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Privacy-preserving data aggregation is an important technology for mobile crowdsensing. Blockchain-assisted data aggregation
enables the traceability of sensing data to improve the trustworthiness of data aggregation results. However, directly using
blockchains for data aggregation may introduce the risk of privacy leakage because all nodes, including malicious nodes, can
access the data on blockchains. In this paper, we propose a grouping-based reliable privacy-preserving data aggregation (RPPDA)
method using private blockchains for mobile crowdsensing. First, the sensing nodes are divided into multiple groups, and each
group maintains a private blockchain to store the data aggregation records, which avoids the leakage of the aggregated results and
ensures the traceability of the sensory data. /en, a zero-sum noise-adding mechanism is utilized to not only preserve the private
information during aggregation and ensure the correctness of the aggregated results but also improve the efficiency of privacy
preservation. Furthermore, we theoretically prove the correctness, privacy, efficiency, and reliability of the proposed RPPDA
algorithm. Real-world and simulated experiments demonstrate the effectiveness and advantages of the proposed RPPDA al-
gorithm in terms of correctness, efficiency, and privacy.

1. Introduction

Mobile crowdsensing is a data acquisition paradigm based
on crowdsourcing and the sensing capabilities of intelligent
devices. Portable mobile devices constitute interactive and
participatory intelligence sensing networks. /e crowd in
the network collaboratively completes the sensing tasks to
achieve the purpose of data collection and information
sharing [1–3]. Data aggregation is an essential prerequisite
for data collection and information sharing in mobile
crowdsensing networks. Data aggregation eliminates re-
dundant information and extracts valuable information by
processing local sensing data [4]. In smart grid applications,
electricity consumption data is the basis for power

companies to adjust power supply and demand control in
real-time. /e electric meter can sense users’ electricity
consumption data in real-time and aggregate it into regional
electricity consumption data [5]. In intelligent trans-
portation applications, road condition information is the
basis for public travel and route planning. Mobile vehicles
can sense traffic data in real-time and aggregate it to form
regional traffic information, such as the user’s location and
speed [6].

/e risk of privacy leakage exists during the data ag-
gregation process in mobile crowdsensing networks [7]. In a
crowdsensing network, the data perceived by mobile devices
(such as electricity data and location data) is often sensitive
[8]. Attackers may use sensitive data to speculate on the
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user’s living habits and behavioral patterns and then carry
out malicious attacks. /erefore, preserving user's data
privacy in the data aggregation process is the key to pro-
moting the application of crowdsensing networks [9].
Existing research has carried out in-depth research on
privacy-preserving data aggregation. Various privacy-pre-
serving data aggregation schemes have been proposed
[10–12]. Based on the homomorphic encryptionmechanism,
the sensing data can be computed directly on the ciphertext
[13, 14]. Based on the random noise-adding mechanism, the
sensing data can be computed after hiding the real data, thus
achieving privacy-preserving data aggregation [15–17].
However, the existing privacy-preserving data aggregation
schemes still face the problem of unreliable data aggregation
processes. Crowdsensing nodes are deployed in the public
environment, and their capabilities are limited. It is easy for
a network attacker to control the nodes in the crowdsensing
network and add illegal or fake data during the data ag-
gregation process [18, 19]. /erefore, it is crucial to achieve
data traceability and reliability of aggregation results in a
privacy-preservation data aggregation process.

As a decentralized network public ledger, blockchain has
the characteristics of decentralization, non-tampering, and
traceability [20]. /e unique trust management method of
blockchain provides a promising way to study the methods
of reliable privacy-preserving data aggregation [21–23]. In
the process of the blockchain-assisted data aggregation,
nodes jointly maintain an immutable transaction record of
sensing data to realize the traceability of sensing data and
improve the reliability of data aggregation results [24–26].

However, direct use of blockchain for privacy-preserving
data aggregation may increase the risk of privacy leakage.
Blockchain-assisted data aggregation requires nodes to
jointly maintain transaction records. All nodes (including
malicious nodes) can obtain the information contained in
transaction records, which leads to privacy leakage in the
process of data aggregation. Furthermore, privacy-pre-
serving data aggregation is necessary to ensure the privacy of
sensing data and intermediate calculation results. All nodes
in the crowdsensing network should only know their private
data and know nothing about the intermediate calculation
results. /erefore, it is important to deeply study the
blockchain-assisted privacy-preserving data aggregation
method for improving reliability.

