
Review Article
Cryptographic Accumulator and Its Application: A Survey

Yongjun Ren ,1,2 Xinyu Liu,2 Qiang Wu,2 Ling Wang,2 and Weijian Zhang 3

1Information Security Evaluation Center of Civil Aviation, Civil Aviation University of China, Tianjin 300300, China
2School of Computer Science, Engineering Research Center of Digital Forensics, Ministry of Education,
Nanjing University of Information Science & Technology, Nanjing 210044, China
3Network Security and Information Office, Hohai University, Nanjing, China

Correspondence should be addressed to Weijian Zhang; wjzhang@hhu.edu.cn

Received 20 August 2021; Accepted 29 January 2022; Published 7 March 2022

Academic Editor: Stelvio Cimato

Copyright © 2022 Yongjun Ren et al. )is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Since the concept of cryptographic accumulators was first proposed in 1993, it has received continuous attention from researchers.
)e application of the cryptographic accumulator is also more extensive. )is paper makes a systematic summary of the
cryptographic accumulator. Firstly, descriptions and characteristics of cryptographic accumulators are given, and the one-way
accumulator, collision-free accumulator, dynamic accumulator, and universal accumulator are introduced, respectively.
Cryptographic accumulator can be divided into two types: symmetric accumulator and asymmetric accumulator. In the
asymmetric accumulator, three different cryptographic accumulator schemes were classified based on three security assumptions.
Finally, this paper summarized the applications of cryptographic accumulators in ring signature, group signature, encrypted data
search, anonymous credentials, and cryptographic promise.

1. Introduction

)e concept of cryptographic accumulators was first pro-
posed in 1993 by Benaloh and de Mare [1], who developed a
one-way accumulator encryption protocol that could be
used for timestamp and membership testing through a hash
function with quasi-commutativeness and one-way prop-
erty. )at is to say, for all x ∈ X and y1, y2 ∈ Y, this one-way
hash function h: X × Y⟶ X satisfies the quasi-
commutativeness:

h h x, y1( 􏼁, y2( 􏼁 � h h x, y2( 􏼁, y1( 􏼁. (1)

)e cryptographic accumulator scheme allows the ac-
cumulation of elements from a finite set X � x1, . . . , xn􏼈 􏼉

into a concise value accX of constant size, known as a
cryptographic accumulator. Because the cryptographic ac-
cumulator satisfies the characteristic of quasi-commuta-
tiveness, the accumulated value accX does not depend on the
order of the accumulated elements. Choose g ∈ G as the
base, and the original cryptographic accumulator is defined
as

accX � h h h . . . h h h g, x1( 􏼁, x2( 􏼁, x3( 􏼁, . . . , xn−2( 􏼁, xn−1( 􏼁, xn( 􏼁. (2)

)e witness witxi
of each element xi ∈ X in the set is

calculated to verify h(witxi
, xi) � accX, that is, to effectively

prove the membership of element xi.
At the same time, it is not feasible to find a membership

witness for any unaccumulated element y ∉ X because of the
collision resistance of one-way hash function.

)e cryptographic accumulator has several important
characteristics, such as being dynamic, robustness, univer-
sality, security assumption, and compactness, as shown in
Table 1.

Although cryptographic accumulators have been
roughly described in the review of cryptographic accumu-
lators published by Ozcelik et al. [6], the summary of this
paper is not comprehensive. )erefore, this paper makes a
more comprehensive and detailed summary.

)e roadmap of this paper is organized as follows:
Section 2 introduces the descriptions of cryptographic ac-
cumulator. Section 3 classifies the cryptographic accumu-
lators into symmetric accumulator and asymmetric
accumulator. In Section 4, cryptographic accumulators
based on various security assumptions are introduced in

Hindawi
Security and Communication Networks
Volume 2022, Article ID 5429195, 13 pages
https://doi.org/10.1155/2022/5429195

mailto:wjzhang@hhu.edu.cn
https://orcid.org/0000-0001-6602-9576
https://orcid.org/0000-0002-6741-051X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5429195


detail. Section 5 describes the cryptographic accumulator
scheme of hidden order group and known order group. In
Section 6, the applications of cryptographic accumulator are
introduced. )e seventh section gives a summary.

2. Descriptions of Cryptographic Accumulators

2.1. One-Way Accumulators. )e concept of the crypto-
graphic accumulator originated from the one-way accu-
mulator first proposed by Benaloh and Mare [1]. A one-way
accumulator is defined as a set of one-way hash functions
with quasi-commutativeness.

One-Way Hash Functions [1, 7]. A family of one-way
hash functions is an infinite sequence of families of functions
Hλ􏼈 􏼉λ∈N, where Hλ � hk: Xk × Yk⟶ Zk􏼈 􏼉 (k is a security
parameter), with the following properties:

(1) For any integer λ and any hk ∈ Hλ, hk(., .) is com-
putable in time polynomial in λ.

(2) Any probabilistic, polynomial-time algorithm A
satisfies

Pr hk
R
⟵Hλ; x

R
⟵Xk; y

,R
⟵Yk; x

,⟵􏽨

· A 1λ, x, y, y
,

􏼐 􏼑: hk(x, y) � hk x
,
, y

,
( 􏼁􏽩< negl(λ),

(3)

where the probability depends on the random se-
lection of hk, x, y, y′ and random output of A.

From the above description, it is seen that the one-way
hash function is computable and one-way; that is, given x
and y, the calculation of z � h(x, y) can be completed in
polynomial time, and if given x, y, and y′, the probability of
finding x′ satisfying hk(x, y) � hk(x′, y′) is too small to be
ignored; that is, the conflict between the outputs generated
by different inputs is very little.

Quasi-Commutativeness [7, 8]. A function f:
X × Y⟶ X has quasi-commutativeness means that the
following equation holds:

∀x ∈ X, ∀y1, y2 ∈ Y: f f x, y1( 􏼁, y2( 􏼁 � f f x, y2( 􏼁, y1( 􏼁.

(4)

If a one-way hash function satisfies the quasi-commu-
tativeness, first of all, the forward calculation is easy
according to the one-way property, while the reverse cal-
culation is difficult. Second, satisfying the quasi-

commutativeness means that, under the condition of given
initial value (Seeds), the results of multiple hash operations
will not change with different calculation order.

