cached data plays an important
role in the intelligent scheduling of the cache. 'e efficient
compression recording method can record the data infor-
mation cached by each edge node and realize the exchange
and collection of cache information between edge nodes.'e
cache intelligent scheduling scheme can reasonably schedule
the cache according to the data distribution and supports the
distributed submodel learning and final integrated learning
of each edge node, as shown in Figure 1. In this section, we
mainly introduce two parts: cache data record and record
sharing.

1.2.1. Cache Data on Edge Computing Nodes and Record
Efficiently. 'e data required for the training of the inte-
grated learning model is collected from the neighboring user
terminal equipment and transmitted to the edge node, and
the edge node is cached in the LRU mode and is efficiently
recorded using the combinable counting bloom filter
(CCBF). 'e specific process is as follows: when the data
arrives at a certain edge node, whether the data has been
cached by querying the CCBF is judged. If it has been
cached, the data is not cached; if it has not been cached, the
data is cached using LRU and used CCBF performs high-
efficiency compression recording.

'e specific operation is as follows: use k hash functions
to hash the data received by the edge node into k bit arrays
and check whether the corresponding unit of orBarr in
CCBF is 1; if it is 1, it means that the data has been cached, so
do not proceed. If it is not 1, LRU cache is required. 'e
implementation of LRU adopts the form of a linked list.
When caching, it is necessary to determine whether the
cache capacity of the edge node is reached. If the cache
capacity of the edge node is not reached, the data is cached at
the head of the linked list; if the cache capacity has been
reached, it is the oldest. 'e used data is eliminated, and,
through the pseudorandom number generator, the bit array
corresponding to the unit of each hash function operation in
the last insertion operation of the data is cleared to zero, the
orBarr array is updated, and the cache record is cleared.
'en add the new data to the head of the cache linked list.

After adding the data to the cache, use the pseudorandom
number generator to correspond to the bit array whose
location unit (unit with subscript Hashj (d)) has been set to
1 according to the hash result. Randomly select a bit array
barri (the i-th bit array of CCBF) in the g bit array, set its
subscript as Hashj (d) to 1, update the OrBarr array, and
complete the update of CCBF.

1.2.2. Exchange and Merge Compressed Records of Cached
Data with Neighbor Nodes. 'e compressed representation
of cached data (CCBF) is exchanged and merged with
neighbors within a certain range in order to obtain a global
view of the edge node cached data, and the subsequent cache
scheduling process can be guided based on this global view.
Once a node receives a compressed record of the neighbor
node cache data from the interface, the compressed record
will be stored with the name CCBFi, where i is the ID
number of the corresponding edge node interface.

Use the ID number of the edge network node to ex-
change CCBFi, hash the received data into k bit array units
through k hash functions, and then query whether the orBarr
unit corresponding to the neighbor node is 1; if it is 1, it
means that the data has been existing in the cache data of the
neighbor node, it is necessary to delete the redundant cache
data, set the unit corresponding to the middle bit array of the
node to 0, and update CCBFi the node.

'e original compression record of the edge node is
merged with the received neighbor nodes. 'e specific
operation is to first determine whether the amount of cached
data represented by the merged compression has exceeded
the capacity n of CCBF, and then, according to the different
bit arrays label, merge each bit array in order, and update the
orBarr array to get a global view of the edge network cache
data. After merging, a global view of the data compression
records cached in the neighbor nodes can be obtained, and
this view will be used to guide the neighbor nodes to cache
various data subsequently received.

1.3. Differentiated Adaptive Collaborative Caching. 'e
cache intelligent scheduling scheme can reasonably schedule
the cache according to the data distribution and supports the
distributed submodel learning and final integrated learning
of each edge node. In this section, we mainly introduce the
differentiated adaptive collaborative caching method for
model learning.

1.3.1. Cache Different Data between Neighbor Nodes.
When an edge node requests to cache some data, it needs to
determine whether the data already exists in the cache of the
node and its neighbor nodes according to the global view of

Security and Communication Networks 3

the cached data. 'e specific operation is as follows: query,
which represents a global view of data cached in neighbor
nodes. Hash the cached data requested by the node k times to
obtain k hash results, and check whether the corresponding
array orBarr unit is 1; if the corresponding unit in the orBarr
array is 1, it means that the data has been cached at this edge.
On the network node, the data is ignored, no caching op-
eration is performed, and the following data processing is
performed; if the corresponding unit of the array in is 0, it
means that there is no compressed record of the data in the
cache, indicating the cache of other neighboring nodes. If
the data is not included, the data is added to the cache of the
edge node, and the compressed record of the data is added to
the corresponding node. 'rough the above operations, it
can be ensured that different data can be cached on
neighboring nodes for training different submodels, and, at
the same time, communication overhead can be reduced
through collaborative caching.

