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The Industrial Internet has grown rapidly in recent years, and attacks against the Industrial Internet have also increased. When
compared with the traditional Internet, the industrial Internet has a more complex network structure, and the traditional graph
neural network attack behavior detection model cannot well adapt to the complex network environment. To make the model
better adapt to the complex network environment, this paper proposes the E-minBatch GraphSAG model. First, the application
layer source port and source IP address is used as source nodes, the application layer target port and target IP address are used as
target nodes, and the remaining traffic information is used as edge information to complete the construction of the graph structure
data, and then the constructed graph structure data is presampled to select the edge information that needs to be aggregated next,
followed by using the AGG aggregation function to aggregate the information in the domain generated by the presampling
process. Finally, the information of two adjacent nodes is aggregated as edge information to classify the edges. Increase the number of
IP addresses in the UNSW-NB15 dataset, and then use it for model training and testing. The experimental results show that the
accuracy of the model reaches 99.49% in a relatively complex network environment. In this paper, the E-minBatch GraphSAG model
is presented in an attempt to solve the problem of attack detection in the complex industrial Internet environment.

1. Introduction

Because the traditional industrial production network is
separated from the Internet, and the traditional industrial
control protocol does not take into account the security
events that may occur during use, most traditional industrial
control protocols have security problems [1]. With the rapid
development of Internet technology, more and more In-
ternet technologies are used in industrial production pro-
cesses to achieve the goal of automating industrial
production processes and reducing production costs [2],
resulting in a new concept-industrial Internet. There is also a
big difference between the modern industrial Internet and
the traditional Internet. The main difference between the
Industrial Internet and the traditional Internet is that the
traditional Internet has a close connection with people, while
the Industrial Internet has a close connection with things.
The architecture of the Industrial Internet is also quite

different from the traditional Internet architecture. In the
modern Industrial Internet, the enterprise management, the
supervisory layer, and the field layer are the main compo-
nents [3].

The social impact of industrial Internet security incidents
is far greater than the social impact of traditional Internet
security incidents. In recent years, attacks on the Industrial
Internet have gradually increased. Iran’s Natanz nuclear
enrichment site was attacked by the Stuxnet computer virus
in 2010, causing abnormal acceleration of uranium en-
richment centrifuges and eventually leading to their de-
struction [4]. It also opened the curtain for attacks against
the industrial Internet. In 2015, the malware BlackEnergy3
[5] hacked into the control center of the Ukrainian power
grid and tampered with the control commands of the relays
via VPN causing widespread power outages in Ukraine.
BlackEnergy3 compromised the network and software of the
grid control system, launching a DDoS attack that prevented
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the control system from sensing abnormal system condi-
tions, thus preventing power from being restored to the
blackout area for a long time. During Black Hat 2017, Dr.
Staggsp [6] demonstrated how to hack into a wind farm’s
control system by physically connecting to an uncontrolled
wind turbine in the United States. In 2021, a state of
emergency was declared in the United States after the hacker
group “DarkSide” attacked the largest fuel pipeline operator
in the country [7]. Several security incidents have shown that
the industrial Internet faces huge security risks, and artificial
intelligence-based attack detection systems can help to
provide early warning of attacks and greatly improve the
security of the system.

Detecting attacks is a key step in securing the industrial
Internet, and alerting to attacks as early as possible can
reduce the impact of attacks to a manageable extent. Cur-
rently, there are different classification results for different
intrusion detection systems based on the classification
method [8]. There are two types of data source classification:
host-based and network-based. Classification based on the
detection technique can be classified as misuse-based ap-
proach and anomaly-based approach. Anomaly-based
methods, which are currently the mainstream detection
methods, can also be classified as statistical analysis-based
methods [9], cluster analysis-based methods [10], artificial
neural network-based methods [11], or deep learning-based
methods [12]. Among them, current studies generally agree
that deep learning-based methods for attack detection are
more effective than the others [13]. This is because deep
learning-based models have better self-learning, self-adap-
tive capabilities, better generalization ability, and the ability
to detect unknown attack behaviors better.