A one-way hash function with quasi-commutativeness
can be used to verify whether a value yi is in a specified set
Y � yi􏼈 􏼉. Specifically, the accumulative results z of Y can be
calculated by the one-way accumulative function h ∈ H,
using the following formula:

z � h h . . . h h h x0, y1( 􏼁, y2( 􏼁, y3( 􏼁, . . . , yl−1( 􏼁, yl( 􏼁. (5)

)e accumulated value (called partial accumulated
value) of yi � y|y ∈ Y, y≠yi􏼈 􏼉 other than yi can also be
calculated using a one-way accumulative function:

zi � h(h( . . . (h(h(h(x0, y1), y2) , y3), . . . , yi−1), yi+1),

. . . , yl−1), yl. When verifying yi ∈ Y is required, the formula
z′: z′ � h(zi, yi) is used for calculation. If z′ � z, yi ∈ Y.

)e above conclusion holds because if the attacker does
not know yi, according to the description of one-way
function, it will face the computational difficulty that con-
structing y′ makes z � h(zi, y′) established. Hence, (yi, zi)
can be regarded as a witness of yi ∈ Y. During the following
discussion, ZN represents the set of all positive integers, and
Zn represents the set of positive integers with length within
n.

One-Way Accumulators [1, 7]. (yi, zi) is the witness of
yi ∈ Y meaning that it meets the following condition:

Pr k ∈ ZN, zi, yi :: ∃y′ ∈ Y, y′ ≠yi: h zi, yi( 􏼁􏼈 􏼉<
1

A(k)
. (6)

However, there is an obvious problem with the above
analysis: Assume that the attacker can only randomly select
predictive values y′ in a given set Y. In fact, it is entirely
possible for an attack to easily find y′ satisfying z � h(zi, y′)
beyond the value domain set Y, thus destroying the above
description of the witness. A strong description is obtained if
the attacker’s optional range of predictive values is extended
beyond the specified set Y.

Strongly One-Way Hash Functions [7]. A family of
strongly one-way hash functions is an infinite sequence of
families of functions Hλ􏼈 􏼉λϵN, where Hλ � hk: Xk×􏼈

Yk⟶ Zk} (k is a security parameter), having the following
properties:

(1) For any integer λ and any hkϵHλ, hk(., .) is com-
putable in time polynomial in λ.

Table 1: Characteristics of the cryptographic accumulator.

Characteristics
Dynamic [2] )e cryptographic accumulator has efficient algorithms for adding, deleting, witnessing, and updating elements.

Robustness [1] )e administrator of the cryptographic accumulator does not need to be trusted, and trapdoor information cannot
be used to forge witnesses.

Universality [3] )e cryptographic accumulator can provide not only membership proof but also nonmembership proof.
Security assumption
[4]

Under the premise of security assumption declaration, the member verification function of the cryptographic
accumulator is not affected by attackers.

Compactness [5]
)e cryptographic accumulator canmap a large set to accumulation value of a smaller order of magnitude, which is
manifested by the small storage space required for accumulated value and witness, as well as the low time

complexity of updating algorithm.
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(2) Any probabilistic, polynomial-time algorithm A
satisfies

Pr hk
R
⟵H λ; x

R
⟵Xk; y

R
⟵Yk; x′, y′( 􏼁⟵􏽨

· A 1λ, x, y􏼐 􏼑: y′ ≠yΛhk(x, y) � hk x′, y′( 􏼁􏽩<negl(λ).

(7)

)e probability is taken over the random choice of
hk, x, y and random output of A.

One-way property means that, given values
(y1, y2, . . . , yn), their accumulative value z, and another
value y′, the attacker has difficulty finding the corresponding
witness accu′ such that h(accu′, y′) � z. Strongly one-way
property means that, given (y1, y2, . . . , yn) and z, it is hard
to find the value corresponding to (y′, accu′) so
h(accu′, y′) � z, and y′ ∉ (y1, y2, . . . , yn).

2.2.Collision-FreeAccumulators. Strongly one-way property
does not completely solve the problem of ensuring security
in the case of an adversary actively participating in the
selection of values to be accumulated (i.e., x and y in the
above description are no longer randomly chosen but
carefully chosen by the adversary). In order to fill this gap,
Baric and Pfitzmann [5] proposed the concept of collision-
free accumulators.

Baric and Pfitzmann [5] proposed that the cryptographic
accumulator needs to be more strict when building FSS
mechanisms. Under the strongly one-way property, the
attacker may still carefully forge the member value
(y1′, y2′, . . . , yn

′) to construct witness accu′ for y′. )erefore,
a collision-free accumulator is introduced. On the strongly
one-way property basis, the member value (y1′, y2′, . . . , yn

′)
does not need to be given.

Cryptographic Accumulator Scheme [5, 7].)e scheme of
a cryptographic accumulator is a 4-tuple containing 4
polynomial time algorithms (Gen, Eval, Wit, and Ver):

(1) Gen (key generation algorithm): it is a probabilistic
algorithm for generating initial parameters. Gen
receives two parameters: a security variable 1λ and
an accumulator threshold N, an upper bound on the
total number of values that can be securely accu-
mulated, and finally returns an accumulator key k,
k ∈ kλ,N.

(2) Eval (evaluation algorithm): it is a probabilistic al-
gorithm for finding accumulated values. Calculate all
accumulated values in the set L � y1, y2, . . . , yN′􏼈 􏼉,
N′ ∈ N, where yi ∈ Yk, k ∈ Kλ,N. Eval inputs
(k, y1, y2, . . . , yN′) and outputs an accumulated
value of z ∈ Zk and some auxiliary information of
aux, which will be used as an input to other algo-
rithms. Note that Eval outputs the same accumulated
value for the same input, and the auxiliary infor-
mation may be different.

(3) Wit (witness extraction algorithm): it is a probabi-
listic algorithm for generating member witnesses
based on relevant information. Wit inputs an ac-
cumulator k ∈ kλ,N, a value yi ∈ Yk, and auxiliary
information aux outputted by Eval (k, y1, y2,

. . . , yN′); if yi is in L, a witness wi ∈WK is outputted
to prove that yi is accumulated within z; otherwise, it
returns symbol ⊥.