To solve the above problem, we propose a grouping-
based reliable privacy-preserving data aggregation (RPPDA)
algorithm. First of all, crowdsensing nodes are grouped to
construct a private blockchain during the data aggregation
process. /e traceability and reliability of aggregation results
are ensured. /en, a zero-sum noise-adding mechanism is
introduced to preserve the privacy of data aggregation
within each group. /e communication and computation
costs are reduced compared to the encryption mechanism-
based data aggregation. /e correctness of data aggregation
is also ensured since the added random noise is canceled
during the aggregation process. /erefore, the RPPDA al-
gorithm ensures that the blockchain is fairly utilized to
improve the reliability of data aggregation and avoid the
effect of directly utilizing the blockchain on privacy-

preserving data aggregation. /e zero-sum noise-adding
mechanism ensures the correctness, privacy, and efficiency
of privacy-preserving data aggregation. /e contributions of
this paper are summarized as follows:

(1) We explore a new way to address the privacy leakage
issue of directly applying blockchains to privacy-
preserving data aggregation. A grouping-based, re-
liable, privacy-preserving data aggregation algo-
rithm, RPPDA, is proposed using private
blockchains for mobile crowdsensing.

(2) We conduct theoretical analyses to prove the privacy,
correctness, and reliability of the RPPDA algorithm.
/e communication and computation costs are also
analyzed.

(3) /e correctness of aggregation results and the effi-
ciency of privacy preservation are verified using
experiments on the platform of Hyperledger Fabric.
/e advantages of RPPDA are also demonstrated
through simulations in terms of correctness, exe-
cution time, and privacy preservation.

/e remainder of the paper is organized as follows:
Section 2 reviews the related work on privacy-preserving
data aggregation. Section 3 describes the system model and
problem setup. Section 4 designs the RPPDA algorithm.
Section 5 theoretically analyzes the performance of RPPDA.
Section 6 evaluates the performance of RPPDA through
experiments and simulations. Section 7 concludes the paper.

2. Related Work

2.1. Privacy-Preserving Data Aggregation. Existing work has
proposed various privacy preservation mechanisms to
address the problem of privacy leakage during mobile
crowdsensing data aggregation [27–29]. Existing privacy
preservation mechanisms for data aggregation usually meet
the following requirements. (1) Aggregation nodes can
obtain aggregated results of data from all sensing nodes. (2)
Aggregation nodes cannot obtain the private data of
sensing nodes. (3) /e sensing node cannot obtain the
sensing data of other nodes. Existing work has designed
privacy preservation methods for data aggregation from
different perspectives based on encryption mechanisms or
noise-adding mechanisms. For example, for the multidi-
mensional data aggregation problem in the Internet of
/ings (IoT) scenario, Peng et al. designed an efficient
privacy-preserving data aggregation method based on a
homomorphic encryption method to protect data privacy
during data aggregation [30]. Shi et al. designed a zero-sum
weighted noise to address the problem of location infor-
mation leakage during distributed localization, achieving
privacy preservation and accuracy of localization results
[31]. Wang et al. designed a local differential privacy data
aggregation method based on differential privacy theory to
solve the privacy disclosure problem of user data in
crowdsensing discrete distribution estimation [32]. Xie and
Chen designed a secure data aggregation framework based
on the Shamir secret sharing mechanism to solve the
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problem of data privacy disclosure in distributed data
aggregation [33].

/e above studies designed privacy preservation data
aggregation methods by introducing homomorphic en-
cryption mechanisms, zero-sum random noise, differential
privacy noise, and the Shamir secret sharing mechanism.
However, the reliability of privacy-preserving data aggre-
gation still needs improvements. If some nodes use illegal or
false data in the data aggregation process, it is necessary to
enable the traceability of the data source. In this paper, the
blockchain technology is used to achieve the reliability of the
privacy-preserving data aggregation process. /e proposed
RPPDA algorithm ensures the traceability of the data ag-
gregation process to improve the reliability of the data
aggregation results.

2.2. Blockchain-Based Privacy Preservation.
Blockchain-assisted data aggregation has been studied to
improve the performance of crowdsensing [34]. /e security
and integrity are improved by utilizing blockchains for data
aggregation in crowdsensing. For example, Wang et al.
proposed a blockchain-based secure data aggregation
strategy, which considers security level-based task classifi-
cation and energy-efficient task fulfillment against privacy
disclosure [24]. Li et al. presented a blockchain-enhanced
data aggregation framework for UAV-assisted WSNs [25].
By combining blockchain building and data aggregation, a
disaster semantic blockchain based on a data reconstruction-
directed consensus mechanism is presented to ensure the
security of data transmission. Arulprakash and Jebakumar
designed and implemented a real-time privacy-preserving
data aggregation distribution scheme for mobile crowd-
sensing called SMARTEE [26]. /e SMARTEE stores and
transfers data using a protected blockchainmechanism and a
gateway-based authentication scheme to ensure proper data
transmission and integrity. /erefore, it is noted that
blockchain offers a novel way to enhance privacy preser-
vation during data aggregation in crowdsensing.