1.3.2. Distributed Training of Submodels. 'edata cached on
a node is used to train the local submodel. When the local
data is not enough to make the submodel converge, it is
necessary to expand the scope of collaboration by requesting
differentiated data from other edge nodes. By performing
merging of orBarr in CCBFi of different neighboring nodes’
cached data, the obtained cached data records of different
neighboring nodes are compared with the cached data
records of the local node to obtain the required data
compression record CCBFi and send it to the corresponding
edge node. When the corresponding edge node receives the
request, it queries the cache of the local node according to

orBarr and returns the differentiated data to the requesting
node. After the requesting node receives the data, it caches
the data and updates CCBFi and CCBF and then inputs the
data into the submodel for training. Repeat these processes
until the submodel converges.

1.3.3. Integrated Learning. In order to reduce network data
transmission traffic and ensure data privacy and security, the
training results of the distributed submodels are uploaded to
the data center, and the integrated results are obtained by
assigning different weights to the output results of each
submodel in the data center. 'e set output result H(x) is
shown in the following formula:

H(x) �
n

i�1
ωihi (x). (2)

In the above formula, ωi represents the weight of h,
usually with the constraints of ωi ≥ 0 and

n
i�1ωi � 1.

'e weights of these parameters in the submodel are
uploaded to the central node, and the central node performs
integrated learning. Specifically, for n sub-h1, . . . , hn models,
the following methods are used for ensemble learning: p(x)

is the distribution of the input, ϵi(x) is the error term, and
Cij � (hi(x) − f(x))(hj(x) − f(x))p(x)d(x).

'e optimal weight can be solved by the following
formula:

ω � argmin
ω

n

i�1

n

j�1
ωiωjCij. (3)

By Lagrangian multiplier method, ωi is obtained as
shown in the following formula:

ωi �

n
j�1 C

−1
ij

n
k�1

n
j�1 ωiωjC

−1
kj

. (4)

1.4. Design and Implementation of Node Cache Module in
TCP/IP Edge Network. 'e TCP/IP network node cache
module is designed and implemented in the edge integrated
learning framework. First, the implementation of the LRU
cache module of TCP/IP network nodes is introduced, and
then the method of deploying the LRU cache module to the
NS-3 edge simulation platform is introduced.

CCBF
CCBF

CCBF

CCBF records
cache data
efficiently

Integrated learning

Data center

CCBF3CCBF2

CCBF1 CCBF

merge
CCBF records cache

data efficiently

Cache different data
according to ccbf

Submodel training

Periodic exchange and
aggregation of exchange records

Figure 1: Collaborative caching scheduling method.

4 Security and Communication Networks

LRU is the abbreviation of “Least Recently Used.” It is a
commonly used cache replacement algorithm. 'e cache
data that has not been used the most recently is selected to be
eliminated. 'e LRU cache in NS-3 mainly implements the
function of caching data on each edge network node. In this
section, the LRU cache on the TCP/IP edge network node is
designed and implemented.

First the implementation of LRU cache is introduced,
followed by the way to implement LRU cache on the NS-3
platform. 'e specific operations are as follows:

(1) 'e first step is to construct the code of the LRU
cache, where the cache size needs to be set, so the
function of LRU cache is used, and the capacity of the
cache is set as a parameter of this function. 'e LRU
cache is based on the encapsulated data packet as a
unit for caching. 'e LRU cache mechanism uses the
form of a linked list, placing the least recently used at
the head of the linked list. It mainly includes three
functions, namely, the addition, deletion, and search
functions of cached data. 'e specific operations are
as follows:

(1) To increase the cache data (Memory), it is necessary
to first determine whether the current cache has
reached the capacity of the cache. If the cache ca-
pacity has been reached, delete the last one of the
linked list, and then store it; if the cache capacity is
not reached, store it directly at the head of the cache.

(2) In the process of deleting the cached data (Remove),
when the cache capacity is not enough, the last data
in the linked list represents the most recently unused
data, and it is deleted.

(3) In the process of looking up cached data (Lookup), if
the data is not found, -1 is returned; if it is found, the
value of the data is returned, and then the data is
placed at the head of the cache.

(2) Implement LRU cache on the NS-3 platform.

To implement LRU caching on the NS-3 platform, you
need to add a custom LRU caching module to the original
module of NS-3.

(1) First, the basic structure of NS-3 is introduced here.
src is the source code directory of NS-3, and the
directory structure basically corresponds to the
compiled module. Each file in the src directory
basically corresponds to a module, and the structure
of all modules in it is basically the same.

(2) 'en, according to the design of NS-3, the imple-
mentation of LRU cache is added to NS-3 as a
custom module.

