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Deep neural networks (DNNs) have been closely related to the Pandora’s box from the moment of its birth. Although it achieves a
high accuracy significantly in real-world tasks (e.g., object detecting and speech recognition), it still retains fatal vulnerabilities and
flaws. Malicious attackers can manipulate DNN model misclassification just by adding tiny perturbations to the original image.
(ese crafted samples are also called adversarial examples. One of the effective defense methods is to detect them before feeding
them into the model. In this paper, we delve into the representation of adversarial examples in the original spatial and spectral
domains. By qualitative and quantitative analysis, it is confirmed that the high-level representation and high-frequency com-
ponents of abnormal samples contain richer discriminative information. To further explore the influence mechanism between the
two factors, we perform an ablation study and the results show a win-win effect. Utilizing the finding, a detecting method (HLFD)
is proposed based on extracting high-level representation and high-frequency components. Compared with other state-of-the-art
detection methods, we achieve a better detection performance in most scenarios via a series of experiments conducted onMNIST,
CIFAR-10, CIFAR-100, SVHN, and Tiny-ImageNet. In particular, we improve detection rates by a large margin on DeepFool and
CW attacks.

1. Introduction

Exploring the inherent patterns and changing trends of
data is an eternal subject for all human beings. (e tra-
ditional way of processing data is driven by rules which
obtain through experience or manual summary.(e advent
of DNNs makes it possible to process the data automati-
cally. Relying on the characteristic, it has recently been
widely applied in data-sensitive fields, such as financial
payment [1], medical assistance [2], and satellite remote
sensing [3]. On the contrary, the benefit of its automation
also brings the property of a black-box [4–6], which means
almost everything inside the network is unknown to us.
Against this background, Goodfellow et al. found in [7] that
adversarial examples, imperceptible for a human observer,
produced by adding crafted perturbations to benign images
were able to misclassify the DNNs model with high con-
fidence. (ere is no doubt that how to defend against these

out-of-distribution samples has become a top priority
subject.

Before implementing adversarial defenses, exploring the
intrinsic properties of adversarial examples is crucial. At
present, there are two main explanations for the appearance
of adversarial samples: low-probability regions in manifold
[8] and linear explanations [7]. (ese studies all focused on
the distribution of spatial probability (i.e., statistical prob-
ability) to make them reasonable. However, the latest studies
in [9–15] indicated that adversarial examples are mainly
concentrated in the high-frequency region. Moreover, Ilyas
et al. further illustrated in [16] that adversarial examples are
not even bugs. (ey are non-robust features, which means
we can learn them via training a DNN model.

Inspired by these studies, we initiate to explore the
distinction of the representation of adversarial examples in
the original spatial and the spectral domain. In fact, the
spatial and the spectral domain refer to the original samples

Hindawi
Security and Communication Networks
Volume 2022, Article ID 5501035, 10 pages
https://doi.org/10.1155/2022/5501035

mailto:caochunjie@hainanu.edu.cn
https://orcid.org/0000-0001-9439-8256
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5501035


and the original samples after Fourier transform, respec-
tively. Intuitively, we discover that adversarial examples have
many small black dots in the mid-high frequency region. By
performing cluster analysis, we further discover that
adversarial examples can be better classified in the spectral
domain. For promoting the detection performance, we
further analyze the impact of different layers of network and
frequency bands on the detection performance. (e ex-
perimental results surprisingly demonstrate that extracting
high-level representation and high-frequency components
can improve the detection performance significantly.

In this paper, we propose the detection method HLFD to
detect the abnormal samples based on extracting high-level
representation and high-frequency components. Using the
high-level feature maps of the model as input, we transform
them to the spectrum by Fourier transform and extract the
high-frequency components. A detector with an ideal per-
formance will be born after training these transformed data.
Compared with other defense methods, there is no need to
alter the network architecture and the lower computational
cost, which are its superiority. (e overview of the detection
model is shown in Figure 1.