Privacy-preserving data aggregation schemes have been
investigated using blockchains [35]. Existing work designed
privacy-preserving data aggregation from different per-
spectives to avoid the single point failure and the use of false
data in the process of data aggregation. For instance, Zhang
et al. designed a privacy-preserving and a reliable sensing
scheme using a homomorphic encryption mechanism and
blockchain to avoid a single point of failure and achieve
reliable data aggregation services [36]. Kong et al. designed a
privacy-preserving and verifiable data sharing scheme using
homomorphic encryption mechanism and blockchains to
achieve privacy protection and verifiability [37]. Lin et al.
designed a secure data aggregation strategy by putting node
security level indicators into blockchains [38]. /e strategy
improves the security level of data aggregation in industrial
applications. Guan et al. designed a privacy-preserving
multi-party computing mechanism based on blockchains to
improve the security of multi-party computing [39].

/e above work improves the security and reliability of
the data aggregation process. However, the above privacy

preservation schemes based on blockchains are different
from our reliable privacy preservation method. /e privacy-
preserving data aggregation approach using homomorphic
encryption mechanisms may incur a significant commu-
nication and computational cost. In this paper, a noise-
addingmechanism is utilized to preserve privacy during data
aggregation and reduce the communication and computa-
tion costs. A grouping-based reliable privacy preservation
method is designed to enrich the application of the block-
chain technology.

3. System Model and Problem Setup

3.1. System Model. We consider a mobile crowdsensing
network consisting of four parties, including a target node,
many sensing nodes, several aggregation nodes, and a
blockchain network. First, to collect data and acquire in-
formation, such as with the smart grid crowdsensing, the
target node distributes sensing tasks to suitable sensing
nodes. After adding random noise to the sensing results, the
sensing nodes send the noise-added sensing results to the
designated blockchain network. /en, by calculating the
aggregation result based on the noise-added data, the ag-
gregation node sends the aggregation result to the target
node. Figure 1 shows the system model of the blockchain-
assisted data aggregation in mobile crowdsensing.

(1) Target node. /e target node is the requestor of the
crowdsensing data and distributes the crowdsensing
tasks to sensing nodes by crowdsensing platforms or
application servers. /e target node obtains the
aggregation results based on the sensing data.

(2) Sensing node. A sensing node is a smart mobile
device with the basic functionalities of sensing,
computing, and storage. /e sensing nodes could be
smart phones, wearable devices, and mobile vehicles.
Sensing nodes are the basic units of the mobile
crowdsensing networks, which are used to collect
different types of data, such as power consumption,
temperature, location, and speed. Without affecting
the aggregation results, zero-sum random noise is
usually added to the sensing data to preserve the data
privacy of the sensing node.

(3) Blockchain network. /e blockchain network is a
distributed storage ledger that records the noise-
added sensing data in sequence and is maintained by
distributed sensing nodes. Under a consensus pro-
cess, the sensing nodes take the noise-added sensing
data as a transaction and pack it into the block. /e
blockchain network automatically invokes a smart
contract containing the aggregation algorithm to
output the aggregation result to the aggregation
node.

(4) Aggregation node. /e aggregation node is respon-
sible for aggregating the sensing data and sending the
aggregation result to the target node. In this model, a
sensing node can participate in the data aggregation
process so as to be an aggregation node.
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In mobile crowdsensing networks, N0 denotes the target
node. /e sensing node is denoted as Ni(i � 1, 2, . . . , m),
where m is the number of sensing nodes. Ni takes the
sensing data as its private data di(i � 1, 2, . . .∞, m). All
sensing nodes are divided evenly into n groups. Each group
has an aggregation node Nj

′(j � 1, 2, . . . , n) responsible for
collecting intermediate aggregation results of the sensing
data within the group. N0 is responsible for collecting in-
termediate aggregation results and calculating final sensing
data aggregation results. /erefore, the purpose of privacy-
preserving data aggregation is to compute correct-sensing
data aggregation results while preserving privacy.

In this paper, a semi-honest model is used to analyze the
threat in the process of privacy-preserving data aggregation.
Assuming that all nodes in the data aggregation process are
honest but curious. Each node performs computation and
communication according to the steps specified in the al-
gorithm. But each node is curious whether it can deduce the
private information of other nodes from the messages it
obtained [40]. Moreover, data summation in crowdsensing
is an important data aggregation scenario. /erefore, we
focus on how to use blockchain to enhance the reliability of
private data and to avoid information leakage during ag-
gregation results due to the use of public blockchain. Fur-
thermore, during the crowdsensing data aggregation
process, the sensing data of the nodes need to be aggregated
without considering themovement of the nodes./e sensing
data of a moving node can be broadcast and uploaded to the
blockchain through the nearby base stations [41]. /erefore,
it is assumed that the moving nodes have no impact on the
privacy-preserving data aggregation.