1.5. Edge Network Node Deployment. 'is paper deploys the
edge network tree topology as shown in Figure 2. As shown
in the figure, it includes a remote data center, a gateway
node, four edge computing nodes, and eight terminal de-
vices, which are connected through a gigabit link, and the
data transmission between them is point-to-point

transmission. Peer-to-peer technology (P2P), also known as
peer-to-peer network technology, is a new network tech-
nology that relies on the computing power and bandwidth of
participants in the network, instead of concentrating all the
dependencies on a few servers in the edge network topology.
'e cache size of each edge computing node is 2000KB.
Each edge computing node can cache data, efficiently record
cached data, and perform computing tasks for cached data.

'e data required for neural network model training are
all released by the terminal equipment node. 'e terminal
device generates the learning data of the model and sends the
data to the edge computing node. After the edge computing
node receives the data, it first performs data caching and
efficient recording and then uses the different data in the
collaborative cache to train the submodel and finally sends
the training results of the submodel to the data center for
integrated learning. Background traffic data is released by
remote data center nodes. 'e data center generates back-
ground traffic data and sends the data to edge computing
nodes. After the edge computing node receives the data, it
caches the data and sends the background traffic data to the
terminal device.

1.6. Construction of Edge Network Node Learning Module.
In this article, the edge network node learning module is
designed and implemented. When deploying a neural net-
work model on the NS-3 edge simulation platform, the
difficulty encountered is the joint compilation of the NS-3
platform and OpenNN. So, the method of joint compilation
of NS-3 platform and OpenNN is introduced first, and then
the process of edge integration learning based on OpenNN
design pattern is introduced. 'e operation steps applied on
the simulation platform of NS-3 are shown in Figure 3.

Because the NS-3 simulation platform is compiled
with /waf, in the process of compiling the OpenNN neural
network library, the newly added library needs to be included in
the wscript file, and the corresponding library file needs to be
included in the script. 'e specific operations are as follows:

(1) Put the Eigen folder in OpenNN under the
ndnSIM/ns-3 folder, which is the preliminary step of
the joint compilation of OpenNN and NS-3. Eigen is
a C++ template library for linear operations, sup-
porting matrix and vector operations, numerical
analysis, and related algorithms. Because OpenNN
contains a lot of matrix operations, you need to use
the Eigen library.

(2) Add in the corresponding position in the wscript file
under the NS-3 folder:
Def build (bld):
Bld.stlib (“opennn”)
Module.uselib� ‘opennn.’
Module.source� ‘opennn/∗∗/∗.cpp.’
Module.full_headers� ‘opennn/∗∗/∗.cpp.’
Such an operation is to add the OpenNN neural
network library to the wscript file and include the
corresponding header files and source files.

Security and Communication Networks 5

(3) Add the following to the header file in the code that
needs neural network model training:
#include “../opennn/opennn.h.”
Because the opennn.h file contains the header files
required by OpenNN, only including this one header
file in the source file can include all the required
header files.

(4) NS-3 contains a fixed Vector vector. When using the
Vector vector defined by the Eigen library in
OpenNN, it needs to be distinguished. 'e method
adopted is as follows:
Using namespace OpenNN:

When using the OpenNN model, first include the
OpenNN namespace, and then when using the OpenNN
Vector vector, add “OpenNN:” in front, that is, OpenNN:
: Vector ∗∗∗∗∗. In this way, the Vector vector in NS-3 can be
distinguished from the vector in OpenNN.

'e ensemble learning process is closely related to dif-
ferent submodels. In the edge integrated learning scenario,
different edge nodes often deploy similar models, build
submodels by learning the data around the edge nodes, and
finally distribute the submodels on different nodes through
the central node to form an integrated model. In this case, it
is necessary to provide different data for different edge
nodes, so as to obtain the training results of different

Point-
to-point
network
equipm

ent

Network
topology

NS-3 Model

Training
packet
encaps
ulation

TCP/IP
transfer

data

LRU
Cache
data

OpenNN
Submod

el
training

Integrat
ed

learning

Figure 3: Edge network topology.

Data Center

Gateway

Router

Terminal
Equipment

Terminal
Equipment

Terminal
Equipment

Terminal
Equipment

Terminal
Equipment

Terminal
Equipment

Terminal
Equipment

Terminal
Equipment

Router Router Router
Edge computing

equipment
Edge computing

equipment
Edge computing

equipment
Edge computing

equipment

Background trafficTraining data

cloud
computing

Figure 2: Edge network topology.

6 Security and Communication Networks

submodels, so as to achieve a more accurate integrated
model.

In this article, the integrated learning method based on
the OpenNN design pattern obtains the results by assigning
different weights to the output results of each submodel. 'e
set output result is H(x), where H(x) �

n
i�1ωihi(x) rep-

resents the weight of ωi, usually with ωi ≥ 0 and
n
i�1ωi � 1

constraints.
'e weights of these parameters in the submodel are

uploaded to the central node, and the central node performs

integrated learning. Specifically, for n submodels h1, . . . , hn,
the following methods are used for ensemble learning.