(4) Ver (verification algorithm): it is a deterministic
algorithm for verifying the membership of a value by
witness. Ver inputs (k, yi, wi, z) to verify that yi is
accumulated into z and outputs Yes or No according
to witness wi.

N-Times Collision-Freeness [5, 7]. A cryptographic ac-
cumulator scheme is said to be N-times collision-free when
it satisfies the following property: A cryptographic accu-
mulator scheme is said to beN-times collision-free if, for any
integer λ and for any probabilistic, polynomial-time algo-
rithm A,

Pr k⟵Gen 1λ, N􏼐 􏼑; y1 . . . , yN, y′, w′( 􏼁⟵A 1λ, N, k􏼐 􏼑; (z, aux)⟵Eval k, y1, . . . , yN( 􏼁: y1, . . . , yN ∈ Yk( 􏼁􏽨

· Λ y′ ∉ y1 . . . , yN􏼈 􏼉( 􏼁Λ Ver z, y′, w′( 􏼁 � Yes( 􏼁􏼃< negl(λ).
(8)

where the probability is taken from random output of Gen,
Eval, and A.

Collision-Freeness [5, 7]. A cryptographic accumulator
scheme is collision-free if it is in all N-times collision-free.

2.3. Dynamic Accumulators. )e application of member
authentication requires that the selected cryptographic ac-
cumulator can not only enable the verifier to authenticate
efficiently but also ensure the security. When a member set
changes (added or deleted), the accumulated value and
witness of each member can be updated efficiently; other-
wise, whenever members are added or deleted, all members
need to recalculate the current accumulated value and their

respective witness. When the member set changes dynam-
ically, the cryptographic accumulator cannot operate effi-
ciently to meet the practical application requirements. For
this reason, researchers put forward the concept of dynamic
accumulator, which can add, delete, and update operations
on the basis of the original 4-tuple.

Dynamic Accumulator Scheme [2, 7]. A dynamic accu-
mulator scheme is a seven-tuple containing seven polyno-
mial time algorithms (Gen, Eval, Wit, Ver, Add, Del, and
Upd), where Gen, Eval, Wit, and Ver are the same as in the
cryptographic accumulator scheme:

(1) Add (element addition algorithm): it is usually a
deterministic algorithm. Given an accumulator key
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k, an accumulated value z obtained as the accu-
mulation of some set L of less thanN elements, where
L⊆YK, z ∈ Zk, and the value y′ ∈ L to be deleted, it
returns a new accumulator value z′ corresponding to
the set L∖ y′􏼈 􏼉, along with a witness w′ ∈Wk for y′
and some updated information auxAdd which will be
used by the Upd algorithm.

(2) Del (element deletion algorithm): it is usually a
deterministic algorithm. Given an accumulator key
k, an accumulated value z obtained as the accu-
mulation of some set L of less thanN elements, where
L⊆YK, z ∈ Zk, and the value y′ ∈ Yk to be added, it
returns a new accumulator value z′ corresponding to
the set L∪ y′􏼈 􏼉, along with some update information
auxDel which will be used by the Upd algorithm.

(3) Upd (witness update algorithm): it is a deterministic
algorithm used to update the witness w ∈Wk of each
existing element in the set y ∈ Yk after adding or
deleting elements in L. Upd takes k, y, w, op, and
auxop as input (where op is either Add or Del) and
returns an updated witness w′ to prove that y has
been accumulated into z′.

2.4. Universal Accumulators. Universal accumulators are
dynamic and support (non)membership proofs [3]. Cryp-
tographic accumulators that support membership proof are
called positive accumulators, those that support nonmem-
bership proof are called negative accumulators, and those
that support both are called universal accumulators [9].

Assuming that k is a security parameter, the safe uni-
versal accumulator of the input {χk} family is a family of
functions {Fk} with the following properties [3]:

(i) Effective generation: there is an effective probabi-
listic polynomial time algorithm G, which generates
a random function Fk on input 1k. Moreover, G also
outputs some auxiliary information about f,
expressed as auxf.

(ii) Efficient evaluation: each f ∈ Fk is a polynomial
time function, which outputs a value h ∈ gf when
inputting (g, x) ∈ gf × χk, where gf is the input
domain of the function f and χk is the input domain
to accumulate the element.

(iii) Quasi-commutativity: for all f ∈ Fk, all g ∈ gf, and
all x1, x2 ∈ χk, if f(f(g, x1), x2) � f(f(g, x2),

x1), f(g, X) can represent f(f(. . . (g, x1), . . .)),

xm).
(iv) Membership witness: for each f ∈ Fk, there is a

membership validation function ρ1. Set c ∈ gf and
x ∈ χk. If ρ1(c, x,ω1) � 1, the value ω1 is called
membership witness.

(v) Nonmembership witness: for each f ∈ Fk, there is a
nonmembership validation function ρ2. Set c ∈ gf

and x ∈ χk; the value ω2 is called nonmembership
witness if ρ2 (c, x, w2)� 1.

(vi) Security: for all polynomial-time probability, at-
tacker Ak satisfies

pr f⟵G 1k
􏼐 􏼑; g⟵gf x, w1, w2, X( 􏼁⟵Ak f, gf, g􏼐 􏼑x ∈ χk; X ⊂ χk; ρ1 f(g, X), x, w1( 􏼁 � 1; ρ2 f(g, X), x, w2( 􏼁 � 1􏽨 􏽩 � neg(k).

(9)

)en, the universal accumulator scheme is safe.
Table 2 provides description of different types of cryp-

tographic accumulators.

3. Symmetric and Asymmetric Accumulators

3.1. Symmetrical Accumulators. )e symmetric crypto-
graphic accumulator is a trapdoor-free structure and does
not require witness verification. In random oracle models,
the existing structures are secure. )e symmetric accumu-
lator [14] basically consists of a one-way function
f: Y⟶ X and a vector x ∈ X of length l, initialized to the
0 vector. )is set of values y1, y2, . . . , yn􏼈 􏼉 accumulates as
vector z: z � x∨f(y1)∨f(y2)∨ . . .∨f(yn), where ∨ is
contained by bit. Given the accumulative vector z and values
yi, verify that membership in the accumulative vector in-
cludes calculating v � f(yi) and verifying that, ∀k ∈ [[0, l −

1]], vk � 1 means zi � 1. Symmetric accumulator does not
need to calculate the witness. But it is stuck with the long
output of cryptographic accumulators. Actually, the length

of the cryptographic accumulator depends also on the
number of values added to the cryptographic accumulator
and not only on the security parameters.