Most attack behavior detection methods focus on finding
attack behaviors from the attack traffic itself, while ignoring
the correlation between attack traffic. In this paper, we at-
tempt to introduce graph neural networks, a relatively new
subfield in the field of deep neural network research, into
attack behavior detection in the Industrial Internet.

The scale of the Industrial Internet has begun to grow
explosively, and the network structure has become increas-
ingly complex. In order to detect attacks in a complex network
environment, this paper proposes an improved method based
on E-GraphSAGE algorithm [14], E-GraphSAGE is a variant
of GraphSAGE [15], which allows to collect graph edge in-
formation and support edge features Perform edge classifi-
cation to detect malicious network flows. In this paper, the
E-minBatch GraphSAGE algorithm is proposed to be able to
better adapt to the complex network environments.

The contributions of this paper are mainly as follows.

(i) In this paper, we propose a new GNN model based
on E-GraphSAGE, which uses information such as
traffic duration and packet size as edge features of
the graph, and presamples the points in the graph
structure data so that the model can better adapt to
the complex network environment.

(ii) This paper applies the new proposed model to in-
dustrial Internet attack detection and demonstrates
the superiority of the new model by comparing it
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with traditional machine learning algorithms and
deep learning algorithms through experiments.

(iii) The E-minBatch GraphSAGE algorithm proposed
in this paper has better results in the detection of
three kinds of attacks, namely Shellcode, Recon-
naissance, and Exploits.

The rest of this paper is organized as follows. Section 2
discusses related work on industrial Internet attack behavior
detection, Section 3 briefly introduces the basics related to
GNN and GraphSAGE, Section 4 presents our new GNN
model based on GraphSAGE, Section 5 gives experimental
results and analysis, and Section 6 summarizes the full paper.

2. Related Works

At present, traditional machine learning or deep learning is
mainly used for industrial Internet attack behavior detec-
tion. In contrast, there are relatively few researches on attack
behavior detection based on graph neural network.

2.1. Traditional Industrial Internet Attack Behavior Detection
Algorithms. The label-based attack behavior detection sys-
tem can accurately detect the known attack behavior, but it is
powerless to detect the unknown attack behavior. At the
same time, the anomaly-based attack behavior detection
system can effectively detect unknown attack behaviors, but
an unavoidable problem is: no matter whether the attack
behavior is known or not, the anomaly-based attack be-
havior detection system will have a large false negative rate
and false positive rate. In order to enable the model to detect
both unknown attack behaviors and known attack behav-
iors, researchers began to try to combine the two attack
behavior detection systems. Khraisat et al. [16] combined the
C5 classifier and a class of support vector machine classifiers
to design a hybrid intrusion detection system (HIDS) that
integrated the advantages of the label-based attack behavior
detection system and the anomaly-based attack behavior
detection system. The experimental results show that the
method has a high accuracy in detecting attack data on the
Bot-IoT dataset.

The traffic of attack behavior of the Industrial Internet
presents the characteristics of low frequency and multistage.
Li et al. [17] designed a bidirectional long-term and short-
term storage network with multiple features, and the se-
quence feature layer and stage feature layer were introduced
into the model. The model in the training phase can learn the
corresponding attack range from historical data, and ef-
fectively detect attacks in different ranges. Suzen et al. [18]
proposed a hybrid Deep Belief Network (DBN) attack be-
havior detection model. Hidden layers are updated via
Contrastive Divergence (CD). Experiments show that the
hybrid deep belief network model has achieved good ac-
curacy in the detection of industrial Internet attack behavior.
A multifeatured data clustering optimization model was
used by Liang et al. [19] as the basis of an industrial network
intrusion detection algorithm, which classifies the weighted
distance and safety factor of the data according to the
priority thresholds of the data attribute features of the nodes
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in the data. Cluster centers are selected by choosing a node
with a high safety factor, and data from around the node is
matched into a cluster. In comparison with other algorithms,
the experimental results demonstrate that the proposed
algorithm has significant advantages in terms of detection
rate and processing time. Huang et al. [20] proposed a data-
driven intrusion detection method based on time-domain
and frequency-domain analysis. The proposed method uses
closed-loop controlled sensors, does not consume additional
system resources and relies on system models, extracts time-
domain and frequency-domain features, uses feature vectors
under normal working conditions to build a hidden Markov
model, and converts the trained hidden Markov model.