3.2. Problem Setup. /e reliable and privacy-preserving data
aggregation algorithm based on a private blockchain is
desired to meet the following objectives:

(1) Correctness of aggregation results. /e data aggre-
gation results of all sensing nodes can be correctly
calculated, that is, the algorithm execution results are
equal to the direct calculation results without con-
sidering privacy by adding random noise.

(2) Privacy of data. It is ensured that private data di is
known only by the node Ni. /e final sensing data
aggregation result is known only by the target node
N0, and the intra-group aggregation result is known
only by intra-group nodes.

(3) Efficiency. /e designed algorithm does not use any
encryption mechanism. Compared with the privacy-
preserving data aggregation algorithm based on the
encryption mechanism, the designed algorithm has
low computation and communication costs.

(4) Reliability. Compared with the privacy-preserving
data aggregation algorithm using public blockchain,
the designed algorithm can calculate reliable results
by the grouping process. Each group maintains a
private blockchain to store the data aggregation
records, which reduces the risk of privacy leakage
from directly utilizing the public blockchain.

4. ReliablePrivacyPreservingDataAggregation

4.1. Basic Idea. In the process of mobile crowdsensing data
aggregation, RPPDA is designed to realize the correctness,
efficiency, privacy preservation, and reliability of aggregation
results. Firstly, all sensing nodes are divided into groups to
maintain private blockchains and carry out privacy-pre-
serving data aggregation based on the zero-sum noise-adding
mechanism. Data transactions during the aggregation are not
completed until they are posted to a private blockchain,
ensuring that data transactions can be traced back. Secondly,
the aggregation node obtains the aggregation result within
the group. /en, to preserve the privacy of the intermediate
aggregation results, the aggregation nodes again add zero-
sum noise to the intermediate aggregation results while
waiting for the target node to perform secondary data ag-
gregation. Finally, the target node uses the noise-added in-
termediate aggregation results to compute the final
aggregation result. Due to the zero-sum noises, the effect of
noise on the aggregation results can be canceled, which
ensures the correctness of the aggregation result.

/e idea of the reliable privacy preservation using private
blockchains is further discussed. /e blockchain construc-
tion process is a key step in the implementation of RPPDA.
A private blockchain takes a partially centralized approach
and is only open to specific individuals. Data reads, data
writes, and consensus mechanisms comply with the private
blockchain manager, which maximizes the maintenance of
sensitive data from illegal access and tampering [42]. In
particular, the sensing nodes are divided into multiple
groups, and each group maintains a private blockchain. /e
block has the following components: merkle root, block ID,
hash, previous hash, time stamp, and the noise-added
sensing data. Furthermore, the private blockchain reduces
the risk of the privacy leakage issue of utilizing the public
blockchain. When using the public blockchain, the aggre-
gation results are available to any node, which may reduce
the privacy preservation level of the data aggregation pro-
cess. However, by storing the noise-added sensing data on
the private blockchain in each group, it ensures the

Distribute
sensing tasks

Add random
noise

Aggregate
noised data

Return
aggregation

results

Target node Sensing node

Blockchain networkAggregation node

Figure 1: System model of the blockchain-assisted data aggrega-
tion in mobile crowdsensing.
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correctness of data aggregation results, preserves the privacy
of sensing data, and improves the reliability of privacy-
preserving data aggregation.

4.2. Intra-Group Data Aggregation. In the process of intra-
group data aggregation, the sensing nodes add zero-sum
noise to realize the privacy preservation for sensing data and
the correctness of data aggregation results. At the same time,
the key to intra-group data aggregation is maintaining a
private blockchain. In the process of aggregating noise-
added data, the data transaction can be published on the
blockchain only after the consensus algorithm is imple-
mented, which ensures the reliability and traceability of data.
/erefore, two steps are considered for the intra-group data
aggregation based on blockchain, including privacy-pre-
serving data aggregation based on noise-adding mechanism
and consensus mechanism of data transaction on the
blockchain during data aggregation.

4.2.1. Noise-Adding based Privacy Preservation. It is crucial
to ensure the correctness of aggregation results and the
privacy of the data. During data aggregation, zero-sum noise
is added to eliminate the effect of noise on the aggregation
result and achieve accurate, privacy-preserving data
aggregation.

/e privacy-preserving data aggregation process based
on the zero-sum noise is described below [40]. Assuming Ni

has a private matrix Mi(i � 1, . . . , m), /e size of the private
matrix Mi is predetermined based on the crowdsensing data
aggregation scenario. For example, in the three-dimensional
crowdsourced localization scenario, the sensing data denotes
the location information, including three rows and one
column. N0 needs to obtain the summation without
knowing the private information of Ni (α � 

m
i�1 Mi).

