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Under the management of the Internet of -ings platform, smart home devices can be operated remotely by users and greatly
facilitate people’s life. Currently, smart home devices have been widely accepted by consumers, and the number of smart home
devices is rising rapidly. -e increase of smart home devices introduces various security hazards to users. Smart home devices are
vulnerable to side-channel attacks based on network traffic. -e event of smart home devices can be identified by network
surveillants. Given this situation, we designed a set of standardized workflows for traffic capturing, fingerprint feature extraction,
and fingerprint event detection. Based on such workflow, we present IoTEvent, a semiautomatic tool to detect vulnerable smart
home devices, which is not limited to specific types of communication protocols. IoTEvent first collects device traffic by simulating
touch events for App. -en, it pairs the packet sequences with events and generates a signature file. We also test the usability and
performance of IoTEvent on five cloud platforms of smart home devices. Finally, we discuss the reasons for privacy leakage of
smart home devices and security countermeasures.

1. Introduction

With the progress of communication technology and net-
work technology, the smart home market has developed
rapidly. According to ABI research [1], almost 79 million
homes will have a smart home device by 2024. -e man-
ufacturers of smart home devices are trying to make them
“smart” by connecting them to the cloud platform, and then
users can control them using mobile Apps or voice assis-
tants. For example, if we want to listen music and say “Hey
Google, play music,” a piece of wonderful music will be
played by Google Home. Nowadays, smart home platforms
are widely used in the process of device development, in-
cluding Xiaomi [2] and Huawei [3].

However, the rapid growth of the market economy
promotes the development of the manufacturing industry

toward product practicality and then ignores the safety of
products, leading to a number of security vulnerabilities for
smart home devices [4]. According to reports, Amazon’s
Alexa and Google’s smart speakers can eavesdrop on users’
information and even cheat them by voice. According to
researchers, few consumers are aware that smart home
devices collect and share private data as part of their normal
operations [5]. Smart home cloud platform not only brings
convenience to people but also has the risk of privacy leakage
[6]. Large amounts of data from devices are collected by
cloud platforms, which are transmitted through network
traffic. For example, users can control the Mijia App to turn
on a smart light bulb. In this process, the smart home cloud
platform judges and recognizes the commands sent by the
App and then forwards them to the smart light bulb. Al-
though the control commands are encrypted, the commands
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can be identified by encrypting traffic analysis. Furthermore,
detecting the detailed activities of smart home devices is the
premise of implementing attacks against smart home
scenarios.

Many researchers [7–10] have noted that there is a
link between encryption traffic and device state transi-
tions, but their proposed method cannot accurately de-
tect triggered events. A part of studies [11, 12] analyzed
network traffic for specific types of devices. -e author of
[11] analyzed network traffic of the camera. -e author of
[12] detected users’ presence through traffic analysis of
smart speakers. -e author of [9] inferred device state
transitions through Zigbee [13]/Z-wave [14] network
traffic. -e author of [15] proposed the network traffic
packet signature of TCP-based devices. However, their
tool cannot apply to UDP-based devices that follow a
connectionless pattern.

In this article, we present IoTEvent to identify trigger
events of smart home devices by fingerprinting encrypted
traffic. Note that the user’s behavior privacy can be inferred
from the detection result. -e main contributions of this
study are summarized as follows:

(i) Design a trigger event detection tool IoTEvent.
First, collect encrypted traffic of smart home de-
vices. -en, train the signature event and generate
classification model. Finally, based on the model
detect the privacy events.

(ii) Test our tool with nine popular devices from five
popular cloud platforms. We observe a high accu-
racy of 99%.

(iii) Analyze the reasons for privacy leakage of encrypted
traffic, and then present some suggestions on how to
deal with this problem.

-is article is organized as follows. -e threat model is
described in Section 2. -en, we detail the design and
implementation in Section 3 and present the evaluation
results of devices in Section 4. In addition, we discuss the
reason of the privacy leakage of smart home devices and how
to avoid it in Section 5. In Section 6, we introduce related
works. Finally, we conclude in Section 7.

2. Threat Model

-ere are four key entities in the process of communication:
the smart home devices, the mobile App, the cloud, and the
gateway, as shown in Figure 1. -e privacy information can
be leaked in the communication process by analyzing the
timestamp, length, and direction of the data packet. We
assume the adversary has two attack methods: WAN sniffing
and WiFi sniffing, and knows the brand and model of the
device that he wishes to passively monitor (the adversary
may be the neighbor or the repairman that has been to the
victim’s house). -rough WiFi sniffing, the adversary can
know the MAC addresses to identify which device has sent
the traffic. Normally, home routers use NAT [16]: remap-
ping all traffic to the router’s IP address. -rough WAN
sniffing, the adversary can know IP headers of all packets and

then find the domain name that communicates with the
device by IP address.

To sum up, the adversary should meet the following
conditions:

(i) -e WiFi sniffer should be within the transmission
distance of the wireless router. -e WAN sniffer can
capture all packets between the router and the cloud.