We evaluate our method on six different attacks, the fast
gradient sign method (FGSM) [7], two of its variants, the
basic iterative method (BIM) [17], the projected gradient
descent (PGD) [18], Jacobian-based Saliency Map Attack
(JSMA) [19], Carlini andWagner (CW) [20], and DeepFool
[21] methods. Using only one of the tricks of high-fre-
quency extraction or high-level representation cannot
achieve the ideal detection performance on DeepFool and
CW, although we perform well in FGSM, BIM, PGD, and
JSMA attacks. Considering that high-level representation
and high-frequency components may affect each other, we
further perform an ablation study for the two factors.
Experimental result shows a win-win effect which means a
better performance after applying the two tricks. DeepFool
and CW attacks can be detected efficiently by employing
the two factors simultaneously. For a more rigorous
conclusion, the detector is evaluated on five datasets:
MNIST, CIFAR-10, CIFAR-100, SVHN, and Tiny-
ImageNet (aka T-ImageNet).

For a fair comparison, adversarial examples are re-
stricted to similar L2 norm values and employ three state-of-
the-art detectors, kernel density and Bayesian uncertainly
(KD+BU) [22], local intrinsic dimensionality (LID) [23],
and Mahalanobis distance (M-D) [24] as a contrast. Our
method outperforms the other three detection methods for
each attack on CIFAR-10 and CIFAR-100. Although our
detection rate is not the highest in some scenarios, the gap is
not large at least. Moreover, we improve the detection rates
by a large margin on DeepFool and CW attacks.

In particular, our main contributions are as follows:

(i) We intuitively and experimentally prove that the
spectral samples have richer discriminative details,
which can be effectively distinguished by the
detector.

(ii) (e ablation study shows that the detection per-
formance can be improved effectively whether using

high-level representation or high-frequency
extraction.

(iii) An effective method for detecting adversarial ex-
amples is proposed, which performs better in most
scenarios compared to the state-of-the-art.

2. Related Work

In this section, we will briefly introduce several state-of-the-
art methods for adversarial attacks and adversarial defenses.

2.1. Adversarial Attack

2.1.1. Fast Gradient Sign Method (FGSM) [7]. Goodfellow
et al. purposed fast gradient sign method (FGSM), one of the
simplest ways based on gradient, to generate adversarial
examples. One can obtain them only by computing the
direction of the gradient of the loss function. (e method
can be expressed as

X
adv

� X + ε · sign ∇XJ(θ, X, Y)( . (1)

2.1.2. Basic Iterative Method (BIM) [17]. In most cases,
adversarial samples generated solely by the FGSM method
are ineffective. As a variant of FGSM, it performs multiple
gradient computations on the direction of loss function and
can be represented as follows:

X
adv
0 � X,

X
adv
N+1 � ClipX,ε X

adv
N+1 + α · sign ∇XJ X

adv
N , Ytrue   ,

(2)

where N, α refer to the number of iterations and the step size
of each iteration, respectively, and J(X, Ytrue) means the
cross-entropy loss function on a given image X and label Y.
(e norm of (Xadv

N+1 − X) is limited to ε by the clipping
function.

2.1.3. Projected Gradient Descent (PGD) [18]. PGD is an
advancement of BIM, which alters an initialized with uni-
form random noise.

2.1.4. Jacobian-Based Saliency Map Attack (JSMA) [19].
Utilizing the Jacobian matrix, Papernot et al. put forward
Jacobian-based Saliency Map Attack (JSMA). It mainly
adopts the priori probability of the last layer to
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Figure 1: A overview framework of detection model HLFD. It
consists of two modules: data pipeline and training process.
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backpropagate, thereby obtaining the corresponding gra-
dient information.
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(3)

where t is the class to be attacked. By constructing a saliency
map S, the pixels which contribute the most to the result can
be found. Adversarial examples can be generated via
exploiting the information.

2.1.5. Carlini and Wagner (CW) [20]. CW abstracts the
adversarial attack task into an optimization problem. On the
basis of guaranteeing the model misclassify, constantly
seeking for the smallest adversarial perturbation is its key
idea. We formulate it as follows:

min
1
2

tanh X
adv

  + 1  − X

�������

�������

2

2
+ c · f tanh X

adv
  + 1 ,

f(x) � max Z(x)true − maxi≠true Z(x)i , 0( ,

(4)

where Z(x) is the output of the pre-softmax layer. Utilizing
the tanh(·) function, map the Xadv to [−1, 1], thereby
avoiding the loss caused by truncation.