Assume that the output of each submodel can be written
as a true value plus an error term, as shown in the following
formula:

hi(x) � f(x) + ϵi(x), i � 1, . . . , n. (5)

'e integration error can be expressed as in the following
formula:

err(H) �
n

i�1
ωihi(x) − f(x)⎛⎝ ⎞⎠

2

p(x)d(x)

�
n

i�1
ωihi(x) − f(x)⎛⎝ ⎞⎠ ×

n

j�1
ωjhj(x) − f(x)⎛⎝ ⎞⎠p(x)d(x)

�

n

i�1

n

j�1
ωiωjCij hi(x) − f(x)(hj(x) − f(x) p(x)d(x).

(6)

In the above formula, p(x) is the distribution of the input
and ϵi(x) is the error term. 'e optimal weight of Cij �

(hi(x) − f(x))(hj(x) − f(x))p(x)d(x) can be solved by
the following formula:

Cij � hi(x) − f(x)(hj(x) − f(x) p(x)d(x). (7)

By Lagrangian multiplier method, D is obtained by the
following formula:

ωi �

n
j�1 C

−1
ij

n
k�1

n
j�1 ωiωjC

−1
kj

. (8)

2. Experiment

2.1. Lab Environment. 'e performance of the adaptive
collaborative caching scheme was evaluated on the NS-3
platform. 'e NS-3 platform is a modular, programmable,
extensible, open, open-source, and community-supported
computer network simulation framework. Connect the
neural network library OpenNN (Open Neural Network
Library) to NS-3 for experimental simulation. OpenNN is an
open-source neural network library for the construction of
neural networks. It has a wide range of applications, in-
cluding functional regression, pattern recognition, time
series forecasting, optimal control, optimal shape design, or
inverse problems. In this article, all simulation experiments
are performed on a local machine. 'e configuration and
environment of the experiment host are as follows:

(1) CPU: Intel Core i7, 3.4G CPU;
(2) Installed memory (RAM): 16GB;
(3) Linux operating system: Ubuntu 16.04;
(4) Kernel version: 3.19.

2.2. Dataset. In order to evaluate the performance of the
collaborative caching scheme, this paper uses four datasets
for learning. Specifically, two text datasets (D1 and D2) are
used to train the MLP model. In order to train the VGG
model, a tigerface image dataset (D3) and a human face
dataset (D4) are applied.

(1) Covertype dataset (D1): this dataset includes the
forest vegetation types of Roosevelt National Forest.
'ere are 4 types of soil, corresponding to 7 types of
vegetation.'e 581,012 data-item forest vegetation is
divided into four soil types. 'e number of data
items for different soil types is uneven. 'e number
of type 4 is less than 3,000, and the number of type 5
is close to 10,000. 'e quantity of any other type is
greater than 10,000.

(2) Healthy elderly dataset (D2): the sequential exercise
data of 14 healthy elderly aged 66 to 86 years who
used sensors to identify clinical environmental ac-
tivities. Participants were assigned to two clinical
room environments (S1 and S2). S1 (Clinical Room
(1)) and S2 (Clinical Room (2)) are equipped with
different sensor receiving numbers and positions.
'e number of data items is 75128, which is divided
into 6 different behaviors on average.

(3) Reid-tigerface dataset (D3): Atrw Reid-tigerface
image captured. After the picture is edited, the image
resolution is adjusted to 128×128. 'ere are 500
tigers in total, each of which has 10 photos.
According to the active region (Russia Far East and
Northern India), the dataset is divided into two
scenarios.

(4) Casia-face dataset (D4): obtain face images of human
faces. After the picture is edited, the image resolution
is adjusted to 128×128.'ere are 500 people in total,

Security and Communication Networks 7

and each of them has 10 facial photos. According to
the shooting angle (front position and side 45°), the
dataset is divided into two scenes.

2.3. Validation Model. 'is paper implements the two fol-
lowing learning models: the multilayer perceptron (MLP)
model is used to train two text datasets, and the Visual
Geometry Group (VGG) network model is used to train two
image datasets. 'e model is introduced in detail.

2.3.1. Multilayer Perceptron (MLP) Model. MLP is a feed-
forward artificial neural network that can map multiple
input data to output data. Each layer of MLP is a fully
connected layer. 'is paper implements a six-layer MLP
model, including an input layer, four hidden layers, and an
output layer. 'e following describes the internal structure
of the multilayer perceptron.