(ii) -e adversary can obtain the same smart home
device and extract event signatures of the device

Smart home devices transfer packets to the router
through the WiFi, and then the router transfers them to the
cloud through the WAN. Before sniffing, the adversary
needs to get the event’s signature of the same device. During
sniffing, the adversary cannot obtain the plaintext data
because the data are encrypted and then transmitted. After
capturing the packets, the adversary first preprocesses the
packets and then performs event detection based on the
event’s signature of the same device.

3. Detailed Design

In this section, we present each step of IoTEvent and explain
how to detect the triggered events of the device in detail.

3.1.Overview. For identifying the privacy events, we present
IoTEvent to handle the challenges. Our tool can identify
event containing out-of-order packets, which improve the
accuracy of event detection. Figure 2 shows the workflow of
IoTEvent. In the first step of network traffic collection,
IoTEvent can simulate trigger events through scripts, which
also record the name and timestamp of the triggered event.
After receiving the control command, the device generates
packet sequences in a short time.We use tcpdump to capture
device traffic on the router. After this step, we collect traffic
for different events to prepare for event signatures and data
training. Next, in the step of data training, due to device
events generating data packets in a short time, we propose a
method to divide device traffic into packet sequences. -en,

IOT Cloud Gateway

Mobile App

WAN

LAN

WAN Sniffing Wi-Fi Sniffing

Smart Home Devices

Figure 1: -e communication modes of the smart home system.
-e LAN is the main communication mode between smart home
devices and the cloud, and the WAN is rarely used. Mobile App
control devices have two paths: when the user is at home, control
commands are uploaded to the cloud via the LAN; when the user is
not at home, control commands are uploaded to the cloud over the
WAN.
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IoTEvent pairs events and packet sequences through
timestamp. Next, IoTEvent extracts the length and direction
of the data packet to form an event signature. -rough
training, a signature file is generated to store event’s sig-
nature. In the last step of event detection, the sniffed traffic of
the device is divided into packet sequences. -e main task of
event detection is to classify the packet sequences according
to the signature file. Finally, the event’s name is output,
which is also the result of classification.

3.2. Traffic Capturing. -e main task of data collection is to
capture the network traffic of the device and obtain the
timestamp of the triggered events.

According to the survey, we find that the traffic between
the device and the cloud includes the following three types:
device heartbeat package, device report information, and
device operation command. -e device heartbeat packet is
used to detect whether the device is disconnected. -e cloud
platform uses a simple communication packet to judge
whether the device is running normally. If no response is
received from the device within a specified period of time,
the device will be judged to have dropped the line.-e device
report information includes device firmware information,
device log information, and device physical state change
information. -e device operation command refers to the
control command sent by the user to the device through the
cloud.

-e triggered events refer to the state change of the
device by the user clicking or sliding the corresponding
mobile App. For example, turn on the light by clicking
button of the mobile App, as shown in Figure 3. -e mobile
App sends the control command of light turn on to the
cloud. After the cloud receives the control command, it
queries the status of the device. -e cloud compares it with
the status of the device in the command. If they are different,
the cloud sends command of light turn on. -e device
executes the command and returns success message. If they
are the same, the cloud does not send the command. Dif-
ferent device events may have different response processes,
so the number of data packets generated during the event
will also be different.

IoTEvent automatically generates and captures device
traffic for the training set. We use the script of Auto.js [17] to
trigger all events on the smartphone’s screen in turn, which
runs on smartphone. All events refer to operations related to
the device on the mobile App [18]. For example, in addition
to basic control events (light on/off), Mi Control Gateway
also includes setting events (volume settings). What we want
is to trigger all device-related events on the App.-e script is
customized according to the device due to the different

functions of the device. Each event is triggered 100 times,
and the interval between two clicks is 60 seconds. IoTEvent
starts tcpdump to capture the device traffic before triggering
the events. -e network traffic includes all data packets
between the device and the cloud platform, which are the
result of event triggering, device logs, and so on. IoTEvent
records the network traffic in a PCAP file and writes the
name and timestamp of the trigger event in a text file.

3.3. Fingerprint Feature Extraction. -e purpose of finger-
print feature is to generate a signature file of the device.
IoTEvent divides the captured traffic into packet sequence
and then matches the packet sequence and event according
to the algorithm.-e length and direction information of the
data packet are extracted to generate feature vectors, which
are trained to generate a classification model.

Due to the difference of SDK between cloud platforms or
the difference of the communication protocol of the same
cloud platform, the encrypted traffic generated by smart
home devices will be different. At present, many scholars
have studied the identification of devices on different cloud
platforms and made great progress, which we will introduce
in related work. Smart home devices will send heartbeat
packets to the cloud platform to keep connected at a certain
interval, packet number, and length. When we use the
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Figure 2: System architecture of IoTEvent.
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Figure 3: -e device event and respond. -e query (solid line) and
the reply (solid line) of the event are shown in the figure.
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mobile App to control the device, the encrypted traffic of
different control commands of some smart home devices is
different in terms of traffic rate, packet size, and so on. Based
on these differences, we design event signatures to distin-
guish the control commands.