Nyberg [15] proposed a symmetric accumulator. )e
idea is to use the hash function to generate hash values for
the values to be accumulated. Each hash value h is con-
sidered to consist of r blocks of size d bits h1, h2, . . . , hr

composition. )en, by mapping each block to one bit, map
such code to an r bit string. Accumulated value z is cal-
culated as the coordinate directional bit product corre-
sponding to the string to be accumulated. To verify the
membership, the values y and the corresponding bit string y′
with r length can be calculated. Check that, for all 1≤ i≤ r,
when yi

′ � 0, zi � 0.
Bloom filter [16] can be used as a cryptographic accu-

mulator. Furthermore, Yum et al. [17] proved that it is
superior to other symmetric accumulators. Secure Bloom
filter consists of k hash functions fi: Y⟶ X􏼈 􏼉. )ese
functions actually belong to the hash family. Each hash
function uniformly returns a vector index. To add a value to
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the cryptographic accumulator, it is fed to each hash
function to get k indexes.)e bit of x at these indexes is set to
1. To verify that a given value is accumulated, k hash
functions are applied again to obtain the vector index. If any
bit of the accumulative vector is 0 at these indexes, then the
value is definitely not accumulated. If all the bits at these
indexes are 1, then an incorrect positive response may be
obtained. Another variant of Bloom filter has been studied in
the past, where the hash function is replaced by a hash-based
message authentication code (HMAC).

It can be noted that, in the case of symmetric accu-
mulators, the size of l increases as the number of elements in
the filter increases or the false positive rate is set as low.

3.2. Asymmetric Accumulators. )e first cryptographic ac-
cumulator proposed is asymmetric and requires witness
verification [1]. )is construct takes the modulus f (x,
y)� xy modN as a one-way and quasi-commutative func-
tion because it satisfies

f f x, y1( 􏼁, y2( 􏼁 � x
y1( 􏼁

y2 � x
y2( 􏼁

y1 � f f x, y2( 􏼁, y1( 􏼁.

(10)

For power operations for one-way accumulators, the
module is chosen as the product of two safe prime numbers p
and q of equal size. If (p − 1)/2 is also a prime, prime p is
safe. Malicious attacker who knows the accumulated value z
may forge witness w for the randomly selected value y by

finding the initial value x verifying xy modN � z. However,
this is not feasible under the RSA assumption.

Table 3 shows the development of symmetric and
asymmetric accumulators.

4. Accumulator Based on Various
Security Assumptions

Table 4 shows the evolution of different types of security
assumptions.

4.1. Accumulator Based on Hash Tree

4.1.1. Hash Tree. Hash tree, in cryptography and computer
science, is a tree data structure in which every leaf node is
labeled with the hash of the data block, while the node other
than the leaf node is labeled with the encrypted hash of its
child node label. Hash trees can efficiently and securely
validate the contents of large data structures. A prime
resolution algorithm is selected to build a hash tree [20].
Consecutive primes starting at 2 are selected to build a ten-
level hash tree. )e node of the first layer is the root node,
and there are two nodes under the root node. )e second
layer has three nodes under each node, and so on; that is, the
number of children of each node layer is a continuous prime
number. By the tenth level, there are 29 nodes under each
node. )e children of the same node, from left to right,

Table 2: Descriptions of the cryptographic accumulator.

Description

One-way accumulator
[10]

One-way hash function
[11]

A family of one-way hash functions is an infinite sequence of families of functions
Hλ􏼈 􏼉λϵN, where Hλ hk: Xk × Yk⟶ Zk􏼈 􏼉, with the following properties:

① For any integer λ and any hkϵHλ, hk(., .) is computable in polynomial time in λ; ②
for any probabilistic, polynomial-time algorithm A, (3) is satisfied, where the

probability is taken over the random choice of hk, x, y, y, and the random coins of A.
Quasi-commutativity A function f: X × Y⟶ X is said to be quasi-commutative if (4) is satisfied.

One-way accumulator

A one-way accumulator is defined as a family of one-way hash functions with quasi-
commutativeness. )is description is elegant and simple, but, in order to clarify the
basic function of the security cryptographic accumulator, the ability to intuitively
accumulate set L as a small value can be proved only for element y ∈ L. In fact, the one-
way property imposed by the second requirement is often too weak for applications

where the attacker can choose some value to accumulate.

Strongly one-way hash
function

A family of strongly one-way hash functions is an infinite sequence of families of
functions Hλ􏼈 􏼉λϵN, where Hλ � hk: Xk × Yk⟶ Zk􏼈 􏼉, having the following

properties:
① For any integer λ and any hkϵHλ, hk(., .) is computable in polynomial time in λ;②

for any probabilistic, polynomial-time algorithm A, (7) is satisfied, where the
probability is taken over the random choice of hk, x, y, y, and the random coins of A.

Collision-free
accumulator [5]

Cryptographic
accumulator scheme

)e cryptographic accumulator scheme is a 4-tuple of polynomial-time algorithm
(Gen, Eval, Wit, and Ver)

N-times collision-freeness
A cryptographic accumulator scheme is said to be N-times collision-free if, for any
integer λ and for any probabilistic, polynomial-time algorithm A, probability is taken

from Gen, Eval, and random coins of A.

Collision-free When a cryptographic accumulator scheme is N-times collision-free for any value of
N polynomial in λ, it is called collision-free.

Dynamic accumulator
[12]

Dynamic accumulators include polynomial-time algorithms (Gen, Eval, Wit, Ver,
Add, Del, and Upd) for 7-tuples.

Universal
accumulator [13]

Universal accumulators are dynamic and support membership and nonmembership
proofs.

Security and Communication Networks 5



represent different remainder results. For example, the
second layer node has three children. So, from left to right, 0
is divided by 3, 1 is divided by 3, and 2 is divided by 3. )e
remainder of the mod operation on a prime number de-
termines the path of processing.