Random noise matrices are used to preserve privacy in-
formation during summation calculation. Firstly, Ni gen-
erates m random noise matrices pk

i (k � 1, . . . , m). pk
i has

the same number of rows and columns as the matrix Mi and
the sum of these matrices is a zero matrix. Secondly, Ni

keeps one of the matrices and sends the remaining matrices
one by one to the other nodes. /erefore, Ni can add up the
random matrices received from other nodes to construct a
new random noise matrix, denoted as Pi, where 

m
i�1 Pi � 0.

Finally, Ni sends mixed messages αi � Mi + Pi to N0.
/erefore, without obtaining the private information of the
other nodes, N0 calculates the summation of all the private
information by α � 

m
i�1 αi.

4.2.2. Consensus Mechanism. Data privacy of nodes on the
blockchain is protected by adding the zero-sum noise, and
all nodes are semi-honest. /erefore, the nodes in the group
are not anonymous when they publish the block storing
personal noise-added information as miners. Assuming that
the average block-producing time of the blockchain within
the group is consistent.Because the number of nodes in the
group is small, the delay of block propagation is ignored./e
block is broadcast and immediately received by the other

nodes in the group. After a block is added to the blockchain,
each node will receive blocks broadcast by other nodes. /e
nodes will verify the validity of these blocks and select a
block to be added to the end of the locally maintained
blockchain through a consensus mechanism.

In the process of data aggregation, the consensus
mechanism of data transaction polling is described as fol-
lows. First, NUMi denotes the total number of blocks
published by miner i. Ti denotes the time between the miner
i publishing the last block and the current block. Ti can be
obtained by subtracting the timestamp in the block pub-
lished by the previous miner i from the timestamp in the
block packed by the current miner i. Each miner will sort the
blocks received in T seconds according to the polling
consensus mechanism and select a block to add to the end of
the locally maintained blockchain. /en, the consensus
mechanism compares the total number of blocks that miners
have published on the blockchain. /e output is the block
packaged by the miner who has published the least number
of blocks. When there are multiple blocks with equal NUM

values in this step, all of them have a minimum value. /e
time after theminer who packed these blocks last published a
block is compared in the blockchain. /e blocks packed by
the miner with the longest wait time is the output. Further, if
the above steps fail to output a single block, the hash values
of these blocks are compared to the output of the block with
the lowest hash value.

4.3. Algorithm Design. /e aggregation node calculates the
intra-group data aggregation result and performs the zero-
sum noise adding mechanism to ensure the privacy and
correctness of the aggregation results. /erefore, based on
the idea of adding zero-sum noise in Section 4.2.1, the intra-
group data aggregation results are aggregated again by
adding zero-sum noise to achieve privacy-preserving ag-
gregation among groups.

Based on intra-group data aggregation and data aggre-
gation between groups, the RPPDA algorithm is designed in
Algorithm 1. /e input is private data di(i � 1, 2, . . . , m) for
sensing nodes. /e output is the final sensing data aggre-
gation result. First, the sensing nodes are grouped to avoid
information disclosure of final aggregation results caused by
the public blockchain. /e m sensing nodes involved in the
aggregation calculation are divided equally into n groups,
denoted by Gj(j � 1, 2, . . . , n). Each group has k(k≥ 3)

nodes (Nj1, Nj2, . . . , Njk). One node from each group Gj is
selected as the aggregation nodeNj

′ of the group. Second, the
zero-sum noise is added to private sensing data./e nodes in
group Gj are denoted by Njl(l � 1, 2, . . . , k). /e nodes
collaborate to generate the zero-sum noise αjl, where


k
l�1 αjl � 0./en, the noise-added data (i.e. transaction data

records) is uploaded to the blockchain by the consensus
mechanism. Each group Gj maintains a private blockchain
BCj. Njl adds zero-sum noise αjl to private data djl,
according to djl

′ � djl + αjl. /e node identification infor-
mation and noise-added data djl

′ are stored in the private
blockchain BCj. Next, the aggregation node Nj

′ aggregates
the noise-added data djl

′ in the private blockchain BCj,
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according to Sumj � 
k
l�1 djl
′ � 

k
l�1(djl + αjl). Further, the

aggregation nodes Nj
′ collaborate to generate the zero-sum

noise βj again, where 
n
j�1 βj � 0.Nj

′ adds zero-sum noise βj

to the intra-group data aggregation result Sumj
′, according

to Sumj
′ � Sumj + βj. Finally, the target node N0 calculates

the final aggregation result Sum � 
n
j�1 Sumj

′ � 
n
j�1

(Sumj + βj).

