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Data are distributed between different parties. Collecting data from multiple parties for analysis and mining will serve people
better. However, it also brings unprecedented privacy threats to the participants. *erefore, safe and reliable data publishing
among multiple data owners is an urgent problem to be solved. We mainly study the problem of privacy protection in data
publishing. For a centralized scenario, we propose the LDA-DP algorithm. First, the within-class mean vectors and the pooled
within-class scatter matrix are perturbed by the Gaussian noise. Second, the optimal projection direction vector with differential
privacy is obtained by the Fisher criterion. Finally, the low-dimensional projection data of the original data are obtained. For
distributed scenarios, we propose theMul-LDA-DP algorithm based on a blockchain and differential privacy technology. First, the
within-class mean vectors and within-class scatter matrices of local data are perturbed by the Gaussian noise and uploaded to the
blockchain network. Second, the projection direction vector is calculated in the blockchain network and returned to the data
owner. Finally, the data owner uses the projection direction vector to generate low-dimensional projection data of the original data
and upload it to the blockchain network for publishing. Furthermore, in a distributed scenario, we propose a correlated noise
generation scheme that uses the additivity of the Gaussian distribution to mitigate the effects of noise and can achieve the same
noise level as the centralized scenario. We measure the utility of the published data by the SVMmisclassification rate. We conduct
comparative experiments with similar algorithms on different real data sets. *e experimental results show that the data released
by the two algorithms can maintain good utility in SVM classification.

1. Introduction

With the development of science and technology, effective
data collection and analysis can help people make better
decisions in production. For example, analyzing the infor-
mation of the patient can help doctors improve the accuracy
of diagnosis and level of medical services, and analyzing the
trajectory data can improve city traffic congestion. *e data
contain sensitive information and need to be processed for
privacy protection before publishing [1, 2]. *ere have been
some studies on privacy preserving data publishing. For
example, the k -anonymity privacy protection technology
[3], the encryption technology [4, 5], the blockchain tech-
nology [6–8], and differential privacy technology [9–11].
Differential privacy has been widely used for privacy

protection in recent years, the principle of differential pri-
vacy is to add random noise to data, which makes the at-
tacker unable to distinguish the original input data.
Differential privacy can quantitatively measure the degree of
privacy protection and can resist attacks from attackers with
background knowledge. Privacy preserving data publishing
based on differential privacy has become a research hot spot
[12–15].

However, in the distributed scenario, data are possessed
by multiple data owners. Data from a single data owner may
not be sufficient for statistical learning, and aggregating data
by a single data owner may not be possible. For example [16],
in Table 1, the data are possessed by three data owners. Each
row in Table 1 represents the information of an individual,
where records 1 to 4 are from data owner 1, records 5 to 8 are
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from data owner 2, and records 9 to 10 are from data owner
3. Simply integrating and publishing the data from each data
owner will cause a serious privacy leakage. Sharing and
exchange of data in a distributed environment requires
security guarantees. In order to solve the proposed problem,
we make the following contributions:

(1) We propose two algorithms which are called LDA-
DP and Mul-LDA-DP. *e LDA-DP algorithm is
used for privacy protection of data publishing in
centralized scenario, and the Mul-LDA-DP algo-
rithm is used for privacy protection of data pub-
lishing in distributed scenario.

(2) In the distributed scenario, the data owners coop-
erate with each other to publish a projection data set
which satisfies differential privacy. In order to im-
prove the utility of the published data in the dis-
tributed scenario, we propose a correlated noise
generation scheme that uses the additivity of the
Gaussian distribution to mitigate the effects of noise
and can achieve the same noise level as the cen-
tralized scenario.

(3) We conduct experiments on different data sets. *e
experimental results show that the data released by
LDA-DP and Mul-LDA-DP algorithms can main-
tain good utility in SVM classification.

2. Related Work

In this section, we introduce the research status of privacy
preserving data publishing in centralized scenario and
distributed scenario, respectively.

2.1. Privacy Preserving Data Publishing in Centralized
Scenario. Blum et al. [17] proposed the sublinear query
(SULQ) input perturbation framework which adds noise to
the covariance matrix, the framework can only be used for
querying the projected subspace. Chaudhuri et al. [18]
proposed the PPCA algorithm which is the improvement of
SUQL algorithm. *e PPCA algorithm randomly samples a
k-dimensional subspace which ensures differential privacy
and is biased toward high utility. Both SUQL and PPCA
procedures are differentially private approximations to the
top-k subspace. Zhang et al. [19] proposed the PrivBayes
algorithm; first, they constructed a Bayesian network with

differential privacy, and then they used the Bayesian network
to generate a data set for publication. Chen et al. [20]
presented the JTree algorithm. First, they explored the re-
lationship between the attributes based on the sparse vector
sampling technology, and then they constructed a Markov
network that satisfies differential privacy and generated a
synthetic data set for publication. Zhang et al. [21] proposed
the PrivHD algorithm based on the JTree. *ey used high-
pass filtering techniques to speed up the construction of
Markov network and built a better joint tree for generating
synthetic data set for publication. Xu et al. [22] proposed the
DPPro algorithm; first, they randomly projected the original
high-dimensional data into a low-dimensional space, and
then they added noise to the projection vector and low-
dimensional projection data; finally, they released the low-
dimensional projection data. Zhang et al. [23] presented the
PrivMN method. *ey constructed a Markov model with
differential privacy, and then used the Markov model to
generate a synthetic data set for publication. *e algorithms
mentioned above are mainly used for privacy preserving
data publishing in centralized scenarios.