The traffic in the Industrial Internet is very complex and
includes not only production networks but also other office
networks. About solving the problem of massive data attack
behavior detection in hybrid networks, Zhang et al. [21]
proposed a data mining algorithm for massive intrusion
cluster computing in hybrid networks with feature extrac-
tion under specific constraints. Multicomponent cross-de-
tection methods are used to collect information on mixed
network massive intrusions and construct models of mixed
network massive intrusion signals. Regarding the intrusion
interference under the constraint of fixed time-frequency
window, Zhang adopts the cascade trap method to deal with
it, so as to extract the localized basic volume and main
function from a large amount of interference information,
and obtain the complete energy distribution spectrum on the
time-frequency plane. Data mining for clustering calcula-
tions with massive intrusion interference constraints is
achieved with the help of the energy distribution spectrum as
a guiding function.

The rapid development of the Industrial Internet has led
to IoT devices widely deployed, and at the same time, attacks
against IoT devices have also appeared in large numbers. [oT
devices are ideal springboards for DoS attacks—low security
and large numbers make IoT devices the target of many
botnets. The attack behavior detection system needs to
identify the nodes attacked by DoS in time, and takes
measures such as isolation of the infected nodes to ensure
the security of the entire industrial Internet environment.
Alharbi et al. [22] proposed a Local Global Optimal Bat
Algorithm (LGBA-NN) for Neural Networks to select fea-
ture subsets and hyperparameters to effectively detect botnet
attacks. Experimental results show that LGBA-NN out-
performs other variants in detection of multiple botnet
attacks. Ali et al. [23] trained on intrusion data, features, and
suspicious activity datasets. The data is trained according to
different layers of the long- and short-term network to
improve the accuracy of attack detection. With the help of
training information, the test details are classified by
extracting features and forming a sparse matrix construc-
tion. In experiments, the model’s accuracy reached 99.29%.

The computing power of industrial Internet nodes is
relatively poor, and the resources required for the training and
deployment of attack detection models are huge. About how
to reduce the resources consumed by the deployment node,
Wozniak et al. [24] used RNN-LSTM classifier and NAdam
optimization algorithm to build the model. Experimental

results indicate that the model requires very few resources on
deployment nodes.

All the above algorithms have achieved desirable per-
formance in industrial Internet attack detection, but they all
only consider the characteristics of the traffic itself or the
spatial characteristics of the traffic, and do not consider the
correlation between the traffic.

2.2. Industrial Internet Attack Behavior Detection Algorithm
Based on Graph Neural Network. Graph neural networks are
developing rapidly, and good progress has been made in
their applications in many fields. However, the application of
graph neural network to network attack behavior detection
is still a relatively new field and deserves further research.

Lo et al. [14] proposed a model named E-GraphSAGE
based on the GraphSAGE model, which supports edge
classification. Taking IP addresses and application-layer
ports as nodes, the data flows communicated between hosts
are treated as side information, thereby classifying network
flows into benign flows and attack flows. According to the
experimental comparison, the model proposed by the author
is generally better than the traditional attack behavior de-
tection model. However, experiments have shown that with
the increase of network complexity, the accuracy of
E-GraphSAGE begins to decrease. Our method proposes an
improved model based on E-GraphSAGE, which can better
adapt to complex network environments.

3. Background

3.1. Industrial Internet Infrastructure. The industrial Inter-
net attack behavior detection model is one of the methods to
protect the safety of industrial production equipment and
personnel. There are mainly three layers in modern in-
dustrial Internet architecture: the enterprise management
layer, the supervision layer and the field layer. The enterprise
management layer relies on the Internet to enable real-time
monitoring and management of industrial processes and
assist enterprises in making informed decisions. In addition
to collecting data and transmitting it between the enterprise
management layer and the field layer, the monitoring layer
controls the field devices with specific logic. In the field layer,
field information is perceived by the field devices, and data is
exchanged between field devices via the field bus. The
modern Industrial Internet architecture is shown in Figure 1.

As shown in Figure 1, industrial Internet attack behavior
detection systems are generally deployed between the
management and the management level of an enterprise, and
between the management and the field level control level [3].
There are various attack behavior detection systems, and this
paper focuses on GraphSAGE algorithm based on graph
neural network.