4.1.2. Accumulator Based on Hash Tree. In a hash tree,
values are associated with the leaves of a binary tree. )e
value of the sibling node is hash in order to calculate the
value associated with its parent node, and so on, until the
value of the tree root is obtained. )e root value of the tree is
defined as the cryptographic accumulator of the set of values
associated with the leaves of the tree [20]. )e hash tree
cannot be directly used to obtain the functions of general
and dynamic accumulators. In fact, cumulative sets need to
add and remove elements (tree node values if a hash tree is
used), while generating nonmembership proof. So, instead
of associating values with the leaves of the tree, a pair of
continuously accumulated set elements are associated. To
prove that element x is not in the accumulative set, it is now
equivalent to indicating that a pair (x∝, xβ) (where
x∝ <x< xβ) belongs to the tree, but pairs (x∝, x) and (x, xβ)
do not belong to the tree.

4.1.3. Development Process of the Accumulator Based on
Hash Tree. Buldas et al. [18, 19] proposed the first universal
dynamic accumulator satisfying nonrepudiation (called the
nonrepudiable certifier and formalized in the context of the
cryptographic accumulator). Its construction is based on
collision-resistant hashes and hash trees. )en, a universal
accumulator structure based on hash tree is proposed, which
satisfies the concept similar to nonrepudiation (the scheme
is called strong universal accumulator). Recently, another

cryptographic accumulator based on hash tree has been
introduced, which uses the promise of modular operations
on RSA composite modules based on binary polynomials as
a collision-resistant hash function.

4.2. Accumulator Based on RSA Assumption

4.2.1. RSA Assumption. RSA hard problem means that,
∀y, z, n ∈ Z1

n,∃x ∈ Zn: z � xymod n is known. )e RSA
assumption refers to the fact that the RSA assumption is
computationally infeasible for all polynomial-time algo-
rithms A [5]; that is,

Pr y, z, n ∈ Zn :: ∃x: z � x
ymod n􏼈 􏼉≤

1
A(n)

. (11)

According to the RSA hard problem assumption, first,
the function z � xy mod n satisfies the one-way property.
Second, the function z � xy satisfies the quasi-commuta-
tiveness. )at is, ∀y1, y2: z(z(x, y1,), y2)� (xy1)y2 � xy1y2 �

z(z(x, y2), y1) is established.
When the modulus N is large enough and is generated

randomly and the exponential y and value z are given, it is
difficult to calculate x satisfying xy modN � z. However, as
informally noted in [1] and later recognized in Nyberg [15],
the one-way property imposed in the description may not
succeed for applications where certain adversaries have
access to the list of values to accumulate. To remedy, a
stronger property called strongly one-way property should
be considered, where choices do not impose y′ on the at-
tacker as one-way hash functions.

4.2.2. Strong RSA Assumption. )e strong RSA hard
problem means that, ∀z, n ∈ Zs, ∃x ∈ Zp, y: z � xy mod n

is known, where Zp is the set of prime numbers. )e strong

Table 3: Development process.

Symmetric accumulator Bloom filter constructs an cryptographic accumulator.
A symmetric accumulator is proposed to generate hash values for the values to be accumulated hash functions.

Asymmetric
accumulator )e first cryptographic accumulator proposed in 1993 is asymmetric and requires witness validation.

Table 4: Security assumptions.

1993 [1] Proposing the first cryptographic accumulator which is asymmetric and requires witness
verification.

Hash-based
construction

2000 [18] 2002
[19] Proposing the first universal dynamic accumulator satisfying nonrepudiation.

2008 [20] A universal accumulator structure based on the hash tree is proposed, which satisfies the concept
similar to the nonrepudiation, called a strong universal accumulator.

RSA assumption 1996 [15] Imposing one-way property (applications where some adversaries can access the list of values to
accumulate may not succeed).

Strong RSA
assumption

1999 [21] Proposing a trapdoor-free accumulator.
2002 [2] Dynamic accumulator.
2005 [22] Dynamic accumulator for bilinear pairs.

t-SDH

2004 [23] Elliptic curves construction of cryptographic accumulator.

2007 [24] (Nonmembership proof is inevitable) providing a dynamic accumulator, then called a universal
accumulator.

2009 [25] Dynamic pairing accumulator (more efficient witness update algorithm).

t-DHE 2005 [26] Bilinear map accumulator.
2009 [25] t-bound accumulator scheme based on t-DHE assumption is presented.
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RSA hard problem assumption means that the strong RSA
hard problem is computationally infeasible for all polyno-
mial-time methods A [2]; that is,

Pr z ∈ Zn, n ∈ Zs :: ∃x ∈ Zn, y ∈ Zp: z � x
y mod n􏽮 􏽯≤

1
A(n)

.

(12)

In contrast to general RSA, the strong RSA hard problem
assumption allows free choice of combinations (x, y); that is,
the attacker can choose not only the base of the exponential
function but also the exponent. In addition, the strong RSA
assumption also requires that the exponent be prime, while
the general RSA assumption has no special requirement for
the exponent. For the strong RSA hard problem assumption,
there is no strict proof that it is computationally feasible.
Again, there is no rigorous theoretical proof that it works on
a computer.

When the modulus N is large enough and randomly
generated and given the value z, it is difficult to find x and y
that satisfy xy modN � z as previously demonstrated; im-
pact resistance can be obtained under strong RSA as-
sumptions only if the value to be accumulated is prime.

Cryptographic accumulators without trapdoor should be
able to be constructed. Trapdoors are unnecessary in the
cryptographic accumulator scheme.)e side that providesN
during system setup also knows trapdoors p and q. Un-
fortunately, the side that knows p and q can completely
bypass the security of the system. Because by knowing p and
q, it is possible to recover the initial value and then inde-
pendently accumulate additional values and generate false
witnesses. A trapdoor-free solution will not rely on trusted
online or offline services. )en a trapdoor-free accumulator
is introduced, which is proved to be safe in the standard
model. )e authors suggest the use of a generalized RSA
module with unknown complete factorization and call it
RSA-UFOS. A number N is an RSA-UFO, and if N has at
least two large prime factors p and q, then no participant in
the union, including those that produce N, will be able to
find an N that splits into factors N1 and N2, thus making
P|N1 and q|N2. A probabilistic algorithm is also proposed to
generate such numbers. Under the standard model, security
is proved under a new assumption called “strong RSA-UFO
assumption.” )is assumption is very similar to the strong
RSA assumption, with the only difference being that module
N is set to RSA-UFO.