Neurons can be combined into a neural network. 'e
structure of a neural network refers to the number, ar-
rangement, and connectivity of neurons. Any kind of net-
work structure can be represented by a directed label graph,
where nodes represent neurons, and edges represent con-
nections between neurons. 'e edge labels represent the
parameters of the neuron and indicate the inflow of the
neuron. Most neural networks, even biological neural net-
works, present a hierarchical structure. In this case, the
working layer is the basis for determining the structure of the
neural network. 'erefore, a neural network usually consists
of a set of perception nodes that constitute the input layer,
one or more hidden layers of neurons, and a set of neurons
that constitute the output layer. As mentioned above, the
characteristic neuron model of the multilayer perceptron is
the perceptron. On the other hand, the multilayer percep-
tron has a feedforward network structure. 'e feedforward
structure does not contain cycles; that is, the structure of the
feedforward neural network can be expressed as an acyclic
graph. 'erefore, the neurons in the feedforward neural
network are divided into a series of layer h + 1 neurons
L (1), . . . , L(h), L (h+1), so that the neurons in any layer are
only connected to the neurons in the next layer. 'e input
layer is composed of n external inputs, not a neuron layer;
the hidden layer L (1), . . . , L(h), respectively, contains a
hidden neuron in s(1), . . . , s(h); the output layer L(h+1) is
composed of m output neurons. Figure 4 shows the network

structure of the multilayer perceptron. 'ere are n inputs, h

hidden layers, s(i) neurons, and i � 1, . . . , h and neurons are
in the output layer. In this chapter, the superscript is used to
identify the layer.

'e multilayer perceptron neural network can be
regarded as a parameterized function space V from input
X ⊂ Rn to output Y ⊂ Rm. 'e element form of V is
y: X⟶ Y. 'ey are parameterized by neural parameters,
which can be combined in a d-dimensional vector
ζ � (ζ1), . . . , (ζd). 'erefore, the dimension of the function
space V is d.

For the first hidden layer L (1), by formula (9), the
combined function is obtained by adding the dot product of
the weight and the input to the deviation, thereby obtaining

c
(1)

� b
(1)

+ w
(1)

· x. (9)

According to formula (10), the output of this layer a(1) is
obtained by the combination of conversion and activation
function:

y
(1)

� a
(1)

c
(1)

 . (10)

Similarly, for the last hidden layer, the combined
function is given by the following formula:

c
(h)

� b
(h)

+ w
(h)

· y
(h− 1)

. (11)

'e output of this layer is found by formula (12) by using
the activation function:

y
(h)

� a
(h)

c
(h)

 . (12)

'e output of the neural network is obtained by
transforming the output of the last hidden layer by the
neurons in the output layer F. 'erefore, the combined form
of the output layer is shown in the following formula:

c
(h+1)

� b
(h+1)

+ w
(h+1)

· y
(h)

. (13)

'e output of the output layer is transformed by formula
(14) through the combination of the layer and activation into

y
(h+1)

� a
(h+1)

c
(h+1)

 . (14)

Combining the above equations, an explicit expression
of the multilayer perceptron function is obtained in the
following form:

y � a
(h+1)

b
(h+1)

+ w
(h+1)

· a
(h)

b
(h)

+ w
(h)

· a
(h− 1)

. . . a
(1)

b
(1)

+ w
(1)

· x . (15)

In this way, the multilayer perceptron function is rep-
resented by formula (16) as the composition of the layer
output function:

y � y
(h+1) ∘y(h) ∘ . . . ∘y(1)

. (16)

Multilayer perceptron can be regarded as a function of
multiple variables formed by the superposition and addition
of functions of one variable. Different activation functions

produce different function families, and multilayer per-
ceptrons can define these function families. Similarly, dif-
ferent neural parameter sets cause different elements in the
function space defined by a particular multilayer perceptron.

2.3.2. Visual Group Network (VGG) Model. VGG is a deep
convolutional neural network for computer vision. 'e
implementation of this paper includes 5 convolutional

8 Security and Communication Networks

blocks, each of which consists of 2–4 convolutional layers. At
the same time, a maximum pooling layer is connected to the
end of each block to reduce the size of the picture. 'e
number of convolution kernels in each block is the same,
and the number of convolution kernels in the later
block is larger. For five convolution blocks, each layer
contains 64-128-256-512 convolution kernels, and, in this
article, 10 convolutional layers are used and 4 pooling layers
are alternately performed, and the specific arrangement is
shown in Figure 5. Among them, the convolution layer uses
a 3∗3 convolution kernel, the activation function uses the
ReLU activation function, that is, F(x) � max (0, x), and the
training algorithm uses the Adam algorithm that can
adaptively adjust the learning rate. 'e following describes
the Adam optimization algorithm.