2.2. Privacy Preserving Data Publishing in Distributed
Scenario. *ere are fewer researches on privacy protection of
horizontally partitioned data publication. Ge et al. [24]
proposed a distributed principal component analysis (DPS-
PCA) algorithm with differential privacy; first, data owners
collaborated to analyze the principal components, while
protecting the private information, and then they released
low-dimensional subspaces of high-dimensional sparse data.
Wang et al. [25] proposed an efficient and scalable protocol
for computing principal components in a distributed envi-
ronment. First, the data owner encrypted the shared data and
sent them to the semitrusted third party, then the semitrusted
third party performed a private aggregation algorithm on the
encrypted data and sent the aggregated data to data user for
calculating the principal components. Imtiaz et al. [26]
presented a distributed principal component analysis
(DPdisPCA) algorithm with differential privacy. Each data
owner used Gaussian noise to perturbed the local covariance
matrix, and with the assistance of a semitrusted third party to
calculate the principal components while ensuring local data
privacy. Alhadidi et al. [27] proposed a two-party data
publishing algorithm with differential privacy. *ey first
presented a two-party protocol for the exponential mecha-
nism which can be used as a subprotocol, the data released by
this algorithm are suitable for classification tasks. Cheng et al.
[28] proposed a differential privacy sequential update of the
Bayesian network algorithm which is called DP-SUBN3, data
owners collaboratively constructed the Bayesian network,
data owners can treat the intermediate results as prior
knowledge to construct the Bayesian network, and then they
used the Bayesian network to generate a data set for publi-
cation. Wang et al. [29] proposed a distributed differential
privacy anonymous algorithm and guaranteed that each step
of the algorithm satisfies the definition of secure two-party
computation. *is is the first research about differentially
private data publishing for arbitrarily partitioned data. In our

Table 1: Aggregated dataset of each data owner.

ID Age Job Gender hours-per-week income
1 39 Shopkeeper Male 40 > 50K
2 55 Lawyer Male 13 ≤ 50K
3 38 Dancer Male 20 ≤ 50K
4 30 Dancer Male 25 ≤ 50K
5 28 Builder Female 40 > 50K
6 37 Dancer Female 23 ≤ 50K
7 49 Teacher Female 16 ≤ 50K
8 52 Builder Male 45 > 50K
9 31 Lawyer Female 50 > 50K
10 42 Builder Male 40 > 50K
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prior work [16], we proposed the PPCA-DP-MH algorithm.
First, data owners and a semitrusted third party cooperated to
reduce the dimension of high-dimensional data to obtain the
top k principal components that satisfy differential privacy,
and then each data owner used the generative model of
probabilistic principal component analysis to generate a data
set with the same scale as the original data for publication.
Different from the prior work [16], this paper uses the linear
discriminant analysis to publish the projection data with
differential privacy. Linear discriminant analysis can retain
the class information of the data while reducing the di-
mension, which is beneficial to maintain the utility of the
published data in classification.

3. Preliminaries

3.1. Linear Discriminant Analysis (LDA). Linear discrimi-
nant analysis proposed by Fisher is one of the most widely
used and extremely effective methods in the field of di-
mensionality reduction and pattern recognition. Its typical
applications include face recognition, target tracking and
detection, credit card fraud detection, and speech recogni-
tion. *e idea of linear discriminant analysis for binary
classification is to choose the projection direction so that the
samples of different classes after projection are as far apart as
possible and the samples within each class are as clustered as
possible. We denote the data set as X � X(1)⋃X(2),
X(k) � x(k)

1 , x(k)
2 , . . . , x(k)

N(k) , k � 1, 2. N � N(1) + N(2). *e
within-class mean vector of samples in the original sample
space is as follows:

μ(k)
�

1
N

(k)


x∈X(k)

x, k � 1, 2. (1)

*e between-class scatter matrix is as follows:

Sb � μ(1)
− μ(2)

  μ(1)
− μ(2)

 
T
. (2)

*e within-class scatter matrix is as follows:

S
(k)

� 

x∈X(k)

xxT − N
(k)μ(k) μ(k)

 
T
, k � 1, 2. (3)

*en, the pooled within-class scatter matrix is as follows:

Sw � S
(1)

+ S
(2)

. (4)

It can also be expressed as follows:

Sw � 
2

k�1


x∈X(k)

xxT − 
2

k�1
N

(k)μ(k) μ(k)
 

T
. (5)

*e criterion of Fisher is as follows:

max
w

wT
S

− 1
b w

wT
S

− 1
w w

. (6)

Using the Lagrange multiplier method to find the op-
timal projection direction vector, we obtain the following:

w � S
− 1
w μ(1)

− μ(2)
 . (7)

*e result of linear discriminant analysis only gives the
optimal projection direction, and does not give a clear
classification result.

3.2. Differential Privacy. Differential privacy provides a
rigorous privacy protection for sensitive information, it can
be quantified by mathematical formulas. *e essence of
differential privacy is to use noise to randomly perturb the
output results, so that it is difficult to distinguish the original
input data according to the output results.