2.1.6. DeepFool [21]. Compared with other attack methods,
DeepFool is known for its minimal disturbances, which
makes adversarial examples harder to detect. It stops seeking
when the samples just cross the decision boundary as de-
scribed by the formula below:

Δ X, X
adv

  � argmin Z||Z||2, subject to : g(X + Z)≠g(X),

(5)

where Z is actually the smallest perturbation.
We apply a python tool Foolbox [25] to generate

adversarial examples for all attack methods. An intuitive
rendering of the comparison of various attack methods is
represented in Figure 2.

2.2. Adversarial Defense and Detection. In general, adver-
sarial defenses can be mainly divided into two categories.
One strategy is to modify the architecture or parameters of
the network, and the other is to defend by preprocessing
benign images before feeding them into the model.
Adversarial training belonging to the first strategy [26, 27]
has achieved great success in the defensive areas. (e model
will be retrained on normal and abnormal samples to learn
the decision boundary details, thereby avoiding misclassi-
fication and having stronger robustness. Nonetheless,
massive data support and ineffectiveness against specialized
attacks have made it less attractive. It did not take long for

adversarial distillation [28] to be raised. Although the ex-
periment conducted on small datasets showed that it can
defend against adversarial examples effectively, it was lim-
ited to be used in DNNmodels with probability distribution
vectors. Methods belonging to the latter, like JPG image
compression [29], rejecting classification [30], and detecting
[22–24, 31–33] are trying to eliminate the abnormal sta-
tistical characteristics before poisoning the model. (e de-
fense methods without touching the training process are
undoubtedly more exciting.

As one of the approaches in the defensive field, adversarial
detection has attracted the attention of scholars due to its
higher flexibility and lower computation. Sample statistics
and training a detector are two main routes. Exploiting the
statistical properties, Feinman et al. dived into the kernel
density (KD) and Bayesian uncertainly (BU) in the hidden
layers of the model and purposed an effective detection
method in [22]. Ma et al. further applied local intrinsic di-
mension (LID) in [23] to describe the intrinsic characteristics
of adversarial subspaces. Considering that the information of
the last layer may not be enough to judge the out-of-distri-
bution data, Lee et al. in [24] made full use of each layer of
DNN and obtained a detector via calculating Mahalanobis
distance (M-D). Hendrycks and Gimpel indicated in [34] that
samples with a large principal component had higher weights
to attack successfully. Still, the latest research showed that
DNNs were sensitive to the direction of the Fourier basis
function. In [9, 10], it was found that the high-frequency
components of adversarial examples affected seriously on the
robustness of the model. On the assumption that each layer of
DNN obeyed the generalized Gaussian distribution, Ma et al.
in [35] calculated the Benford-Fourier coefficients of each
layer, thereby obtaining a support vector machine with an
ideal detection performance.

3. Methodology

In this section, we will introduce the detection mechanism in
detail to identify adversarial examples.

3.1. >reat Model. Existing studies are constantly exploring
how to generate adversarial examples. Fortunately, we can
summarize into two main points: make the model

Normal FGSM BIM PGD

Normal

JSMA CW DF

SVHN

MNIST

CIFAR10

CIFAR100

Figure 2: Comparison of adversarial examples under various at-
tacks. (e rows and columns represent different datasets and
various attack methods, respectively.
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misclassify and minimize the disturbance as much as pos-
sible. Suppose X ∈ Rn as a n-dimensional input image,
Z ∈ Rn as a perturbation of X, and M(·) as a model trained
by X. If M(X)≠M(X + Z), we can define that Xadv � X +

Z is the adversarial example specified to model M(·) and
normal image X. However, if the perturbation Z is so large
that neither the model nor the human eye can correctly
identify, the adversarial example Xadv has become no
practical significance. Hence, our objective shall be
expressed like

argmin
Z

||Z||p subject toM(X)≠M(X + Z),

||Z||p � Z1



p

+ Z2



p

+ · · · + Zn



p

 
1/p

,

(6)

where Zi means the ith dimensional value of Z and ||Z||p is
the Lp norm of Z. In general, the norm is frequently utilized
to limit the increase in perturbation. In this paper, we apply
the L2 norm for all adversarial attacks.