3.2. Graphical Neural Network. Different attack detection
algorithms require different input structures. The input data
structure of the CNN-based attack behavior detection al-
gorithm is the grayscale graph corresponding to the traffic.
The input data structure of GNN-based attack behavior
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FiGure 1: Industrial internet infrastructure.

detection algorithm is the IP address and application layer
port as nodes, and the data flow of communication between
hosts is treated as edge information, as shown in Figure 2.

Because graph neural networks can utilize data with
graphical structure encountered in real-world applications
(biology, telecommunications, chemistry, etc.), graph neural
networks have received widespread attention since their
introduction, and they have grown rapidly in recent years to
become one of the fastest growing subfields of artificial
intelligence.

The main reason for using GNNs for industrial Internet
attack detection is that GNNs can easily exploit important
structural information in network data streams. The in-
formation in network data streams can be directly encoded
into a graphical format. In fact, converting network data
traffic into graphical format is a method that has been used
earlier, but the process is usually tedious and heavily de-
pendent on manual labor.

3.3. GraphSAGE. GNNs can be considered as a general-
ization of convolutional neural networks to non-Euclidean
data structures [25]. Graph neural networks use the concept
of message passing to implement a generalization of the
capabilities of convolutional neural networks to the pro-
cessing of data with non-Euclidean structures. The messages

FiGure 2: Figure structure.

received by a node are the result of the properties (or at-
tributes) of the neighboring nodes of that node being ag-
gregated. Iteration of the above process is repeated to pass
the information from one node to the whole network. If in
each iteration, an attempt is made to aggregate all neigh-
boring nodes, unpredictable memory consumption and
computational resource requirements occur.

Figure 3(a) shows a simple graph structure data and
Figure 3(b) shows two GraphSAGE message passes to the
graph. In this example, we assume that the nodes sample all
neighboring nodes, i.e., information from all domain nodes
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FIGURE 3: A given graph structure data and the corresponding two-layer fully sampled GraphSAGE algorithm model.

is considered in each iteration. In the face of more complex
graph structures, sampling all nodes makes the training time
and effectiveness of the model not optimized, so an attempt
is made to presample the nodes [26].

Some of the symbols in the graph neural network are
defined as follows: G(7,€) denotes the data of a graph
structure, v is the set of points, and ¢ is the set of edges. The
feature vector of node v is denoted as a vector X, and the full
set of node feature vectors can be denoted as {X,, Vv € v}.

In the GraphSAGE algorithm, one of the most critical
hyperparameters is the number of convolutional layers K.
The role of this hyperparameter is to specify the infor-
mation of the algorithm’s aggregated K-layer neighbor
nodes. Considering both the experimental effect and the
model complexity, we generally set the number of layers to
K =2 in the actual experimental process [26]. On the other
hand, GraphSAGE needs to choose a differentiable
aggregator function that aggregates the information from
the neighboring nodes.

The GraphSAGE algorithm has been used in many fields
with good results. However, the algorithm focuses on node
classification and does not consider the problem of edge
classification. The E-GraphSAGE algorithm proposed by Lo
successfully solves the problem of edge classification, but
cannot solve the problem of classification in complex net-
work environment architectures. Based on the E-GraphS-
AGE algorithm, a new node presampling algorithm is
proposed to enable the model to better detect attack be-
haviors in complex networks.

4. E-minBatch GraphSAGE

E-minBatch GraphSAGE is presented in this section, along
with its application to detecting industrial Internet attacks.

4.1. E-minBatch GraphSAGE

4.1.1. Forward Propagation Stage. The E-GraphSAGE al-
gorithm, compared with the traditional GraphSAGE, con-
siders not only the node features but also the edge features,
while E-GraphSAGE proposes edge embedding. The nodes
are presampled in advance so that the E-minBatch
GraphSAGE algorithm can adapt to complex network
structures, as shown in Algorithm 1.