Definition 1. [30] A randomized algorithm M is ε -indis-
tinguishable if for any two neighboring databases D and D

differing in a single entry, and for all O⊆Range(M):

ln
Pr[M(D) ∈ O]

Pr[M( D) ∈ O]




≤ ε, (8)

where ε is a small positive real number.
When ε is small, ln(1 + ε) ≈ ε, so

Pr[M(D) ∈ O]/Pr[M( D) ∈ O] ∈ [1 − ε, 1 + ε], ε is used to
control the probability ratio of algorithm M to obtain the
same output on two neighboring databases, which reflects
the level of privacy protection that M can provide.

Definition 2 [30]. A randomized algorithm M is (ε, δ)

differential privacy, if for any two neighboring databases D

and D differing in a single entry, and for any
O(O⊆Range(M)) there is the following:

Pr M(D) ∈ O{ }≤ e
ε
Pr M( D) ∈ O  + δ, (9)

where ε is a small positive real number called privacy budget
and δ is a small positive real number. It is also called
δ-approximate ε-indistinguishability.

Definition 3. is the relaxed version of differential privacy.
When δ � 0, it becomes Definition 1, which is the strict
version of differential privacy. Formula (9) means that it is
allowed to break the limit of formula (8) with a small
probability δ.

Theorem 1 ([31]). 2e sufficient condition for the random
function M to satisfy (ε, δ) differential privacy is as follows:

Pr ln
Pr[M(D) ∈ O]

Pr[M( D) ∈ O]




> ε ≤ δ, O⊆Range(M). (10)

Theorem 2 (Sequential Composition) [31]. Let Mi be an
(εi, δi) differentially private algorithm, i � 1, 2, . . . , n, then for
the same data set D, the combined algorithm
M(M1(D),M2(D), . . . ,Mn(D)) is (

n
i�1 εi, 

n
i�1 δi) differ-

ential privacy.

Theorem 3 (Parallel Composition) [31]. Let Mi be an
(εi, δi) differentially private algorithm, i � 1, 2, . . . , n,
D1, D2, . . . , Dn are disjoint data sets, the combined algorithm
M(M1(D1),M2(D2), . . . ,Mn(Dn)) is max

1≤i≤n
(εi, δi) differ-

ential privacy.
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Theorem 4 (Post Processing) [31]. Let M: D⟶ R be a
randomized algorithm that is (ε, δ) differential privacy, let
f: R⟶ R′ be an arbitrary mapping, then f°M: D⟶ R′
is (ε, δ) differential privacy.

4. Proposed Methods

In this section, we will propose two algorithms which are
called LDA-DP and Mul-LDA-DP. *e LDA-DP algorithm
is used for privacy protection of data publishing in the
centralized scenario, and the Mul-LDA-DP algorithm is
used for privacy protection of data publishing in the dis-
tributed scenario. Without loss of generality, we assume that
all individual data in this paper are normalized to p -di-
mensional unit vectors.

4.1. LDA-DP Algorithm. In this section, we propose the
LDA-DP algorithm for centralized data publishing.

4.1.1. Problem Statement and Algorithm Proposed. *e data
set X contains two classes of data individuals denoted as
X � X(1)⋃X(2), where X(k) � x(k)

1 , x(k)
2 , . . . , x(k)

N(k) , k �

1, 2. Our goal is to protect the privacy information of the
original data from being leaked while publishing the pro-
jection data of the original data.

In order to solve this problem, we propose the LDA-DP
algorithm, which is mainly divided into two stages. First, we
use the Gaussian mechanism of differential privacy to
perturb the within-class mean vectors μ(k)(k � 1, 2). Second,
we use the Gaussian mechanism to perturb the pooled

within-class scatter matrix Sw. Finally, we get the projection
direction vector w that satisfies (ε, δ) differential privacy and
publish the low-dimensional projected data of the original
data. *e specific details are in Algorithm 1.

4.1.2. Privacy Analysis of LDA-DP Algorithm

Theorem 5. 2e within-class mean vector μ(k)(k � 1, 2) in
Algorithm 1 satisfies (ε1, δ1) differential privacy when each
entry of g(k)(k � 1, 2) is sampled from N(0, σ21), where

σ1 ≥p3/2
�������

ln2/πδ21


+

�������������

p3ln2/πδ21 + 2ε1


/ε1, 0< δ1 <
���
2/π

√
.

Proof. We denote the two neighboring data sets are
X � X(1)⋃X(2) and X � X

(1)⋃ X
(2), where only one in-

dividual is different, without losing general assumption.
Suppose the different individuals are in X(1) and X

(1), we
denote them as xN(1) ≠ xN(1) , they are p -dimensional unit
vector. We denote a � x∈X(1)x and a � x∈X(1)x, let c �

a + g(1) and c � a + g(1), each entry of g(1) and g(1) is
sampled from N(0, σ21).

*e log ratio of the probabilities c and c at a point h is
|ln((P c � h|X{ })/(P c � h| X ))|, the numerator in the ratio
describes the probability of seeing h when the data set is X,
the denominator corresponds the probability of seeing this
same value when the data set is X.

By*eorem 1, we will to find the value of σ1 such that the
inequality |ln((P c � h|X{ })/(P c � h| X ))| � |ln((P h − a|{

X})/(P h − a| X ))|≤ ε1 holds at least with probability
1 − δ1.

ln
P h − a|X{ }

P h − a| X 




�

1
2σ21



p

i�1
hi − ai( 

2
− hi − ai( 

2
 





�
1
2σ21



p

i�1
2 hi − ai(  ai − ai(  + ai − ai( 

2
 





≤
1
2σ21



p

i�1
2 hi − ai(  xN(1)i − xN(1)i( 


 +
1
2σ21



p

i�1
xN(1)i − xN(1)i( 

2
.