4.2.3. Accumulator Based on Strong RSA Assumption. All
schemes in this setting are [1, 5] extensions.)e accumulator
accx is defined as accx⟵g􏽑x∈XxmodN, whereN is an RSA
modulus consisting of two large safe prime numbers p and g,
which is randomly drawn from the cyclic group of the
quadratic remainder of N. )ere are skacc, pkacc � (p, q, N)

and the witnesses of the value xi given by
witxi
⟵ accx−1

i
x mod N. Obviously, if the value xi not in-

cluded in acc can forge witness witxi
⟵ accx−1

i
x modN, then

the strong RSA assumption will be broke. Because of the
product relation of the accumulated value in the exponent,
the domain of the accumulated value is limited to prime

number. Note that when a given witness wita (i.e.,
witb ≡ witca(modN)), accumulating a compound number
will allow a � b · c derivation of the witness for each of its
factors, to accumulate sets from more general domains, an
appropriate mapping from these domains to prime numbers
will be required (see [27]).

Certain cryptographic accumulator schemes in this
setting [2] also provide dynamic functionality. Simply
summing the cryptographic accumulator and its witness can
add values to the cryptographic accumulator without any
secret. On the contrary, if the value xj is to be deleted, the
xj − th root of the cryptographic accumulator must be
calculated, which is difficult to solve under strong RSA
assumptions without skacc. However, after removing the
value, membership witnesses can still be publicly updated
using arithmetic techniques. To update the witness accx/xj

of
the value xi, find a, b ∈ Z, so that axi + bxj � 1 and calculate
the new witness as witxi

′⟵witbxi
· accx/xj

modN and
original witness is witxi

.
Moreover, cryptographic accumulator scheme provides

general functionality because it supports nonmembership
witnesses: accX is accumulator for set X and yj ∉ X. Now it
holds that gcd􏽑x∈Xx, yj � 1 or equivalently for a, b ∈ Z,
a􏽑x∈Xx + byj � 1. )erefore, d⟵g− bmodN is calcu-
lated, where g is the initial value of the empty cryptographic
accumulator and forms a nonmembership witness
wityi
⟵ (a, b). )en, the verification of nonmembership

witnesses is completed by checking whether
acca

x ≡ dyi · g(modN) is established. Similar to what is done
for membership, nonmembership witnesses can also be
publicly updated (see [24]).

4.3. Accumulator Based on t-SDH Assumption

4.3.1. t-SDH Assumption. Given a tuple t� (p, G, P), where p
is prime, G is a cyclic group generated by P and a tuple in the
form of value (P, sP, . . . stP) inZ/pZ, where s ∈ Z/pZ 0{ } [8].
For any probabilistic polynomial-time algorithm A, the
following probabilities can be negligible:

Pr � A tP, sP . . . , s
t
P􏼐 􏼑 � c,

1
s + c

P􏼒 􏼓Λ c ∈
Z

pZ
􏼠 􏼡􏼢 􏼣. (13)

Tartary et al. [28] made requirements for the conflict
resistance performance of the scheme, thus refuting previous
claims against cryptographic accumulators. Attack is based
on improperly defined security models in which adversaries
have access to functions f and g. )e proposed patch in-
cludes providing compound functions g (f(.)) to the ad-
versary instead of providing functions f and g, respectively.
However, the patches proposed by the authors cannot
prevent other types of attacks and have proved the scheme to
be unsafe. Camenisch et al. [25] proposed another crypto-
graphic accumulator based on dynamic pairing, which
provides a more efficient witness update algorithm.

Fazio and Nicolosi [7] pointed out in their investigation
of the cryptographic accumulator that the original structure
makes the time to update the witness after m changes the
cryptographic accumulator proportional to m. )ey raised
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the question of whether batch updates are possible, that is,
whether it is possible to build a cryptographic accumulator
where the time to update the witness is independent of the
number of changes to the cryptographic accumulator set.
Wang et al. [29] designed a cryptographic accumulator with
batch processing update and then made improvements to
solve the above problems.)e scheme is based on the Paillier
cipher system and is proven to be secure under a new as-
sumption called the extended strong RSA assumption, which
is a variant of the strong RSA assumption with modulus N2.
However, contrary to this claim, Camacho and Hevia [30]
have shown evidence of an attack and further demonstrated
that the time to update the witness in the worst case must be
at least Ω(m). )erefore, this provides impossible results on
a cryptographic accumulator with batch update capabilities.

Previous works have produced only membership wit-
nesses, but, in some cases, nonmembership witnesses may be
unavoidable. )e authors present a dynamic accumulator
that supports both membership and nonmembership short
witnesses, which they call the universal accumulator. )e
initial value of the cryptographic accumulator must be
public so that nonmembership witnesses can be verified.
)is construct is based on the RSA function, so only prime
numbers are allowed to accumulate.

Karlof et al. [23] used elliptic curves to construct
cryptographic accumulators. To add up the values (scalars),
multiply them by the public key (i.e., scalars multiply the
base point of the curve). Witness generation follows the
same algorithm but does not include corresponding values.
Validation is simple; if the product of the witness and the
value is equal to the accumulated value, it is necessary to
check for equality.

4.3.2. Accumulator Based on t-SDH Assumption. Nguyen
[22] proposed a t-bound accumulator. )e cryptographic
accumulator uses a groupG of prime number p generated by
g and has bilinear maps e: G × G⟶ GT. Here, pkacc �

(g, gs, gs2 , . . . , gst

, u) and skacc � s. )e accumulator accx
of set X � x1, x2, . . . , xn􏼈 􏼉 ∈ Zp (n ≤t) is defined as

accx⟵gu􏽑x∈X(x+s), and the membership witness

witxi
⟵g

u􏽑x∈X\xi
(x+s) is calculated, where u⟵R Z∗p. )en,

check whether accX contains the value xi by verifying
whether eaccx, g � e(gxi gs,witxi

) is true or not.)e scheme
allows the public evaluation of cryptographic accumulators;
that is, gh(s) is obtained by extending polynomial
hx � 􏽑x∈X(x + s) ∈ Zp[X] and by evaluating it in G
through pkacc. )e public calculation of the witnesses of xi

also works on set X/ xi􏼈 􏼉. Furthermore, these witnesses can
be updated at a constant time without knowing the secret
key (see [22]).