In comparison to E-GraphSAGE, the algorithm pre-
sented in this paper has a larger number of input nodes,
which can better represent the complex network environ-
ment, and in the face of complex network structure this
paper presamples the nodes once to improve the ability of
attack behavior detection model to detect attack behavior in
complex network environment. As shown in line 1 to 5 of the
algorithm, we determine whether a node is a neighbor node
of the current node, and if it is, it is directly added to the
sampling range. graphSAGE recommends the use of two
layers of convolution for the model, and the product of the
number of neighbor nodes sampled twice is not greater than
500. The number of samples sampled twice for the model
used in this paper is S1 =20, S2 =25(Note: s1 indicates that
the first layer samples 20 neighbor nodes, and s2 indicates
that the second layer samples 25 neighbor nodes). As with
the E-GrapghSAGE algorithm, this paper still uses the x, =
(1,...., 1) initialized node features to aggregate the domain
edges at the Kth layer.

In the aggregation function in line 9, the difference
between E-minBatch GraphSAGE and GrapghSAGE algo-
rithm is that the aggregation is not the information of
surrounding adjacent nodes, but the aggregation of sur-
rounding edge information.

hlf\,(v) = AGGk{{hﬁ;l,Vu e N(v),uv € e}}, (1)

KE! denotes N (v) the edges in the sampled domain of node
u in the k-1 layer and wuv denotes the edge
{Yu € N (v),uv € &, N (v) in the sampled domain of node .

The calculation process in line 10 is the same as the
traditional GrapghSAGE algorithm, but the calculation in-
cludes the edge information of the previous layer.

Line 11 calculates the node embedding of the kth layer,
and the edge embedding Z,,, of the nodes in the last layer is
the splicing Z,, with Z, the node embedding, as shown in the
following equation:

Z,, = CONCAT(Zy, Zy ),uv € &. (2)

4.1.2. Back Propagation. In the back propagation phase, the
method used in this paper is updated in the same way as the
traditional GraphSAGE algorithm.
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Input: Graph G (v, ¢); input edge features {e

uv>

Output:Edge emdeddings Z,,,,V,,, € ¢

(1) BX<B
(2) fork=K...1do
(3) BFleBK

(4) foru e B* do

(5) B 1B 1TU N (u);

(6) end for

(7) end for

(8) W =x,Y, eV

(9) for k—1toK do

(10) foru € B* do

(11) B (V) —AGG, ({h,V* - 1,Yu € N (v),uv € ¢})
(12) hk—a (WK.CONCAT (K - 1, hyy (v)¥))

(13) end for

(14) end for

(15) Z, = hK

(16) for k—1toKdo

(17)  z,,—CONCAT (2, zK)

(18) end for

(19) z,,-z,4# k represents the last layer of the model#

uv=

V,, € ¢} input node features x, = {1,.., 1}, x,, € B; depth K; weight matrices
Wk Ve {1,.., K}; non-linearity o; differentiable aggregator functions AGGg;

ALGORITHM 1: E-minBatch GraphSAGE edge embedding.

4.2. E-minBatch GraphSAGE Attack Detection Model.
As shown in Figure 4, the E-minBatch GraphSAGE attack
detection model proposed in this paper first generates a
network graph using network stream data, and then pre-
samples the nodes once. After completing the presampling,
the data is fed into the model for training. Finally, edge
embeddings are created and classification operations are
performed on the edges. The next steps are described in turn.

4.2.1. Network Diagram Construction. Network data
streams are the fundamental form of data transmission in
today’s industrial Internet. It is also the most commonly
used data format for attack detection models. The data
stream contains not only the source and target of the data
information, but also the size, duration, and other in-
formation of the data stream. In some scenarios, the flow
is presented in the form of a graph.

There are different options for using graphs to rep-
resent data flows in different usage scenarios. In this
paper, the source IP address and application layer port
are used to identify the source node, and the target IP and
target application layer port are used to identify the
target node. The rest of the information is used as in-
formation about the edges between the source and target
nodes.

Make training data and test data better represent
complex network structures, and the original source IP
addresses are mapped to random addresses in the range of
10.0.0.0-10.255.255.255 in this paper. A large number of IP
addresses can represent the complex network more accu-
rately and make the trained model better adapted to the
complex network.