(11)

Using the Lagrange multiplier method, we can get the
maximum value of the objective function


p
i�1(|xN(1)i| + |xN(1)i|) is 2 ��

p
√ under the condition of


p
i�1 (xN(1)i)

2 � 1, 
p
i�1 (xN(1)i)

2 � 1.
*en, we can obtain: 

p
i�1 |(xN(1)i) − (xN(1)i)|≤


p
i�1(|xN(1)i| + |xN(1)i|)≤ 2

��
p

√ . Similarly, we can obtain the
following:



p

i�1
xN(1)i(  − xN(1)i( 

2 ≤ 4. (12)

So, 1/2σ21 
p
i�1 2|(hi − ai)(xN(1)i) − (xN(1)i)|≤ 2p3/2r/σ21,

where |g
(1)
i | � |hi − ai|≤ r, for all i, and

1/2σ21 
p
i�1 (xN(1)i − xN(1)i)

2 ≤ 2/σ21.
*en, |ln((P b � h|X{ })/(P b � h| X ))|≤ (2p3/2r

+2)/σ21, this quantity is bounded by ε1 whenever |g
(1)
i |≤ r≤

(ε1σ21 − 2)/2p3/2.
To ensure privacy loss bounded by ε1 with probability at

least 1 − δ1, we require to find σ1 that satisfies this inequality
Pr |g

(1)
i |≥ ε1σ21 − 2/2p3/2 ≤ δ1, due to symmetry, we will

find σ1 such that Pr g
(1)
i ≥ (ε1σ21 − 2)/2p3/2 ≤ δ1/2.
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*e tail bound is as follows:

Pr g
(1)
i > t  � 

+∞

t

1
���
2π

√
σ1

e
−

x2

2σ21dx �
x�t+y


+∞

0

1
���
2π

√
σ1

e
−

(t + y)2

2σ21 dy,

≤
1

���
2π

√
σ1

e
−

t2

2σ21 
+∞

0
e

−
ty

σ21dy≤
1
t

σ1���
2π

√ e
−

t2

2σ21 .

(13)

We let t � (ε1σ21 − 2)/2p3/2, then 1/tσ1
/

���
2π

√
e− t2/2σ21 ≤ δ1/2, then we obtain the following:

ln
t

σ1
+

t
2

2σ21
≥ ln

2
���
2π

√
δ1

. (14)

When σ1 ≥ [2p3/2 + (
��������
4p3 + 8ε1


)]/2ε1, the first term in

(14) is non-negative. To make the inequality (14) hold, we let
t2/2σ21 � 1/2σ21(ε1σ21 − 2/2p3/2)2 ≥ ln2/

���
2π

√
δ1, then we obtain

the following:

σ1 ≥
p

(3/2)
��������

ln 2/πδ21 



+

���������������

p
3 ln 2/πδ21  + 2ε1



ε1
, 0< δ1 <

��
2
π



.

(15)

Theorem 6. 2e pooled within-class scatter matrix Sw in
Algorithm 1 satisfies (ε2, δ2) differential privacy, when each
entry in the symmetric random matrix G is sampled from
N(0, σ22), where

σ2 ≥ (p + 1)

�����

ln
2
πδ22



+

����������������

(p + 1)
2ln

2
πδ22

+ 4ε2



/2ε2,

0< δ2 <
��
2
π



.

(16)

Proof. Two neighboring data sets are X � X(1)⋃X(2)

and X � X
(1)⋃ X

(2), where only one entry is different,
without losing general assumption, suppose the different
entry are in X(1) and X

(1) and denoted them as xN(1) ≠ xN(1) .
Because μ(k)(k � 1, 2) in (5) satisfies differential privacy

has been proved by *eorem 5 which can be treated as a
constant in (5), so if we want to prove that this theorem
holds, it is only necessary to prove that the first item


2
k�1 x∈X(k)xxT in (5) satisfies (ε2, δ2) differential privacy

after adding random matrix G.
We denote B � 

2
k�1 x∈X(k)xxT, B � 

2
k�1 x∈X(k)xxT, let

C � B + G and C � B + G, G and G are two independent
symmetric random matrices with the upper triangle (in-
cluding the diagonal) entries are sampled from N(0, σ22), and
make the symmetrical position entries in the lower triangle
matrix equal to the upper triangle.

*e log ratio of the probabilities C and C at a point H is
|ln((P C � H|X{ })/(P C � H| X ))|.