'e Adam optimization algorithm is an extension of the
stochastic gradient descent algorithm. Recently, it is widely
used in deep learning applications, especially tasks such as
computer vision and natural language processing. Adam is
different from the classic stochastic gradient descent
method. Stochastic gradient descent maintains a single
learning rate (called α) for all weight updates, and the
learning rate does not change during the training process.
'e Adam optimization algorithm maintains a learning rate
for each network weight (parameter) and adjusts it indi-
vidually as the learning expands. 'is method calculates the
adaptive learning rate of different parameters from
the budget of the first and second moments of the gradient.
'e following describes the Adam parameter configuration:

α: it is called the learning rate or step size. It controls the
weight update rate (such as 0.001). A larger value (such
as 0.3) will have faster initial learning before the
learning rate is updated, while a smaller value (such as
1.0E-5) will make the training converge to better
performance.
β1: it is the exponential decay rate of the first moment
estimation (such as 0.9).
β2: it is the exponential decay rate of the second mo-
ment estimation (such as 0.999). 'is hyperparameter
should be set to a number close to 1 in sparse gradients
(such as in NLP or computer vision tasks).

ε: this parameter is a very small number, which is to
prevent division by zero in implementation (such as
10E-8).

2.4. Classification Accuracy of Neural Network Model.
Table 1 describes the classification accuracy of the MLP and
VGG models trained on different schemes. For different
training models and datasets, the collaborative caching
scheme and the centralized scheme both achieve similar
high performance in accuracy. 'is is because the col-
laborative caching solution can provide more valuable
training data to support model training, while the cen-
tralized solution can collect all training data to support
model training. On the contrary, the solution of periodi-
cally requesting cached data cannot provide enough
training data in a short time, which affects the training of
the edge nodes by the submodel, thereby reducing the
performance of the integrated result.

2.5. Training Delay of Neural Network Model. Figure 6 de-
scribes the learning delay of different models under the three
schemes. It can be seen from the figure that both MLP and
VGG can use cooperative caching to achieve rapid con-
vergence. 'ere is a maximum difference of 7000 seconds in
the learning delay between the periodic request cached data
scheme and the collaborative cache scheme. Within one to
two hours, the collaborative caching solution provided
enough cached data items for the submodel learning and
integration process. Since the centralized solution collects all
training data to support model training, the centralized
model learning delay is less than that of the solution that
periodically requests cached data. On the other hand, the
centralized transmission delay is large, which also reduces
the efficiency of centralized model learning.

2.6. Network Data Transmission Traffic Load. 'e network
data transmission traffic load is shown in Figure 7. It can be
seen from the figure that regardless of the model or dataset,
the network data transmission traffic load of the collabo-
rative caching scheme is always the smallest, and more

Xn
ym

X1 y1y1
(h)

b 1
(h)b1

(1)

y1
(1)

ys1
(1) ysh

(h) ym
(h+1)

bm
(h+1)bsh

(h)bs1
(1)

Ws1, 1
(1) Ws1, 1

(h) Wm, 1
(h+1)

W1, n
(1) W1, sh–1

(h) W1, sh
(h+1)

W(h)
sh, sh–1

b(h+1)
1

W(h+1)
1,1W (h)

1,1

W (1)
s1, n W(h+1)

m, sh

W (1)
1,1

y1
(h+1)

Figure 4: Multilayer perceptron.

Security and Communication Networks 9

powerful models such as VGG will consume more com-
munication resources. 'e network data transmission traffic
load of the centralized solution is twice that of the collab-
orative cache solution. Because all learning data needs to be
sent to the data center, the network data transmission traffic
load of the centralized solution is the largest. In addition,
data request and cooperative caching are beneficial to the
cooperative caching scheme in terms of transmission
overhead. More valuable data is cached on edge nodes,
thereby reducing redundant data transmission between

different edge nodes and reducing the transmission traffic
load in the network.

2.7. Cache Hit Rate. Since the centralized scheme trains the
model in the data center and does not cache the data at the
edge nodes, we only compare the cache hit rates of Cen-
tralized, P-cache, and the proposed C-cache. 'e local
learning hit rate is shown in Figure 8.'e overall learning hit
rate is shown in Figure 9. 'e local learning hit rate of

MLPD1

tr
ai

ni
ng

 d
el

ay
 (s

)

0.0

2.0×103

4.0×103

6.0×103

8.0×103

1.0×104

1.2×104

1.4×104

1.6×104

MLPD2 VGGD3 VGGD4

Centralized
P-cache
C-cache

Figure 6: Training latency of neural network model.

Convolution+ReLU

Maxpooling

Fully connected+ReLU

So�max

128*128*3 128*128*64

64*64*128

32*32*256
16*16*512 8*8*512

1*1*4096 1*1*8

Figure 5: VGG model.

Table 1: Classification accuracy of neural network model.

Method
MLP VGG

D1 D2 D3 D4
Centralized 0.848 0.968 0.917 0.923
Periodically requested cache 0.789 0.947 0.827 0.852
Cooperative caching 0.847 0.968 0.917 0.923

10 Security and Communication Networks

C-cache and P-cache is increased to the maximum stable
values of 0.87 and 0.85, respectively. 'e global learning hit
rate of C-cache and P-cache is increased to the maximum
stable values of 0.83 and 0.81, respectively, and the learning
data is generated and cached at different edge nodes.