For a detection task, supposeD(·) as a detector which is a
binary classifier essentially. An ideal detector can classify
normal images as label 0 (i.e., D(X) � 0) and abnormal
images as label 1 (i.e., D(Xadv) � 1). We formulate this
objective as follows:

argmax
D(·)

1
m

· 
m−1

i�0
D Xi( ≠D X

adv
i  , (7)

where m refers to the number of samples and D(X) rep-
resents the result of feeding X into detector D. If
D(Xi)≠D(Xadv

i ), return true, otherwise returns false. D(·)

is exactly the detector we seek and the maximizing result will
be employed as one of our evaluation metrics, which is also
called detection accuracy.

3.2. High-Level Representation. As shown in (7), making the
detector D identify as many samples as possible is our
objective. In general, there are two strategies to achieve the
purpose: transform the input data and alter the internal
structure of the detector. (rough the subsequent experi-
ments shown in Figure 8, it was found that altering the
detector model would not improve the detection perfor-
mance significantly. Hence, feature engineering on the input
data turns into our principal subject. Surprisingly, a tiny
attempt to extract high-level representation from the raw
data breaks the technical difficulty. As Harder et al. illus-
trated in [11], high-level representation has more stable and
robust discriminative details for adversarial detection.

Suppose M(·) as a DNN model trained by X, we can
obtain the mth feature map via calculating the Mm(X)

simply. Using Mm(X) instead of X as the input data, (7) will
have a higher value, which means better detection accuracy
under the condition of the same training time.

3.3. Fourier Transform and High-Frequency Extraction

3.3.1. Fourier Transform. In general, Fourier transform is
resorted to transform signals between the time domain (or
spatial domain) and the frequency domain. After converting

data into the spectrum, multiply characteristics hidden in the
spatial domain are revealed. (e low-frequency components
correspond to slowly changing regions (i.e., the flat regions),
while the high-frequency components do the opposite (i.e.,
the edges or noise). Exploiting these properties, we can obtain
blurred or edge sharpened images, respectively, by sup-
pressing high or low-frequency components. Still, unlike
continuous mathematical signals, images are discrete data
consisting of pixels, which means we shall convert it using
discrete Fourier transform (DFT). For a low computational
cost, we employ the fast Fourier transform (FFT) [36] which
has a time complexity of O(N · log(N)). Suppose an image
X ∈ [0, 255]M×N, where M, N represent the width and height
of the image, respectively. We can acquire the Fourier co-
efficient by the following formula:

F(X)(l, k) � 
N

n,m�0
e

− 2πilm+kn/N
X(m, n), (8)

where l, k � 0, 1, . . . , N − 1 and X(m, n) refers to the pixel
value of the coordinate (m, n). F(X) is actually a complex
matrix with the same size as image X. (e magnitude matrix
|F(X)| will be acquired via calculating the following formula:

|F(X)(l, k)| �

���������������������������������

Real(F(X)(l, k))
2

+ Image(F(X)(l, k))
2



,

(9)

where Real(·) and Image(·) refer to the real and imaginary
parts, respectively. In subsequent experiments, the magni-
tude of the spectrum |F(X)| will be applied to represented
the spectral domain.

3.3.2. High-Frequency Extraction. Due to the conjugate
property of FFT, its effective spectrum only accounts a
quarter of |F(X)| for a two-dimensional image. We divide
the effective spectrum into four parts (a), (b), (c), and (d), as
shown in Figure 3, according to low, medium-low, medium-
high, and high-frequency, respectively. For a fair division, it
is necessary to ensure that each part occupies 25% pixels of
the image. Hence, we will introduce a threshold function
φ(; R) that separates the frequency components according to
the radius R. Suppose the effective spectrum Xe ∈ RN×N, the
formal definition of equation φ(Xe; R) is as follows:

ϕ Xe; rL, rR(  �
Xe(i, j), if rL < d((i, j), (N − 1, 0))≤ rR,

0, otherwise,


(10)

where Xe(i, j) represents the effective spectrum Xe at po-
sition (i, j) and (N − 1, 0) is exactly the lower left of the
effective spectrum. d(·, ·) refers to the Euclidean distance. By
calculating rL, rR as follows, we can obtain each frequency
band simply.

i · N
2

4
�
π · r

2
i

4
⟶ ri �

�����

i · N
2

π



, i � 0, 1, 2, 3, (11)

r4 �
�
2

√
· N, (12)
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where ri is the boundary value for quartering the matrix Xe.
Hence, low-frequency component XLow

e (i, j) can be ob-
tained via calculating φ(Xe; 0,

�����
N2/π

√
) where rL � r0 � 0,

rR � r1 �
�����
N2/π

√
. Learning by analogy, medium-low, me-

dium-high, and high-frequency can be obtained by com-
puting φ(Xe; r1, r2), φ(Xe; r2, r3), and φ(Xe; r3, r4),
respectively.

3.4. HLFD Detection Method. As shown in Figure 4, we
divide the HLFD detection method into three parts:
extracting high-level representation, extracting high-fre-
quency components, and training process. Inputting the
normal and abnormal samples X, Xadv, we can obtain the
mth feature map of model M via calculating Mm(X),
Mm(Xadv). According to the experimental result in section
4.2, further converting Mm(X),Mm(Xadv) to spectral do-
main makes the model have a greater improvement in
detection tasks. (us, we employ the Fourier transform to
acquire the spectral characteristics F(Mm(X)),
F(Mm(Xadv)) and further obtain high-frequency compo-
nents FH(Mm(X)), FH(Mm(Xadv)) by equation (11). As
emphasized in the previous paragraphs, feature engineering
is the key to our HLFD method. Whether the detector is
logistic regression [37], support vector machine [38], or
neural network model, we can obtain a better detection
performance as long as using FH(Mm(X)), FH(Mm(Xadv))

as input. Both Figures 5 and 6 illustrated this conclusion well
by intuition and experiment, respectively. More specific
procedures can be acquired in Algorithm 1.

4. Experiment

In this section, we will rigorously conduct experiments to
demonstrate the effectiveness of our detection method. We
initiate with a basic experimental setup and explore the
discrepancy between the spatial and spectral domains. To

improve the detection performance, it is indispensable to
further explore the impact of the representations of different
layers, different frequency bands, and different detectors on
a detection task. At last, we will conduct an ablation study
and compare our method with the existing state-of-the-art
methods.

4.1. Experimental Setup. For a more generalized conclusion,
we conduct a series of experiments on five datasets (MNIST,
CIFAR-10, CIFAR-100, SVHN, and T-ImageNet) and six
attack methods (FGSM, BIM, PGD, JSMA, CW, and
DeepFool). We employ open source pretrained models for
convenience, which achieve 98.4%, 93.7%, 74.2%, 96.0%, and
51.2% accuracy on MNIST, CIFAR-10, CIFAR-100, SVHN,
and T-ImageNet, respectively. To obtain corresponding
adversarial examples, we only select samples that can attack
the pretrained models successfully. An average of 10,000
adversarial examples are generated for each dataset, which
means we can obtain 20,000 samples after adding the

Input:
X Original samples,
Xadv Adversarial samples
N (e number of samples
m Selected high-level representation layer
M(·) Model trained by X

Output:
D(·) Detector

1 For i in 0, 1 . . . N − 1 do
2 # the mth feature map
3 XL⟵Mm(Xi)

4 XadvL⟵Mm(Xi
adv)

5 XLH⟵ getHighFrequencyComponent(XL)
6 XadvLH⟵ getHighFrequencyComponent(XL)
7 XLH_list.append(XLH.flatten())
8 XadvLH_list.append(XadvLH.flatten())
9 End
10 Trained D(·) with XLH_list, XadvLH_list
11 Return D(·)

ALGORITHM 1: HLFD adversarial detection algorithm

L HL to M M to H

(a) (b) (c) (d)