By *eorem 1, we need to find the value of σ2 such that
the inequality |ln((P C � H|X{ })/(P C � H| X ))|≤ ε2 holds
at least with probability 1 − δ2.

ln
P C � H | X{ }

P C � H | X 




� ln

P H − B|X|{ }

P H − B | X 





�
1
2σ22


1≤ i≤ j≤p

Hij − Bij 
2

− Hij − Bij 
2

 





�
1
2σ22


1≤ i≤ j≤p

2 Hij − Bij  Bij − Bij  + Bij − Bij 
2

 





Input: Data sets X, privacy parameters (ε1, δ1), (ε2, δ2)
Output: Projection direction vector w, projection data X

(1) for k � 1 to 2 do
(2) Set σ1 � p3/2

�������

ln2/πδ21


+

�������������

p3ln2/πδ21 + 2ε1


/ε1, which generates a p dimension noise vector g(k); each entry is sampled from
N(0, σ21)

(3) Computes μ(k) � 1/N(k)(x∈X(k)x + g(k))

(4) end for
(5) return μ(k), k � 1, 2
(6) Set σ2 � (p + 1)

�������

ln2/πδ22


+

������������������

(p + 1)2ln2/πδ22 + 4ε2


/2ε2, which generates a p × p random matrix G. Let G be a symmetric matrix
with the upper triangle (including the diagonal) entries are sampled from N(0, σ22) and make the symmetrical position entries in
the lower triangle matrix equal to the upper triangle.

(7) Computes Sw � 
2
x ∈ X(k) xxT − 

2
k�1 N(k)μ(k)(μ(k))T + G

(8) Computes w � S− 1
w (μ(1) − μ(2))

(9) Computes X � Xw

ALGORITHM 1: LDA-DP algorithm.
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≤
1
2σ22


1≤ i≤ j≤p

2 Hij − Bij  xN(1)ixN(1)j − xN(1)ixN(1)j 




+
1
2σ22


1≤ i≤ j≤p

xN(1)ixN(1)j − xN(1)ixN(1)j 
2
. (17)

By using the Lagrange multiplier method and the in-
equality in [18], the following inequalities hold:


1≤i≤j≤p

xN(1)ixN(1)j − xN(1)ixN(1)j 
2
≤ 2,


1≤i≤j≤p

xN(1)ixN(1)j − xN(1)ixN(1)j 


≤p + 1.
(18)

*en, |ln((P H − B|X|{ })/(P H − B| X ))||≤ r(p + 1)

+1/σ22, where |Gij| � |Hij − Bij|≤ r for all i, j.
*e rest of the proof process is similar to *eorem 5,

then we can obtain the following:

σ2 ≥
(p + 1)

��������
ln 2/πδ22 


+

�������������������
(p + 1)

2ln 2/πδ22  + 4ε2


2ε2
,

0< δ2 <
��
2
π



.

(19)

We have proven that the within-class mean vector μ(k)(k �

1, 2) satisfies (ε1, δ1) differential privacy, the pooledwithin-class
scatter matrix Sw satisfies (ε2, δ2) differential privacy, by the
property of differential privacy sequential composition, the
projection direction vector in the Algorithm 1 satisfies (ε, δ)

differential privacy, where ε � ε1 + ε2, δ � δ1 + δ2. For the
published projection data X � Xw, X ∈ RN×p,
w ∈ Rp×1, p<N, we can regard X � Xw as a set of undeter-
mined system of equation, the number of variables are more
than equations, so the equation has infinitely many sets of
solutions, that is, it is impossible to infer the information of the
original data X from the published projection data X.

4.2.Mul-LDA-DPAlgorithm. In this section, we propose the
Mul-LDA-DP algorithm for distributed data publishing.*e
mathematical notations used in this section are summarized
in Table 2.

4.2.1. Problem Statement and Algorithm Proposed. In the
distributed scenario, data are stored by multiple data owners
rather than a single owner, and the data owners do not trust
each other. Data at a single site may not be sufficient for
statistical learning. One solution is that each data owner uses
the LDA-DP algorithm in Section 4.1 to publish the projection
data independently. Another solution is the data owners
cooperate with each other to publish the projection data of the
integrated data. Comparing the two solutions, it is obvious
that the latter solution can improve the utility of publishing
data. Based on the idea of the second solution and [32], we
propose the Mul-LDA-DP algorithm for distributed data
publishing. *e entity description of the model is as follows.

(1) Data owner.*e data owner Pm(m � 1, 2, . . . , M) has
a data set Xm. Each data owner can generate random
vectors and matrices to perturb the within-class mean
vectors and within-class scatter matrices locally.

(2) Data publisher. *e data publisher is a data pub-
lishing platform based on blockchain. *e data
publisher aggregates the local within-class mean
vectors and within-class scatter matrices with noise.
*e data publisher can obtain the projection vector
that satisfies differential privacy and publishes the
projection data of the pooled data.

(3) A random number generator. It can generate random
vectors and random matrices and send them to data
owners and data publisher secretly.
*reat Model. In our setting, we assume that the data
owners and data publisher are honest-but-curious,
that is, they follow the protocol but may try to deduce
information of other data owners from the received
messages.
Two types of adversaries are considered, which are
external attackers and internal attackers. External
attackers which can be called an external eaves-
dropper may gain access to information such as data
sent by data owners to the data publisher. Internal
adversaries can be the data owners and the data
publisher. *e goal of each data owner is to extract
the information not owned by him, while the goal of
the data publisher is to extract the information from
each data owner.
Distributed Within-Class Mean Vectors and Pooled
Within-Class Scatter Matrix Computation. When
the data are owned by M data owners, the within-
class mean vectors (1) can be decomposed into the
following:

μ(k)
�

1
N

(k)


M

m�1
N

(k)
m μ(k)

m , k � 1, 2, (20)

where μ(k)
m � 1/N(k)

m x∈X(k)
m
x.