5. Algorithm Analyses

5.1. Correctness. /e correctness of RPPDA means that the
execution result is equal to the direct aggregation result
without adding random noise by considering privacy. It is
necessary to prove that the final aggregation result calculated
by the target node N0 is equal to the sum of the private data
of all sensing nodes Ni. /e following theorem gives the
correctness of RPPDA.

Theorem 1. Consider m nodes Ni(i � 1, 2, . . . , m) partici-
pating in the summation computation. %e private data of all
sensing nodes is di(i � 1, 2, . . . , m). %en, the following
equation holds.

S � Sum, (1)

where S is the sum of the private data of all sensing nodes Ni.
Sum is the final aggregation result calculated by the target
node N0.

Proof. Firstly, we need to prove the correctness of the intra-
group summation calculation results Sumj of the aggrega-
tion node. Sj denotes the sum of the private data of the
sensing nodes in Gj. According to Sj � 

k
l�1 djl and


k
l�1 αjl � 0, we have

Sumj � 
k

l�1
djl
′ � 

k

l�1
djl + αjl  � 

k

l�1
djl + 

k

l�1
αjl � 

k

l�1
djl � Sj, (2)

where αjl is the zero-sum noise of the l-th sensing node in
Gj. djl
′ is the noise-added data of Njl. /en, it is necessary to

prove that the summation results, Sum of the target node is
equal to the sum of the intra-group summation calculation
results. Due to 

n
j�1 βj � 0, we have

Sum � 

n

j�1
Sj
′ � 

n

j�1
Sumj + βj  � 

n

j�1
Sumj + 

n

j�1
βj � 

n

j�1
Sumj,

(3)

where βj is the zero-sum noise of the aggregation node in Gj.
Sj
′ is the noise-added summation data of Gj. Combining

equations (2) and (3), we know that

Sum � 
n

j�1
Sumj � 

m

i�1
di � S. (4)

/erefore, /eorem 1 is proved. /e final aggregation
result of RPPDA is correct. □

5.2. Privacy Preservation and Reliability

5.2.1. Privacy Preservation. /e privacy preservation of
RPPDA means that the private data of all nodes involved in
the calculation cannot be deduced by other nodes, and only
the target node knows the final aggregation result. /e
following theorem gives the privacy preservation of the
RPPDA.

Theorem 2. When m≥ 9, n≥ 3, k≥ 3, RPPDA holds privacy
preservation.

Proof. Two cases need to be proved to support /eorem 2.
(1) All nodes cannot directly or indirectly reason to obtain
the private data of other nodes; (2) /e final summation
result can only be computed by the target node.

In the process of data aggregation, each private block-
chain stores the noise-added data of sensing nodes.
Meanwhile, at least three nodes within each group collab-
orate to generate zero-sum noise because during the exe-
cution of RPPDA, a zero-sum noise addition is performed
within each group and between all groups, respectively. Also,
the zero-sum noise mechanism needs to ensure that the
private information is not inferred by other nodes when
three or more nodes are present. For example, when there
are only two nodes, a node can reason out the private in-
formation of another node based on its zero-sum noise term.
/erefore, even nodes within the same group cannot obtain
and infer the private data of other nodes from the noise-
added data. In addition, the aggregation nodes of each group
collaborate to generate the zero-sum noise again and add the
noise to the intermediate calculation results./en, the noise-
added data is treated as private data. /erefore, when the
target node communicates with the aggregator node, the
target node gets the noise-added intermediate computation
result./e target node does neither have access to the private
data of the aggregator node nor can it infer the private data
of the aggregator node from the noise-added intermediate
computation results. Condition 1 holds true.

For condition 2, all nodes involved in the computation
are divided into groups. /e nodes in each group store their
private data in a private blockchain after adding zero-sum
noise. /e summation result of the data for each group can
only be calculated by the node within that group, i.e., the
aggregation node can get the summation result of each
group (the intermediate calculation result). /e target node
communicates with the aggregation node and obtains the
noise-added intermediate results of each group. /en the
target node calculates the final summation result. In con-
clusion, /eorem 2 is proved. □

5.2.2. Reliability. /e reliability of RPPDA is to ensure the
traceability of original sensing data in the process of data
aggregation. Many factors influence sensing data in the
mobile crowdsensing network. For example, mobile device
failure leads to data storage failure and malicious node at-
tacks lead to data errors. RPPDA is based on private
blockchain. All nodes are honest but curious and follow the
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consensus mechanism of data transaction polling during the
data aggregation./e sensing data in mobile crowdsensing is
published to the blockchain after adding random noise. /e
sensing data can be traced back through blockchain when
there are mobile device failures or being attacked. In ad-
dition, sensing data cannot be tampered with or deleted
because the blockchain is jointly maintained by all nodes.
/erefore, RPPDA ensures the traceability of original
sensing data and improves the reliability of data aggregation
in mobile crowdsensing.