Spectrum

Effective Spectrum

Figure 3: A schematic diagram of frequency band division. (a), (b),
(c), and (d) represent the low, medium-low, medium-high, and
high-frequency bands, respectively.
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number of normal samples. We split them into training set
(64%), validation set (16%), and test set (20%), and apply the
detection rate ACC (accuracy) and AUC (area under curve)
as the evaluation metrics. All adversarial examples are
generated by a python tool Foolbox [25]. For a fair com-
parison, each pixel is changed by an average of 10%. For
MNIST, L2 � (28∗ 28∗ 1∗ 0.12)1/2 � 2.8. For SVHN,
CIFAR-10, CIFAR-100, L2 � (32∗ 32∗ 3∗ 0.12)1/2 � 5.5.
Similarly, L2 � 22 for T-ImageNet. (e L2 norm is used to
limit the size of the perturbation in subsequent experiments.

4.2. Spatial Vs. Spectral Domain. (e spatial and the spectral
domain refer to the original samples and the original samples
after Fourier Transform, respectively. To intuitively observe
the discrepancy between the spatial and spectral domains, we
make a visual diagram shown in Figure 5. It seems that the
pixel distribution of adversarial examples is discontinuous in
the spatial domain, which is caused by random perturbation.
Although humans can recognize the difference between
normal and abnormal samples, the machine is hard to learn
the pattern since the distribution is not generalized and stable.
On the contrary, adversarial examples in the spectral domain
have many small black dots in the mid-high frequency region,
which express fixed and generalized patterns.(e patternmay
be effective for training detectors. To obtain a more rigorous

conclusion, we further perform cluster analysis in the spatial
and spectral domains as shown in Figure 6. In the first
column, it seems that normal and abnormal samples cannot
be separated by clustering whether in the spatial or the
spectral domain. Still, it is not hard to discover that normal
and abnormal samples are gradually classified as deepening of
the network layer. Despite illustrating the effectiveness of
high-level representation, we find that data in the spectral
domain can be linearly separated, which cannot implement in
the spatial domain. (e phenomenon demonstrates the ef-
fectiveness of the spectral domain in a sense. To further
explore the performance of spatial domain data on detection
tasks, we conduct a series of experiments on CIFAR-10. As
shown in Table 1, although spatial data are effective for FGSM,
PGD, BIM, and JSMA attacks, they are powerless in CW and
DeepFool attacks. It is possible that the perturbations gen-
erated by these two attack methods are little and just cross the
decision boundary which are harsh to detect in the spatial
domain.

4.3. Influence of High-Level Representation. (e above ex-
periments reveal the effectiveness of high-level representa-
tion and high-frequency extraction qualitatively. Yet, it is
not clear how high-level representation affects the detection
task. For this, we further conduct experiments to explore the
impact of representations of different layers. As shown in
Figure 7, the detection rate gradually increases as the
deepening of the network layer, although decreases occa-
sionally. Concentrating on CW and DeepFool, which are
harsh to detect in the spatial domain, we can also detect them
effectively after high-level representation. Nonetheless, we
are still not sure which layer works best for the detector. For
insurance, we support extracting the last two or three layers
for aggregation. An intuitive understanding of why high-
level representations work is that these features are in-
comprehensible (i.e., nonrobust) to humans and are
extracted as the deepening of network layers. However, both
robust and nonrobust features are crucial for model training,
as Ilyas et al. illustrated in [16].(is is exactly the reason why
clustering analysis can separate them farther and farther as
deepening of network layers, as shown in Figure 6.

(a) Extracting high-level representation

... ...

Pretrained Model MNormal X

Abnormal Xadv

L 1 L 2 L m L n

(b) Extracting high-Frequency component

(i) High-level
representation

(ii) Spectrum (iii) High-frequency
component

Detector

(c) Training

Mm (X) F (Mm (X))

F (Mm (Xadv))

FH (Mm (X))

FH (Mm (Xadv))Mm (Xadv)

Figure 4:(e whole framework of our HLFDmethod. It is divided into three parts: extracting high-level representation (a), extracting high-
frequency component (b), and training process (c). (a) and (b) can be considered as data preprocessing.(e detector will be trained on these
transformed data.