Nguyen’s scheme is extended by nonmembership wit-
nesses, and the random value u is eliminated [31, 32].
Previous work also showed how to publicly update non-
membership witnesses within a fixed period of time. Note
that these adjustments can also be applied to the latter [31].
)e calculation of nonmembership witnesses with value
yj ∉ X makes use of the following facts: hx � 􏽑x∈X(x + X)

is divided by the polynomial division remainder of yj + X.
Such witnesses take the form of a, b � (ghs− d/yi+s, d) ) and
may be validated by eaccx, g

?

�
ea, gyi , gse(g, gs)).

4.4. Accumulator Based on t-DHE Assumption

Diffie–Hellman Exponent (DHE) Assumption. )e t-DHE
problem in a group G of prime order q is defined as follows:
Let gi � gci , c⟵ RZq. On input {g, g1, g2, . . ., gt, gt+2, . . .,
g2t} ∈ G2t, output gt+1.

)e t-DHE assumption states that this problem is hard to
solve.

Camenisch et al. [25] gave a scheme of t-bound accu-
mulator based on t-DHE assumption, like the cryptographic
accumulator in t-SDH settings, which uses a group G of
prime number p generated by g and has bilinear mapping e:
G × G⟶ GT. Besides, it needs a signature scheme with
corresponding key pairs (sksig, pksig). Here, skacc � sksig,
public key is pkacc � g1, . . . , gt, gt+2, . . . , g2t, z, pksig

� (gc1 , . . . , gct

, gct+2
, . . . , gc2t

, e(g, g)ct+1
, pksig), and c

R

⟵
Z∗p. X x1, . . . , xm􏼈 􏼉 can be accumulated by calculating
accX⟵ 􏽑

m
i�1 gt+1−i and signing gi with xi using sksig, where

m≤ t, thus assigning the value of xi to gi.)e witness witxj
of

xj ∈ X is accX⟵ 􏽑
m
i�1, i≠ j gt+1−i+j. )e membership of xj

can be verified by checking whether e gj, accX �

z · e(g,witxj
) is valid and verifying the signatures of gj and

xj under pksig.
)is scheme allows public updates for witnesses and

cryptographic accumulators to be deleted, as this requires
only pkacc. However, if the value xi is to be added to the
cryptographic accumulator, a secret signature key skacc is
required to create signatures on gi and xi to link the value xi

to this parameter. )erefore, the public addition of the
cryptographic accumulator requires that a signature be
included for each potential value to be stored in the public
parameter. Obviously, this seems impractical except for the
small accumulative domain.

5. Cryptographic Accumulator Schemes in the
Hidden Order Group and Known
Order Group

Since the introduction of cryptographic accumulator, many
cryptographic accumulator schemes with different charac-
teristics have been proposed. Basically, the main work is to
construct schemes in hidden order group and known order
group [33].

5.1. Hidden Order Group. )e original RSA-based schemes
have been developed by Baric, which enhance the original
concept of collision-free safety. Sander [21] suggested using
unknown decomposed RSA modules to construct trapdoor-
free accumulators. Camenisch extended the previous
scheme to have the ability to dynamically add/delete values
to the cryptographic accumulator, which constitutes the first
dynamic accumulator scheme. )eir plan also supports
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public updates of existing witnesses, that is, updates without
knowing any trapdoor. After that, support for nonmem-
bership witnesses was added, so a universal dynamic ac-
cumulator was obtained. )ey also proposed an
optimization scheme to update the documents of non-
membership witnesses more effectively but later found
shortcomings [34, 35]. Lipmaa [36] generalized the RSA
accumulator to a module over a Euclidean ring. In all the
above schemes, the accumulative domain is limited to
primes to ensure that there is no conflict. Tsudik and Xu [37]
proposed a variant, which allows the accumulation of
semiprimes. Assuming that the semiprime used is difficult to
decompose and its decomposition is unknown to the public,
a collision-free accumulator is obtained. In addition, a
cryptographic accumulator scheme is proposed, which al-
lows arbitrary integers to be accumulated and supports batch
updates of witnesses. However, the scheme was eventually
broken.

5.2. Known Order Group. Nguyen proposed a dynamic
accumulator scheme, which is suitable for paired-friendly
groups with prime p. It is secure under the t-SDH as-
sumption and allows up to t values to be accumulated from
domain Zp. Later, Damgard, Triandopoulos, and Au et al.
extended the scheme of Nguyen with general functions.
Recently, Acar and Nguyen [38] removed the upper limit t
for the number of elements accumulated by the t-SDH
accumulator. To do this, they used a set of cryptographic
accumulators, each of which contained a subset of the entire
set to be accumulated. Camenisch et al. introduced another
cryptographic accumulator scheme for pairing-friendly
prime arrays. It supports public updates of witnesses and
witnesses, and its security depends on the t-DHE
assumption.

Table 5 shows the development of cryptographic accu-
mulator schemes.

6. Cryptographic Accumulator Applications

6.1. Application of the Cryptographic Accumulator in Digital
Signature

6.1.1. Ring Signature. In anonymous authentication on
trusted platform, the length of ring signature is positively
related to the number of ring members, while large members
lead to low efficiency. )erefore, Xu et al. [40] proposed a
ring signature anonymous authentication method based on
the one-way accumulator and constructed its solution in
detail. In the signature phase, the length of the ring is de-
termined by a one-way accumulator, which accumulates the
information of all members so that the ring is not too large
for a considerable number of members. During the verifi-
cation period, the efficiency is improved, and the hash
computing time, encryption computing time, and decryp-
tion computing time are reduced. Compared with the typical
ring signature, it is shown that the new solution has lower
time complexity and space complexity. At the same time, the
new solution ensures anonymity and validity, which not

only makes up for the weakness of traditional ring signature
but also has high efficiency under the premise of security.