5.3. Communication and Computation Cost

(1) Communication Cost. /e communication cost of
the RPPDA consists of three components, i.e., the
communication cost between the sensing nodes, the
communication cost between the sensing nodes and
the aggregation nodes, and the communication cost
between the aggregation nodes and the target node.
Because the number of nodes in each group is equal,
it is assumed that the process of adding noise and
requesting to join the blockchain takes place si-
multaneously in each group. For convenience, we
consider the communication cost of only one
group. Firstly, to generate zero-sum noise, each
node in the group needs to transmit (k − 1) ele-
ments to complete the communication. /e
communication cost in the private blockchain is
Tbc. Next, to get the data on the private chain and
perform aggregation, the aggregation node needs
to communicate with the other nodes in the group
by transmitting (k − 1 + Tbc) elements. Finally, to
obtain the intermediate aggregation results and
perform the final aggregation, the target node
communicates with the aggregation node by
transmitting n elements. Assuming that a number
is represented by 24 bits. In summary, the com-
munication cost of the aggregation process for

RPPDA is roughly (24 × (n(k − 1)+

n(k − 1 + Tbc) + n)).
(2) Computation Cost. Assuming that there are m nodes

involved in the aggregation. /e nodes are divided
equally into n groups. Each group has k nodes. /ere
are k addition operations to be performed when each
group of nodes adds noise to the private data. To sum
up the noise-added data of each group and add the
noise to it again, the aggregation node needs to
perform (k − 1 + n) addition operations. /e target
node communicates with the aggregation node to
compute the final summation result and perform
(n − 1) addition operations. /erefore, the compu-
tation cost of the summation calculation process for
RPPDA is roughly
(n(kφ + Cbc + (k − 1 + n)φ + (n − 1)φ)), where φ is
the cost of addition operations and Cbc is the
computation cost in the private blockchain.

6. Performance Evaluations

In this section, to evaluate the performance of the RPPDA,
the experiments and simulations are designed for the mobile
crowdsensing data aggregation scenario.

6.1. Experimental Results. /e comparison schemes are the
noise-adding based privacy-preserving data aggregation
(NPPDA) and homomorphic encryption-based privacy-
preserving data aggregation (HPPDA). NPPDA achieves
privacy-preserving data aggregation by adding zero-sum
noise and does not use blockchain [31]. HPPDA uses the
Paillier homomorphic encryption method to achieve pri-
vacy-preserving data aggregation [13, 30]. In the experiment,
the number of sensing nodes was set from 10 to 100, and 10
nodes were added each time. To reduce the influence of
random variables on the results, the results of all experi-
ments are the average of 1,000 independent runs.

Input: /e private information di(i � 1, 2, . . . , m) of node Ni.
Output: /e final aggregation result Sum � 

m
i�1 di.

(1) Ni(i � 1, 2, . . . , m) are grouped equally into Gj(j � 1, 2, . . . , n).
(2) For j � 1 to ndo
(3) N’

j is elected fromGj.
(4) /e nodes Nj1, Nj2, . . . , Njk  collaborate to generate the zero-sum noise αj1, αj2, . . . , αjk .
(5) For l � 1 to kdo
(6) d’

jl � djl + αjl.
(7) Store the noise-added data d’

jl in the private blockchain BCj.
(8) End
(9) Sumj � 

k
l�1 d’

jl.
(10) End
(11) /e nodes N1′, N2′, . . . , Nn

′  collaborate to generate the zero-sum noise β1, β2, . . . , βn .
(12) For j � 1 to ndo
(13) Sumj

′ � Sumj + βj.
(14) End
(15) Sum � 

n
j�1 Sumj

′ � 
n
j�1(Sumj + βj).

ALGORITHM 1: Reliable privacy-preserving data aggregation (RPPDA).
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/e RPPDA algorithm was deployed to the Hyperledger
Fabric blockchain platform (version 2.1.1) to evaluate the
performance. Experimental tests were carried out regarding
the efficiency of privacy preservation. /e configuration
information for the experimental environment parameters is
shown in Table 1. /e HPPDA uses the Paillier homo-
morphic encryption system based on the implementation
using the Go language.

/e execution time of HPPDA, RPPDA, and NPPDA
algorithms is shown in Figure 2. It is seen that as the number
of nodes increases, the execution time of the three algo-
rithms increases. Compared with HPPDA, the execution
time of RPPDAwas reduced by 56.84% on average. Since the
HPPDA algorithm performs a homomorphic encryption
mechanism, the time overhead is large. However, NPPDA
has a small time overhead because it does not use blockchain.
/erefore, the experimental results are reasonable and prove
that RPPDA can improve efficiency while achieving reliable
privacy protection.