Normal

Abnormal

Normal
spectrum

Abnormal
spectrum

L 0 L 2 L 4 L 6 L 8 L 10 L 12 L 14

Figure 5: Visualizing the representations of different layers and its
corresponding spectrum.(e horizontal and vertical axes represent
the feature maps of different layers and the corresponding spec-
trum, respectively. (e pretrained model is trained on CIFAR-10
and adversarial examples are generated by FGSM.
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4.4. Influence of High-Frequency. Wang et al. illustrated in
[9] that high-frequency components can affect model
perception and further proposed that high-frequency
regions are correlated with semantic components of
images. Inspired by this, we initiate to explore the impact
of different frequency bands on the detection perfor-
mance. As the experimental results shown in Tables 2 and
3, high-frequency regions can indeed promote the per-
formance of the detector to a certain extent. However,
which frequency bands are considered high is an issue.
Although we obtain the highest detection rate from 3/4 to
4/4 frequency bands (high-frequency component) as
shown in Table 2, 2/4 to 4/4 frequency bands (mid-high
and high-frequency components) acquire highest detec-
tion rate as shown in Table 3. For insurance, we suggest
frequency bands from 2/4 to 4/4 as the output of
extracting high-frequency. (e high-frequency compo-
nents actually correspond to the part of the image that
changes drastically and the perturbation is the same. (e
commonality makes the high-frequency components
contain more perturbation detail, which is effective for
detecting. (e method for frequency band division can be
found in equations (10) and (11).

4.5. Influence of Different Detectors. Although the input data
is crucial, the choice of the detector model also has an impact
on the detection results. We apply three classifier models: LR
[37], SVM [38], and simple neural network for comparison.
As shown in Figure 8, it is not hard to comprehend that since
the detector is trained on CW, it works well for detecting the
CW attack. However, the three classifiers are less regular in
the detection performance. (erefore, we believe that it is
inefficient to promote the detection performance significantly
via altering the model structure. (e result further confirms
the rationality of concentrating on feature engineering.

4.6. Ablation Study. To explore the influence mechanism
between the representation of different layers and the fre-
quency bands, we perform an ablation study on them. As
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detection rate AUC (in %). (e detector is trained on normal
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Table 1: Detection performance of AUC (in %) on CIFAR-10 using
original samples. Detector is trained and evaluated on the specified
adversarial examples. For example, 92.6 below represents that the
detector is trained on BIM, whereas evaluated on adversarial ex-
amples generated by FGSM.

Dataset Detector FGSM BIM PGD JSMA CW DF

CIFAR-10

FGSM 99.1 65.5 63.7 55.6 48.9 50.4
BIM 92.6 91.6 91.7 73.5 52.2 54.7
PGD 97.5 98.3 98.5 82.3 50.2 50.6
JSMA 81.5 75.6 80.4 88.5 48.9 51.3
CW 51.8 49.8 50.9 50.6 49.5 52.6
DF 48.9 51.7 50.0 49.3 51.7 53.4
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shown in Figure 9, the low-frequency of the original images
(i.e., the left brown red pillar) are viewed as the benchmark
of the detection rate. Two dimensions, the layer of the
feature map and the interval of the frequency band, are taken
into account in the experiment. For verifying the effec-
tiveness of high-level representation and high-frequency
extraction, we compared the benchmark results with the two
dimensions. For a fair comparison, the L2 norm of each
image is controlled around 5.5 and the SVHN dataset is used
here. From Figure 9, we can observe that the detection rates
show an upward trend whether only considering different
layers of the network or frequency bands. (e result shows
that there is a win-win effect between the representations of
different layers and frequency bands, which further confirms
the effectiveness of our HLFD method. It is also found that
an 83% detection rate can be achieved even on DeepFool,
which is harsh to detect in the spatial domain.

4.7. Comparison with Existing Methods. We compare our
method with three state-of-the-art detection methods
(KD+PU, LID, and M-D). To obtain a more objective

Table 3:(e detecting results of the different frequency band ACC/
AUC (%) in DeepFool, using CIFAR-10 and L2 norm� 5.5.

From below to right 1/4 2/4 3/4 4/4
0/4 48.9/50.4 49.6/50.5 53.1/53.0 61.1/64.2
1/4 — 50.2/50.47 53.1/53.3 60.5/64.6
2/4 — — 53.9/53.5 63.1/64.5
3/4 — — — 62.9/63.8

Table 2:(e detecting results of the different frequency band ACC/
AUC (%) in FGSM, using CIFAR-10 and L2 norm� 5.5.