*e pooled within-class scatter matrix (5) can be
decomposed into the following:

Sw � 
2

k�1
S

(k)
� 

2

k�1


M

m�1
S

(k)
m � 

M

m�1


2

k�1
S

(k)
m , (21)

where S(k)
m � x∈X(k)

m
xxT − N(k)

m μ(k)
m (μ(k)

m )T.
*e abovementioned result allows each data owner to

compute and perturb a partial result simultaneously locally.
*erefore, we use the additivity of Gaussian distribution to
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propose a correlated noise generation scheme.We design the
noise generation procedure such that (i) we can ensure that
the data output from each data owner satisfy differential
privacy and (ii) we can achieve the noise level of the same as
the pooled data scenario.

Scheme for Perturbing Shared Data by Correlated
Noise. To prevent the data publisher and other data
owners learning the privacy of local data, the data owner
uses the noise generated by himself and the noise gen-
erated by the random number generator to perturb the
local within-class mean vectors and within-class scatter
matrices. *rough our correlated noise design scheme, the
data aggregated by the data publisher contain the same
level of noise as the centralized scenario. *e scheme is
described as below:

(1) Initialization stage. *e random number generator
generates p dimensional random vectors g(k)

m , each
entry is sampled from N(0, (M − 1)/Mσ21), gener-
ates p × p random matrices Gm, let Gm be the
symmetric matrix with the upper triangle (including
the diagonal) entries are sampled from
N(0, (M − 1)/Mσ22), and makes the symmetrical
position entries in the lower triangle matrix equal to
the upper triangle, m � 0, 1, 2, . . . , M, k � 1, 2. Make
these random vectors and matrices satisfy


M
m�0 g

(k)
m � 0, 

M
m�0 Gm � (0)p×p, then

g(k)
m (k � 1, 2) and Gm are sent to data owner Pm

secretly, g(k)
0 (k � 1, 2) and G0 are sent to the data

publisher secretly.
(2) Data owner Pm generates p dimensional random

vectors g(k)
m (k � 1, 2), each entry is sampled from

N(0, 1/Mσ21), computes μ(k)
m � 1/N(k)

m ( 
x∈X(k)

m

x+ g(k)
m +

g(k)
m ), k � 1, 2, and sends them to the data publisher.

(3) *e data publisher computes μ(k) � 1/N(k)(
M
m�1

N(k)
m μ(k)

m + g(k)
0 ), k � 1, 2 and sends them to each data

owner.
(4) *e data owner Pm generates p × p random matrix

Gm, let Gm be the symmetric matrix with the upper
triangle (including the diagonal) entries are sampled
from N(0, 1/Mσ22), and make the symmetrical po-
sition entries in the lower triangle matrix equal to the

upper triangle. Data owner Pm computes
Sm � 

2
k�1 S(k)

m + Gm + Gm and sends it to the data
publisher.

(5) *e data publisher computes Sw � 
M
m�1 Sm + G0 and

calculates the projection vector w that satisfies dif-
ferential privacy.

*e specific details of Mul-LDA-DP algorithm are in
Algorithm 2. *e input random vectors g(k)

m and random
matrices G

(k)

m in Algorithm 2 are generated in the initiali-
zation stage by the random number generator,
m � 0, 1, 2, . . . , M, k � 1, 2.

4.2.2. Privacy Analysis of the Mul-LDA-DP Algorithm

Theorem 7. 2e within-class mean vector μ(k)(k � 1, 2) in
Algorithm 2 satisfies (ε1, δ1) differential privacy.

Proof. μ(k)
m � 1/N(k)

m (x∈X(k)
m
x + g(k)

m + g(k)
m ) because each

entry of g(k)
m is sampled from N(0, 1/Mσ21), and each entry of

g(k)
m is sampled from N(0, M − 1/Mσ21), so each entry of

g(k)
m + g(k)

m obeys N(0, σ21). By *eorem 5, μ(k)
m satisfies

(ε1, δ1) differential privacy.
Due to the post-processing property of differential

privacy, the within-class mean vector
μ(k) � 1/N(k)(

M
m�1 N(k)

m μ(k)
m + g(k)

0 ) in Algorithm 2 satisfies
(ε1, δ1) differential privacy.

Theorem 8. 2e pooled within-class scatter matrix Sw in
Algorithm 2 satisfies (ε2, δ2) differential privacy.

Proof. Sm � 
2
k�1 S(k)

m + Gm + Gm , where each entry of
symmetric random matrix Gm is sampled from N(0, 1/Mσ22),
and each entry of symmetric random matrix Gm is sampled
from N(0, (M − 1)/Mσ22), so each entry of Gm + Gm obeys
N(0, σ22). By *eorem 6, Sm satisfies (ε2, δ2) differential pri-
vacy. Due to the post-processing property of differential pri-
vacy, the pooledwithin-class scattermatrix Sw � 

M
m�1 Sm + G0

in Algorithm 2 satisfies (ε2, δ2) differential privacy.
We have proven both μ(k)(k � 1, 2) and Sw satisfy dif-

ferential privacy, we will show that the level of noise is the
same as the centralized scenario. In the initialization stage,

Table 2: Summary of notations.