4.2.2. Presampling. In order to adapt to complex network
structures, the nodes in the graph continue to be pre-
sampled after the conversion of the traffic to graph
structure type is completed. In this paper, we use a two-
layer convolution process, so each node is presampled
twice, the first layer presamples the 20 neighbor nodes of
the current node, and the second layer presamples the 25
neighbor nodes of the current node. When the number of
neighboring nodes of a node cannot meet the presam-
pling requirement, some of the neighboring nodes are
sampled again.

4.2.3. Model Training. The training of the GraphSAGE
model generally samples two layers of convolution [27],
and similarly the E-minBatch GraphSAGE proposed in this
paper uses two layers of convolution. For the aggregation
function AGG, the mean value of each edge embedding is
simply found, and the defined form is shown in the following
equation:

hk—l
INW)I, (3)

ko _
hN(V) - Z
ueN (v)
uvee

<! denotes the embedding of the model at layer k-1 and
IN (v)|, denotes the number of aggregated neighbor nodes.
In the two-layer convolution, the number of sampling
neighbor nodes is S1 =20, $2=25.

The size of the hidden layer as shown in (3) is set to 128
hidden units, and the nonlinear activation function is chosen
as the ReLu function. For improving the model’s ability to
generalize, a dropout mechanism of 0.2 is set between the
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two convolutional layers. When generating the calculation
results in the last layer, the embedding of the two nodes is
spliced together to get the corresponding edge embedding,
and the size of the edge embedding is 256-dimensional at
this time, and the edge embedding is passed through a Log
Softmax layer, which facilitates the training and optimiza-
tion of the model parameters.

4.2.4. Edge Classification. After the model training is com-
pleted, the effectiveness of the E-minBatch GraphSAGE
model is evaluated using the test set. The test set also needs to
be transformed into a graph structure as well, presampled,
passed through the trained E-minBatch GraphSAGE layer,
and finally passed through the Log Softmax layer edge cor-
responding to the probabilities of different classes, and finally
compared with the real class labels to calculate the classifi-
cation evaluation performance metrics.

5. Dataset and Experimental Results

In this section, this paper presents the datasets selected for
training and testing along with the evaluation criteria of the
experiments, and finally the experimental results of the model.

5.1. Dataset. The model was pretrained with the UNSW-
NB15 [28] dataset, which was generated by the IXIA Per-
fectStorm tool from the Australian Cyber Security Centre
(ACCS) Cyber Scope Lab. The number of various types of
traffic included in UNSW-NB15 is shown in Table 1.

5.2. Evaluation Criteria. In this paper, the parameters shown
in Table 2 are used to evaluate the selected model and the
model proposed in this paper.

In the experiments, two labels are defined for UNSW-
NB15, one indicating whether the traffic is attack traffic, and
if it is, the other label what kind of attack traffic the traffic is.
The first label is used for dichotomous classification and the
second label is used for multiclassification. In our experi-
ments, 70% of the traffic data of the UNSW-NBI15 dataset is
used as the training set, and 30% of the traffic data is used as
the test set.

5.3. Experimental Results. Firstly, we compare the accuracy
of different models under different training times, as shown
in Figure 5.

As we can see from Figure 5, the convergence speed of
the graph neural network algorithm is much slower
compared to the speed of other traditional neural net-
works. Because in graph neural networks, along with the
increase in the number of network layers, information
from more distant nodes needs to be aggregated, which is
the reason why using the GraphSAGE algorithm suggests
setting the model within two layers. The reason for the
slower convergence speed of the E-minBatch GraphS-
AGE algorithm compared to the E-GraphSAGE algo-
rithm is that the nodes are presampled and require more
training times to aggregate the information of sur-
rounding neighboring nodes.

The models E-GraphSAGE [14], CNN [29], RF [27],
ResNet50 [30], and the model proposed in this paper are
compared in terms of F1-score, ACC, Precision, and Recall.