6.2. Simulation Results. Simulations are conducted for the
RPPDA algorithm using Pycharm software running on a Dell
desktop computer with an Inter core i5-9500 CPU @
3.00GHz processor and 8.00GB (7.81GB available) of RAM.
/e HPPDA, RPPDA, and NPPDA algorithms are compared
in terms of aggregation accuracy, communication and
computation cost, and privacy preservation strength. /e
simulation experiment considers the smart grid crowdsensing
scenario, where the electricity consumption of users is col-
lected in an area for a week. About 100 smart meters are
distributed in the area. /e smart meter is the sensing node,
and the user’s electricity consumption is the sensing data./e
number of sensing nodes was set from 10 to 100. /e elec-
tricity consumption of users ranges from 0 to 100. To reduce
the influence of random variables on the results, the results of
all simulations are the average of 1,000 independent runs.

Figure 3 shows the data aggregation results with and
without noise to evaluate the correctness of RPPDA. It can
be seen that the summation results with noise are always the
same as the summation results without noise. /e reason is
that the zero-sum random noise is added in the RPPDA data
aggregation process, which counteracts the effects of noise.
/erefore, the RPPDA algorithm is able to correctly ag-
gregate the data, which validates the theoretical results in
/eorem 1 of Section 5.1.

/e computation and communication costs of HPPDA,
NPPDA, and RPPDA are shown in Figures 4 and 5. /e
comparison shows that the computation and communication
costs of RPPDA are on average 94.03% and 99.86% lower than
those of HPPDA, respectively. /is is because HPPDA uses
homomorphic encryption containing long-bit products and
exponential operations. /e computation and communication
costs of RPPDA are higher than NPPDA since RPPDA uses a
private blockchain to record data transactions. /erefore,
RPPDA ensures the efficiency of the data aggregation process.

/e privacy protection strength is evaluated for the
RPPDA algorithm. Inspired by the definition of privacy
protection strength in existing studies [40, 43, 44], the

privacy protection strength is measured by the probability
that a node’s private data is not accessed by other nodes in
the simulations. For example, the privacy protection
strength is defined by the chance of activity prediction of
users in location-based services (LBS) [43]. A smaller
chance of activity prediction means a higher privacy
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Figure 3: /e data aggregation results with and without noise.

Table 1: Parameter information for the experiments on hyper-
ledger fabric.

Component Description
Node V12.18.0
NPM V6.14.0
Golang 12.8
Docker compose go1.15.6 linux/amd64
Docker engine 1.22.0
CPU Intel(R) Xeon(R) Silver 4210 (2.20GHz) CPU
Operating systems CentOS Linux release 7.8.2003
Memory 190G RAM
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protection strength. Similarly, data aggregation is privacy-
preserving when the private data of the sensing node
cannot be known by other nodes. Due to the public and
transparent nature of the blockchain, the data stored in the
blockchain can be accessed by other nodes. When m nodes
are involved in aggregation and divided into n groups, the
number of nodes in each group is m/n, where the privacy
protection strength is 1 − (1/mn). Under the above defi-
nition of privacy protection strength, Figure 6 compares
the privacy protection strength under the different number
of groupings. It can be found that when the number of
sensing nodes involved in aggregation is certain, the more
the number of groupings, the higher the privacy protection
strength because the greater the number of groupings, the

fewer the number of nodes that jointly maintain a
blockchain. /erefore, grouping nodes can improve the
privacy-preserving strength of the data aggregation
process.

According to the evaluation results of the above ex-
periments and simulations, RPPDA can ensure the cor-
rectness of data aggregation results. RPPDA has a lower
computation and communication cost than HPPDA.
RPPDA also improves the privacy preservation strength by
dividing nodes into groups to avoid the privacy leakage of
directly using blockchain. /erefore, the RPPDA algorithm
not only ensures the correctness of the data aggregation
results but also has higher efficiency and strong privacy
preservation.

7. Conclusions

Privacy-preserving data aggregation play an important role
in mobile crowdsensing. Direct use of the public blockchain
can improve the reliability of privacy-preserving data ag-
gregation. However, there is the risk of privacy leakage
during the process of data aggregation. In this paper, we
propose a grouping-based reliable privacy-preserving data
aggregation algorithm to avoid the risk of privacy leakage.
First, we introduce a private blockchain to ensure trace-
ability during data aggregation. All sensing nodes are di-
vided into groups to maintain private blockchains. /en, the
zero-sum noise mechanism is utilized to ensure the cor-
rectness of data aggregation results, preserve the privacy of
sensing data, and improve the efficiency of data aggregation.
Finally, the correctness, privacy-preservation, reliability, and
efficiency of RPPDA are theoretically analysed. /e effec-
tiveness of RPPDA is demonstrated by experiments and
simulations.
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