From below to right 1/4 2/4 3/4 4/4
0/4 76.5/83.9 97.2/99.2 97.4/99.4 98.2/99.3
1/4 — 97.6/99.1 98.6/99.1 98.6/99.3
2/4 — — 97.6/99.6 99.0/99.9
3/4 — — — 99.4/99.9
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Table 4: Comparison of AUC (%) under various evaluation setups.
Our method HLFD takes the last two layers of representation and
the mid-high and high-frequency regions as input. (e L2 norm of
perturbation ofMNIST is 2.8, the L2 norm of T-ImageNet is 22, and
the other three datasets are all L2 � 5.5.

Dataset Detector
Detection of six attack methods

FGSM BIM PGD JSMA CW DF

MNIST

KD+PU 90.4 92.5 88.9 85.3 89.8 83.1
LID 92.8 87.9 85.2 89.5 85.3 90.4
M-D 97.6 99.1 98.5 92.7 88.6 84.3
HLFD
(ours) 99.8 98.5 99.1 89.4 95.4 92.8

SVHN

KD+PU 85.4 80.5 85.4 75.6 76.5 86.3
LID 95.8 75.6 86.4 85.2 84.7 88.9
M-D 99.4 96.3 94.3 87.6 82.5 92.5
HLFD
(ours) 99.5 99.4 97.4 95.6 93.4 89.5

CIFAR-10

KD+PU 83.4 95.2 94.5 82.4 65.4 72.5
LID 94.2 93.5 93.8 85.4 80.5 84.3
M-D 97.5 98.1 98.6 90.7 83.2 87.5
HLFD
(ours) 99.5 98.6 98.8 94.5 95.6 92.6

CIFAR-100

KD+PU 92.3 89.5 90.1 84.5 65.4 68.4
LID 98.5 95.4 96.7 82.6 70.5 75.6
M-D 99.2 97.1 96.4 89.3 78.9 82.9
HLFD
(ours) 99.7 99.4 97.5 96.4 86.4 85.3

T-
ImageNet

KD+PU 85.4 90.5 88.2 73.6 62.5 69.8
LID 86.2 88.4 89.3 77.2 65.6 64.2
M-D 92.5 87.7 85.4 72.2 75.4 79.5
HLFD
(ours) 94.3 91.5 86.4 88.6 80.4 78.3
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conclusion, we conduct a series of experiments on five datasets
and evaluate on six attacks. For a fair comparison, we set the
same perturbation for each attack. As shown in Table 4, our
method outperforms the other three detection methods for
each attack on CIFAR-10 and CIFAR-100. To make the results
more convincing, we use more realistic datasets (T-ImageNet)
for testing. Although our detection rate is not the highest in
some scenarios, the gap is not large at least. Moreover, we
improve the detection rates by a largemargin onDeepFool and
CW attacks. Overall, our HLFD method is more robust and
stable in various real-world environments compared to the
existing state-of-the-art methods.

5. Conclusion

In this paper, we propose a simple yet effective HLFD
method for detecting adversarial examples. By exploring
from the spatial to the spectral domain, it is found that
adversarial examples after transforming to the spectrum
have richer characteristics which are beneficial for training
the detector. Moreover, we further discover that extracting
high-level representations and high-frequency components
can promote the detection performance and the two factors
show a win-win relationship via the ablation study. We
intuitively and experimentally explain why these two factors
work. Exploiting these findings, HLFD detection method is
proposed. Although our method outperforms other state-of-
the-art adversarial detection methods in most scenarios, the
detectors are still faced with a more complex and unknown
attacks in a real-world environment. Extending our method
to more realistic settings (e.g., ImageNet dataset) is crucial.
Exploring how to detect more aggressive attacks effectively
are also a worthwhile research subject.

Data Availability

(e public datasets can be downloaded from https://
paperswithcode.com/dataset/mnist, https://www.cs.toronto.
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github.com/aaron-xichen/pytorch-playground.
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