Figure 10 depicts the hit rate of background traffic data.
'e cache hit rate of background traffic data first increases
with the passage of time. When the learning data increases,
more background traffic data is switched from the cache of
edge computing nodes. 'erefore, the cache hit rates of

MLPD1

Tr
an

sm
iss

io
n

tr
af

fic
 lo

ad
 (M

B)

0

10

20

30

40

50

60

70

MLPD2 VGGD3 VGGD4

Centralized
P-cache
C-cache

Figure 7: Network data transmission overhead.

0
0.0

0.2

0.4

0.6

0.8

300 600 900 1200
Time (s)

LL
R h

it

1500 1800

C-cache
P-cache

(a)

0
0.0

0.2

0.4

0.6

0.8

300 600 900 1200
Time (s)

LL
R h

it

1500 1800

C-cache
P-cache

(b)

0
0.0

0.2

0.4

0.6

0.8

400 800 1200 1600
Time (s)

LL
R h

it

2000 2400

C-cache
P-cache

(c)

0
0.0

0.2

0.4

0.6

0.8

400 800 1200 1600
Time (s)

LL
R h

it

2000 2400

C-cache
P-cache

(d)

Figure 8: Local learning hit ratio. (a) LLRhit during training MLP on D1. (b) LLRhit during training MLP on D2. (c) LLRhit during training
VGG on D3. (d) LLRhit during training VGG on D4.

Security and Communication Networks 11

0
0.0

0.2

0.4

0.6

0.8

300 600 900 1200
Time (s)

GL
R h

it

1500 1800

C-cache
P-cache

(a)

0
0.0

0.2

0.4

0.6

0.8

300 600 900 1200
Time (s)

GL
R h

it

1500 1800

C-cache
P-cache

(b)

0
0.0

0.2

0.4

0.6

0.8

400 800 1200 1600
Time (s)

GL
R h

it

2000 2400

C-cache
P-cache

(c)

0
0.0

0.2

0.4

0.6

0.8

400 800 1200 1600
Time (s)

GL
R h

it

2000 2400

C-cache
P-cache

(d)

Figure 9: Global learning hit ratio. (a) GLRhit during trainingMLP onD1. (b)GLRhit during trainingMLP onD2. (c) GLRhit during training
VGG on D3. (d) GLRhit during training VGG on D4.

0
0.0

0.1

0.2

0.4

0.3

300 600 900 1200
Time (s)

R h
it

1500 1800

0.5

C-cache
P-cache

(a)

0
0.0

0.1

0.2

0.4

0.3

300 600 900 1200
Time (s)

R h
it

1500 1800

C-cache
P-cache

(b)

Figure 10: Continued.

12 Security and Communication Networks

C-cache and P-cache middle and background traffic data are
reduced to 0.17 and 0.19, respectively. For different training
models and datasets, the cache hit rate under C-cache de-
creases faster than that under P-cache. 'is is because
C-cache can use learning data better than P-cache and re-
serves less available cache space for caching background
traffic data.

3. Conclusion

As a complementary extension of cloud computing tech-
nology, mobile edge computing will reduce the computing
power of the previous cloud to the edge nodes of the net-
work. 'rough the cooperation between computing nodes,
the number of nodes can be calculated, the type can be more
comprehensive, and the calculation range can be larger. 'e
emergence of mobile edge computing makes up for
the shortcomings of cloud computing technology. Aiming at
the problem of network edge cache computing and intel-
ligent scheduling of resource allocation, in order to reduce
network traffic load and delay, a simulation framework is
finally established within the framework of effective re-
cording cache data collaboration and edge computing
learning framework to verify the network collaborative
cache solution proposed in this paper. A large number of
simulation results show that the collaborative caching
scheme proposed in edge network can significantly reduce
the learning delay and transmission cost of ensemble
learning. In future studies, more datasets and more complex
integrated learning models can be used to further improve
the experiment. 'e edge integrated learning framework
designed in this paper can be further optimized.

Data Availability

No data were used to support this study.

Conflicts of Interest

'e authors declare that there are no conflicts of interest
regarding the publication of this article.

References

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet
of 'ings (IoT): a vision, architectural elements, and future
directions,” Future Generation Computer Systems, vol. 29,
no. 7, pp. 1645–1660, 2013.

[2] Setting the standard[Z]. https://www.itu.int/en/ITU-T/
wtsa16/Documents AVTSASna pshotReport. pdf.

[3] X. Xu, Z. Fang, J. Zhang et al., “Edge content caching with
deep spatiotemporal residual network for IoV in smart city,”
ACM Transactions on Sensor Networks, vol. 17, no. 3, pp. 1–33,
2021.