Notation Explanation
M *e number of data owners
Pm *e m-th data owner
N(k)

m *e number of individuals in the k-th class owned by Pm

N(k) *e total number of individuals in the k -th class, N(k) � 
M
m�1 N(k)

m

X(k)
m *e set of the k -th class data owned by Pm

X(k) *e set of the k -th class data. X(k) � ∪M
m�1X

(k)
m

Xm *e data set owned by Pm. Xm � ∪ 2k�1X
(k)
m

μ(k)
m *e within-class mean vector of the k -th class data owned by Pm

μ(k) *e within-class mean vector of the k -th class data
S(k)

m *e within-class scatter matrix of the k -th class data owned by Pm

S(k) *e within-class scatter matrix of the k-th class data
Sw *e pooled within-class scatter matrix
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the noise vectors and matrices generated by the random
number generator satisfy 

M
m�0 g

(k)
m � 0 and


M
m�0 Gm � (0)p×p.

*e within-class mean vector μ(k)(k � 1, 2) is as follows:

μ(k)
�

1
N

(k)


M

m�1
N

(k)
m μ(k)

m + g(k)
0

⎛⎝ ⎞⎠ �
1

N
(k)



M

m�1


x∈X(k)
m

x + g(k)
m + g(k)

m
⎛⎜⎜⎝ ⎞⎟⎟⎠ + g(k)

0
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦,

�
1

N
(k)



M

m�1


x∈X(k)
m

x + 
M

m�1
g(k)

m + 
M

m�0
g(k)

m

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ �

1
N

(k)


M

m�1


x∈X(k)
m

x + 
M

m�1
g(k)

m

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦,

�
1

N
(k)



x∈X(k)

x + 
M

m�1
g(k)

m .

(22)

Each entry of 
M
m�1 g(k)

m obeys N(0, σ21). *e pooled within-class scatter matrix Sw is as follows:

Sw � 
M

m�1
Sm + G0 � 

M

m�1


2

k�1
S

(k)
m + Gm + Gm

⎛⎝ ⎞⎠ + G0,

� 
M

m�1


2

k�1
S

(k)
m + 

M

m�1
Gm + 

M

m�0
Gm � 

2

k�1


M

m�1
S

(k)
m + 

M

m�1
Gm,

� 
2

k�1
S

(k)
+ 

M

m�1
Gm.

(23)

Input: Data sets Xm, m � 1, 2, . . . , M, k � 1, 2, privacy parameters (ε1, δ1), (ε2, δ2), random vector g(k)
m and random matrix Gm

which are generated in initialization stage, m � 0, 1, 2, . . . , M; k � 1, 2.
Output: Projection direction vector w, projection data X

(1) for m � 1 to M do
(2) for k � 1 to 2 do
(3) Set σ1 � p3/2

�������

ln2/πδ21


+

�������������

p3ln2/πδ21 + 2ε1


/ε1, data owner generates p dimensional random vector g(k)
m , each entry is sampled

from N(0, σ21/M)

(4) Compute μ(k)
m � 1/N(k)

m ( 
x∈X(k)

m

x + g(k)
m + g(k)

m )

(5) end for
(6) end for
(7) Compute μ(k) � 1/N(k)(

M
m�1 N(k)

m μ(k)
m + g(k)

0 )

(8) for m � 1 to M do
(9) Set σ2 � (p + 1)

�������

ln2/πδ22


+

������������������

(p + 1)2ln2/πδ22 + 4ε2


/2ε2, data owner generates p × p symmetric random matrices Gm, each
entry is sampled from N(0, σ22/M)

(10) for k � 1 to 2 do
(11) Compute S(k)

m � 
x∈X(k)

m

xxT − N(k)
m μ(k)

m (μ(k)
m )T

(12) end for
(13) Compute Sm � 

2
k�1 S(k)

m + Gm + Gm

(14) end for
(15) Compute Sw � 

M
m�1 Sm + G0

(16) Compute w � S− 1
w (μ(1) − μ(2))

(17) return X � ∪M
m�1Xmw

ALGORITHM 2: Mul-LDA-DP algorithm.
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Figure 1: SVM misclassi�cation rate of LDA-DP, PrivBayes and PRivHD under di�erent privacy budgets. (a) NLTCS, Y �money.
(b) NLTCS, Y � outside. (c) NLTCS, Y � bathing. (d) NLTCS, Y � travelling. (e) Adult, Y � salary. (f ) Adult, Y � education.
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Each entry of ∑Mm�1 Gm obeys N(0, σ22).
According to �eorems 5 and 6, the within-class mean

vector μ(k)(k � 1, 2) and pooled within-class scatter matrix
Sw contain the same level of noise as the centralized scenario,
and we achieve the purpose of improving the utility of
publishing data while protecting the data privacy.

�ere are three opportunities for attackers to steal the data
transmitted between the data owner and the data publisher.
�e �rst time is that the data owner sends the within-class
mean vectors to the data publisher, the second time is that the
data owner sends the within-class scatter matrices to data
publisher. From �eorems 7 and 8, we know that the within-
class mean vectors and the within-class scatter matrices satisfy
di�erential privacy. �erefore, the attacker cannot infer the
information of the original data from the eavesdropped data.
�e third time is that the data owner sends projection data to
the data publisher, in Section 4.1.2, we have analyzed that it is
impossible to infer the information of the original data from the
published projection data.