In a complex network environment, the model
proposed in this paper, as shown in Figure 6(a), Flscore
reaches 99.88%, as shown in Figure 6(b), ACC reaches
99.49%, as shown in Figure 6(c), Precision reaches
99.67%, as shown in Figure 6(d), and Recall reaches
99.74%, which is better than E-GraphSAGE. At the same
time, the model proposed in this paper is slightly inferior
to the current state-of-the-art deep learning model in
terms of Fl-score, ACC, Precision, and Recall, but is
currently based on graph neural networks. The research
on the network attack behavior detection algorithm is
still in the initial stage, and there is room for further
research in the future. When the E-GraphSAGE algo-
rithm is used to detect attack behaviors, it not only considers
the characteristics of the traffic itself, but also considers the
correlation between the traffic. Therefore, in a complex net-
work environment, the effect of the E-GraphSAGE algorithm
will decline to a certain extent. The purpose of E-minBatch
GraphSAGE proposed in this paper is to make the attack
behavior detection method based on graph neural network still
has good performance in complex network environment. In
the following comparative experiments, the E-minBatch
GraphSAGE algorithm proposed by us and the E-GraphSAGE
algorithm proposed by Lo are compared.
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TaBLE 1: UNSW-NBI15 flow type, quantity and profile.

Flow type Quantity Introduction
Normal 2,218,761 Normal data traffic
Fuzzers 24,246 Send randomly generated fuzzy data to the target to cause the target to error into a pause state
Analysis 2,677 Port scanning, spam, and html file infiltration
Exploits 44,525 Attacks that exploit vulnerabilities known to exist in the system or software
Worms 174 Attack initiators such as viruses replicate themselves and try to infect other hosts on the network
Shellcode 1,511 A piece of code that exploits a software vulnerability
DoS 16,353 Launch a flooding attack on the target so that it cannot accept new requests
Generic 215,481 Attack against any type of group password
Reconnaissance 13,987 Simulation of information-gathering attacks
Backdoor 2,329 Bypass system defense mechanisms to access sensitive locations and sensitive information
TaBLE 2: Model performance metrics.
Metric Definition
Recall TP/TP+FN
Precision TP/TP + FP
Fl1-score 2 x Recall x Precision/Recall + Precision
Accuracy TP+TN/TP+FP+TN +FN
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FIGURE 6: Compare the model proposed in this paper with E-graph SAGE, CNN, RF, ResNet50 in ACC, F1-score, precision, and recall.
(a) Fl-score comparison chart. (b) ACC comparison chart. (c) Precision comparison chart. (d) Recall comparison chart.
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FIGURE 7: Compare the base confusion matrix for UNSW-NB15 dataset.
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Calculate the confusion matrix to show the effect of the
E-minBatch GraphSAGE model. The confusion matrix is
shown in Figure 7.

The E-minBatch GraphSAGE model proposed in this
paper achieves better results than the E-GraphSAGE model
in the detection of three attack behaviors: Shellcode, Re-
connaissance, and Exploits. As shown in Figure 8(a), the
detection rate of Shellcode attack increased by 2.65%, the
detection rate of Reconnaissance attack increased by 1.48%,
and the detection rate of Exploits attack increased by 2.83%.
At the same time, as shown in Figure 8, the model proposed
in this paper still has a certain degree of improvement
compared to the E-GraphSAGE model in other metrics
(ACC, Fl-score, and Recall).

To make the model better adapt to the complex network
environment, when training the E-minBatch GraphSAGE
model, a presampling process is performed, resulting in
when the remaining attack behaviors of the UNSW-NB15
dataset are used, and the effect obtained by the model
proposed in this paper is similar to that obtained by the
E-GraphSAGE model, as shown in Figure 9.

6. Conclusion

This paper proposes a new algorithm-E-minBatch
GraphSAGE based on E-GraphSAGE. To make the model
better adapt to the complex network environment, the
E-minBatch GraphSAGE algorithm presamples the neigh-
bor edges of each node of the model after the graph structure
data is constructed. In order to verify the effect of E-min-
Batch GraphSAGE, experiments are carried out on the
UNSW-NBI15 dataset. The results show that the algorithm
proposed in this paper is comparable to the E-GraphSAGE
algorithm in terms of attack behavior detection accuracy and
Fl-score in a complex network environment. In compari-
son, the model’s accuracy and F1-score have achieved better
results. Compared with the current state-of-the-art deep
learning algorithms, the algorithm proposed in this paper is
still insufficient in terms of accuracy. At the same time, the
algorithm proposed in this paper has great problems in small
sample detection, which are worthy of further study.
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