[4] M. Chiang and T. Zhang, “Fog and IoT: an overview of re-
search opportunities,” IEEE Internet of Dings Journal, vol. 3,
no. 6, pp. 854–864, 2016.

[5] X. Xu, Z. Fang, L. Qi, X. Zhang, Q. He, and X. Zhou,
“TripRes,” ACM Transactions on Multimedia Computing,
Communications, and Applications, vol. 17, no. 2, pp. 1–21,
2021.

[6] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog com-
puting and its role in the Internet of'ings,” in Proceedings of
the 1st Edition MCC Workshop Mobile Cloud Comput,
pp. 13–16, NY, USA, 2012.

[7] W. Shi, J. Cao, Q. Zhang et al., “Edge computing: vision and
challenges,” IEEE Internet of Dings Journal, vol. 3, no. 5,
pp. 637–646, 2016.

[8] X. Xu, D. Zhu, X. Yang, S. Wang, L. Qi, and W. Dou,
“Concurrent practical byzantine fault tolerance for integra-
tion of blockchain and supply chain,” ACM Transactions on
Internet Technology, vol. 21, no. 1, pp. 1–17, 2021.

[9] W. Wen, C. Xu, F. Yan et al., “Terngrad: ternary gradients to
reduce communication in distributed deep learning,” in
Proceedings of the Proceedings of the 31st International Con-
ference on Neural Information Processing Systems, pp. 1509–
1519, Long Beach California, USA, December 2017.

[10] H. Hussain, S. U. R. Malik, and A. Hameed, “A survey on
resource allocation in high performance distributed com-
puting systems,” Parallel Computing, vol. 39, no. 11,
pp. 709–736, 2013.

[11] J. Bellendorf and Z. Á Mann, “Classification of optimization
problems in fog computing,” Future Generation Computer
Systems, vol. 107, no. 1, pp. 158–176, 2020.

[12] A. Brogi, S. Forti, C. Guerrero, and I. Lera, “How to place your
apps in the fog: state of the art and open challenges,” Software:
Practice and Experience, vol. 1, no. 1, pp. 1–8, 2019.

0
0.00

0.15

0.30

0.45

0.60

400 800 1200 1600
Time (s)

R h
it

2000 2400

C-cache
P-cache

(c)

0
0.00

0.15

0.30

0.45

0.60

400 800 1200 1600
Time (s)

R h
it

2000 2400

C-cache
P-cache

(d)

Figure 10: Background traffic data hit ratio. (a) Rhit during trainingMLP onD1. (b) Rhit during trainingMLP on D2. (c) Rhit during training
VGG on D3. (d) Rhit during training VGG on D4.

Security and Communication Networks 13

https://www.itu.int/en/ITU-T/wtsa16/Documents AVTSASna pshotReport. pdf
https://www.itu.int/en/ITU-T/wtsa16/Documents AVTSASna pshotReport. pdf

[13] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and
M. Parashar, “Mobility-aware application scheduling in fog
computing,” IEEE Cloud Computing, vol. 4, no. 2, pp. 26–35,
2017.

[14] D. Rahbari and M. Nickray, “Scheduling of fog networks with
optimized knapsack by symbiotic organisms search,” in
Proceedings of the 2017 21st Conference of Open Innovations
Association (FRUCT), pp. 278–283, Helsinki, Finland, No-
vember 2017.

[15] T. Zhang, J. Deng, and J. Wang, “Progressive damage analysis
(PDA) of carbon fiber plates with out-of-plane fold under
pressure,” Computer Modeling in Engineering and Sciences,
vol. 124, no. 2, pp. 545–559, 2020.

[16] M. Redowan, R. Kotagiri, and B. Rajkumar, “Latency-aware
application module management for fog computing envi-
ronments,” ACM Transactions on Internet Technology, vol. 19,
no. 1, pp. 1–21, 2018.

[17] T. Y. Kan, Y. Chiang, and H. Y. Wei, “Task offloading and
resource allocation in mobile-edge computing system,” in
Proceedings of the 2018 27th Wireless and Optical Commu-
nication, pp. 1–4, Hualien, Taiwan, May 2018.

[18] T. Zheng, Y. Chang, and S. Zhang, “Quantum risk assessment
model based on two three-qubit GHZ states,” Computer
Modeling in Engineering and Sciences, vol. 124, no. 2,
pp. 573–584, 2020.

[19] T. Kagan and J. Ghosh, “'eoretical foundations of linear and
order statistics combiners for neural pattern classifiers,” IEEE
Transactions on Neural Networks, vol. 7, pp. 1–35, 1996.

[20] Y. Qin, D. Wu, Z. Xu, J. Tian, and Y. Zhang, “Adaptive in-
network collaborative caching for enhanced ensemble deep
learning at edge,” Mathematical Problems in Engineering,
vol. 2021, pp. 1–14, Article ID 9285802, 2021.

14 Security and Communication Networks