5. Experiment

In order to measure the usability of the LDA-DP and Mul-
LDA-DP algorithms proposed in this paper, we conduct
experiments on real data sets which are Adult and NLTCS.
Adult data set is extracted from the 1994 US Census, it
contains 45222 individuals, each individual has 15 attributes.
NLTCS data set is extracted from the National Long Term
Care Survey, and recorded the daily activities of 21574
disabled persons at di�erent time periods, each individual
has 16 attributes. We use the SVM misclassi�cation rate to
measure the availability of the published data. For the Adult
data set, it is necessary to predict whether a person (1) holds
a post-secondary degree and (2) earns more than 50K. For
the NLTCS data set, we need to predict whether a person (1)
is unable to get outside, (2) is unable to manage money, (3) is
unable to travel, and (4) is unable to bath. In our experi-
ments, we set δ � 0.001 to remain unchanged, and ε to take
di�erent values.We uniformly divide the privacy parameters
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Figure 2: SVMmisclassi�cation rate of Mul-LDA-DA and DP-SUBN3 under di�erent privacy budgets. (a) NLTCS, Y�money. (b) NLTCS,
Y� outside (c) Adult, Y� salary. (d) Adult, Y� education.
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into 2 portions (ε1 � ε2 � ε/2, δ1 � δ2 � δ/2). Each experi-
ment was repeated 50 times, and themean value was taken as
the experimental result. We use “No Privacy” to represent
the SVM misclassi�cation rate on the original data set.

5.1. Comparing the Performance of LDA-DA, PrivBayes, and
PRivHD Algorithms under Di erent Privacy Budgets. �e
LDA-DA, PrivBayes, and PrivHD algorithms are all suitable
for the centralized data publishing scenario, so in this set of
experiments, we set the number of data owners to 1, and
privacy budget ε takes di�erent values. As can be seen from
Figure 1, for both Adult and NLTCS data sets, the SVM
classi�cation utility of the data published by the LDA-DP
algorithm outperforms the PrivBayes algorithm. �e LDA-
DP algorithm outperforms the PrivHD algorithm on the
NLTCS dataset; however, the LDA-DP algorithm has slightly
lower SVM classi�cation utility on the Adult dataset than the
PrivHD algorithm. We can also observe a commonality, for
LDA-DA, PrivBayes, and PRivHD algorithms, the SVM
misclassi�cation rate decreases with the increase of the
privacy budget ε. �is phenomenon is consistent with the
theory that as the privacy budget ε increases, privacy pro-
tection will weaken and the availability of data will increase.

5.2. Comparing the Performance of Mul-LDA-DA and DP-
SUBN3 Algorithms under Di erent Privacy Budgets. �e al-
gorithm Mul-LDA-DP proposed in this paper is suitable for
the distributed data publishing scenario, so in this set of
experiments, we set the number of data owners to 3, and
privacy budget ε takes di�erent values. We train classi�ers
on published data set to compare the e¢cacy of Mul-LDA-
DA and DP-SUBN3 algorithms. From Figure 2, we can see
that the SVM classi�cation utility of the data published by
the Mul-LDA-DP algorithm outperforms the DP-SUBN3

algorithm. Both onmoney of NLTCS and education of Adult
classi�ers, the misclassi�cation rate of Mul-LDA-DA

algorithm is signi�cantly lower than the DP-SUBN3 algo-
rithm especially.

5.3. Comparing the Performance of Mul-LDA-DA and DP-
SUBN3 Algorithms under Di erent Number of Data Owners.
In this section, the experiment studied the relationship
between SVM misclassi�cation rate and the number of data
owners.�e number of data owners is set to 2, 4, 6, 8, 10, and
the privacy budget ε is set to 0.2, We trained two classi�ers,
education classi�er, and salary classi�er on Adult data set.
�e results in Figure 3 show that the SVM misclassi�cation
rate of the Mul-LDA-DP algorithm remains stable with the
change of the number of data owners. �e reason is that we
perturb the local shared data by generating correlated noise
based on the additivity of the Gaussian distribution. �is
scheme ensures that the level of Gaussian noise added to the
data in the distributed scenario is similar to the noise level in
the centralized scenario. �erefore, as the number of data
owners increases, the misclassi�cation rate remains stable.
�e SVM misclassi�cation rate of DP-SUBN3 algorithm
decreases as the number of data owners increases. �is is
because as the number of data owners increases, the number
of update iterations increases when constructing the
Bayesian network, and the Bayesian network constructed is
closer to the distribution of the original data. However, from
Figure 3, we can see that the performance of Mul-LDA-DA
algorithm is still better than DP-SUBN3 algorithm when the
number of data owners is no more than 10.

6. Conclusion

In this paper, we propose two algorithms for privacy pre-
serving data publishing, the LDA-DP algorithm for data
publishing in the scenario, and the Mul-LDA-DP algorithm
for multiparty horizontally split data publishing. We use the
additivity of Gaussian distribution to alleviate the e�ects of
noise and can achieve the same noise level as the centralized
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Figure 3: SVMmisclassi�cation rate ofMul-LDA-D andDP-SUBN3 under di�erent number of data owners. (a) Adult, Y� salary. (b) Adult,
Y� education.
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scenario. *e experimental results show that the projection
data released by the two algorithms can maintain high utility
in SVM classification. However, the research in this paper
also has limitations. 1)We only research the privacy pro-
tection problem when the data are a binary classification, but
they are often multiclassification data. 2)*e data released by
the two algorithms in this paper are low-dimensional
projection data of the original data, which limit the analysis
and mining of the released data in many aspects. In the
future, we will continue to conduct research on the
abovementioned issues.
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