6.1.2. Group Signature. Based on the knowledge of an ac-
cumulative composite dynamic accumulator and an effective
protocol to prove that the factorization of a submitted value
develops a novel, efficient, and provably secure group sig-
nature scheme [37], it allows authorization and ownership
proof at the same time as factorization based on cumulative
synthesis. It enables a group member to perform lightweight
authorization proof so that the complexity of proof and
verification is independent of the number of current or all
deleted members. Using a dynamic accumulator to facilitate
authorization, it is required that the group manager prop-
agate certain information such as the value deleted from the
cryptographic accumulator whenever a member (or group of
members) joins or leaves the group.

6.2. Encrypted Search. )e dynamic accumulator is intro-
duced into the encrypted search scheme [41, 42], and the
existing search scheme of decentralized storage based on
block chain is improved.)e new scheme takes advantage of
the efficient verifiability of the witness in the dynamic ac-
cumulator and the dynamic addition and deletion of ele-
ments in the accumulated value and takes into account both
efficiency and flexibility. In the encryption search scheme
based on CCS’14 Hahn in [43], a dynamic accumulator is
introduced and improved for the decentralized storage
application scenario based on blockchain.

6.3. Revoking Anonymous Credentials. )e dynamic accu-
mulator can be used to revoke normal credentials (and
certificates): First, add a unique value to each credential.
)en, the accumulator value of the unique value of all valid
credentials is truly published [44]. Now, users can convince
the verifier that the credential is still valid by providing a
witness for the unique value contained in their credential.
)erefore, to check the credential, the verifier must check the
publisher’s signature to obtain the current accumulator
value and use the witness provided by the user to verify that
the unique value contained in the credential is included in
the accumulator value.

For anonymous credentials, the same method can be
used. However, the witnesses and values contained in the
cryptographic accumulator can no longer be disclosed to the
validator because this completely endangers anonymity.
Instead, the user can apply zero-knowledge proof to con-
vince the verifier that the values contained in its credentials
are also included in the cryptographic accumulator.
)erefore, if a valid protocol is found to prove that the values
contained in the commitment are also included in the
certificate, any anonymous certificate scheme can be effec-
tively revoked.

6.4. Cryptographic Accumulator in Vector Commitment.
Catalano and Fiore [45] proposed a black box construction
of cryptographic accumulator based on vector commitment.
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Vector commitment allows concise commitment C to be
formed for vector X � x1, . . . , xn􏼈 􏼉. Here, it is not com-
putationally feasible to open position i of C to a value xi

′
different from that of xi. )e accumulative domain in the
black box construction is set D � 1, . . . , t{ }. )e crypto-
graphic accumulator is modeled as a commitment to a bi-
nary vector of length t; that is, each bit i represents the
existence or nonexistence of element i ∈ D in the crypto-
graphic accumulator. )en, the (non)membership of value i

can be proved by opening position i that is committed to 1 or
0, respectively.

6.5. Other Applications. )e applications of the crypto-
graphic accumulator are shown in Figure 1.

Cryptographic accumulators can be applied to mem-
bership testing, distributed signatures, responsible certificate
management, and authenticated dictionaries and can also be
used as editable, sanitary processing [46, 47], homomorphic
signatures [48, 49], and privacy protection data outsourcing
building blocks as for authenticated data structures [50, 51].
In addition, the cryptographic accumulator scheme can be
used to prove the zero knowledge of (nonmembership)
witnesses [52, 53], and undisclosed values are now widely

Table 5: Cryptographic accumulator schemes.

Known order group
2005
[22]

A dynamic accumulator scheme is proposed, which is suitable for paired-friendly groups with prime p.
It is secure under the t-SDH assumption and allows up to t values to be accumulated from the domain.

2008
[32] Extended 2005 scheme with general functions.

Hidden order group
)e accumulative domain is limited to primes

1997 [5] Improved the original RSA scheme in 1993 and strengthened the original concept of collision-free safety.
1999 [21] It is recommended to use unknown decomposed RSA modules to construct trapdoor-free accumulators.

2002 [2] )e scheme in 1997 is extended to have the ability to dynamically add/delete values to the cryptographic accumulator, and the
first dynamic accumulator is constructed.

2007
[24]

In 2002, support for nonmembership witnesses was increased, so a universal dynamic accumulator was obtained, and an
optimization scheme was proposed to update the documents of nonmembership witnesses more effectively.

2012 [34] )e RSA accumulator is broadly defined as a module over a Euclidean ring.
)e accumulative domain is limited to semiprimes

2003
[37] It is allowed to accumulate semiprimes.

2007
[29] )e cryptographic accumulator scheme allows arbitrary integers to be accumulated and supports batch updates of witnesses.

2019 [39] Dynamic accumulator based on hash greatly reduces storage space.
2011 [38] )e upper limit t for accumulating elements of the t-SDH accumulator is canceled.

Cryptographic
accumulator
applications 

Ring
Signature

Encrypted
Search 

Revoke
anonymous
credentials

Cryptographic
accumulator in

Vector
commitment

Group
signature 

Other
applications 

Figure 1: Cryptographic accumulator applications.
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used to revoke group signatures and anonymous credentials
[54, 55]. Recently, cryptographic accumulators are also used
in Zerocoin [56, 57], and Zerocoin is an anonymous ex-
tension of bitcoin cryptocurrencies. )erefore, the crypto-
graphic accumulator can be applied to many aspects, and
readers can understand the specific applications of the
cryptographic accumulator in these aspects by consulting
the above literature.

7. Conclusion

Cryptographic accumulator is a basic and important tool in
the field of cryptography, which has been widely used in
many aspects. )is paper firstly introduces the types of
cryptographic accumulators. Secondly, in the asymmetric
accumulators, three different cryptographic accumulators
schemes are classified through three security assumptions.
)irdly, several cryptographic accumulators based on se-
curity assumptions are introduced. Fourthly, this paper
presents the cryptographic accumulator scheme under
different characteristics. Finally the applications of crypto-
graphic accumulators in different aspects are summarized.
With the rapid development of big data security and
blockchain, cryptographic accumulators are used more and
more widely, and there is still much development space in
the future.
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