3.3.1. Packet Sequence. IoTEvent extracts the timestamp
from the packet p of the device to obtain the time interval Δt
between two packets. When the network is under the good
condition, the data sending and receiving rate will be
accelerated in a triggered event, so the time interval Δt is
smaller. -erefore, IoTEvent judges the number of event
according to Δt. If Δt> a, the packet is marked. Otherwise
continue. Based on the recorded data, IoTEvent divides
device traffic into packet sequences and then filters out the
packet sequences generated by the trigger event.

3.3.2. Event Pairing. Event pairing is to match the event
name with the packet sequence. Each packet sequence
represents a triggered event, En

i � p1p2p3 · · · pn, n is the
number of packets, and i is the event name, which is an
unknownmessage. IoTEvent compares the timestamp of the
first packet in the packet sequences and the triggered event.
If the time interval Δt is less than b, the event name and
packet sequence are matched. In smart home devices, the
events between device and the cloud are limited. Simple
devices (such as smart sockets and smart light bulbs) have
relatively few events, while complex devices (such as smart
gateways) have more events.

IoTEvent extracts information from packet p, and each
packet corresponds to a five-tuple, pn � (tn,Δtn, IPd, IPs, l),
tn is timestamp of the packet,Δtn is the time interval between
this packet and the previous packet, IPd is the destination IP
address, IPs is the source IP address, and l is the length of
packet. We define d � 1 for the data package from the cloud
to the device, and d � −1 for the data package from the
device to the cloud. -e event can be represented as a 1 × n

vector, En
i � [d1 × l1, d2 × l2 · · · dn × ln]i is the name of event,

which is also the label of the data set, n is the packet number
of event, and the n of the same event may be different due to
the existence of disordered data packets (e.g., device log and
device network information).

3.3.3. Signature File. -e signature file is a classification
model for event detection. IoTEvent groups events En

i

according to the number of packets n, as shown in formula
(1). In network traffic, query and reply packets exist in pairs,
so the number of packets n of events is even. Generally, the
query and reply packet pair of the trigger event is less than
15, so max (n) ≈ 30 in
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After the events are grouped, each group is a data set.
IoTEvent uses the kNN (K-nearest neighbor) algorithm [19]
to train a classification model, which is a supervised learning

method for modeling or predicting discrete random vari-
ables. -e goal is to learn a classification function or model
from the training sample data set with known labels, which is
also known as a classifier. When getting new data, the new
data item can be predicted based on the classifier, and the
new data item can be mapped to a class in a given category.
In terms of classification, the input training data contain the
following information: feature, attribute, label, or class,
which can be used to represent (F1, F2, . . . FN; label). -e
essence of research is to find out the relationship between
features and markers (i.e., mapping). -e hierarchical
prediction model is to map input variables (attributes) and
discrete output variables (categories). In this way, if the
unknown data have no label, the unknown data can be
predicted by the mapping function. kNN is a case-based
classification algorithm. By calculating the distance between
the different eigenvalues of the test object and the sample,
the label of K adjacent samples is selected as the result.

IoTEvent uses 80% of the generated sample set as the
training set to train the model, and the remaining 20% data
set is used as the test set. -e effect of the detection model is
directly judged through the test data. In addition, use the test
set to improve the model before it is used to detect.
According to the result of event pairing, the product of the
length and direction of each packet is taken as a value of the
feature vector, the packet number of event is the length of the
vector, and the event name is the label. IoTEvent generates
the training set S and test set T, Ei is an event in the training
set, and Ej is an event in the test set. -e distance between
two events is calculated in

dij � E
n
i − E

n
j
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IoTEvent selects K events in S with the smaller distance
dij as the nearer neighbors of Ej. IoTEvent returns the event
name of the most frequent occurrence of the K events as the
result. IoTEvent compares test set labels and results to
calculate the detection accuracy. -rough training, the
classification model is optimized to improve the accuracy of
event detection. -e value of K is related to the number of
samples in the training set. IoTEvent chooses the best
classification accuracy by comparing different K values.
After training, all samples are recorded in the signature file
as the classification model of detection.

3.4. Fingerprint Event Detection. -e process of event de-
tection is to identify device events in the sniffed traffic. We
analyze the process of traffic capture from the perspective of
the adversary. IoTEvent divides traffic into packet sequences,
then recognizes events based on the signature file, and finally
generates event output.

3.4.1. Sniffing Traffic. -e adversary has two ways to sniff
traffic: WiFi sniffing and WAN sniffing. -rough WiFi
sniffing, the adversary can capture the data link layer traffic
and identify the device through the MAC address. -e data
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transmitted by WiFi are encrypted. -e adversary should
filter irrelevant data packets (e.g., 802.11 CTS, 802.11 Frag)
and only retain 802.11 encrypted data. -rough the WAN
sniffing, the adversary can capture the network layer traffic
and identify the source IP address and destination IP ad-
dress, one of which is the router IP and the other is the cloud
IP. -e adversary can find the domain name of the IP ad-
dress through IP reverse DNS. Based on the domain name,
the adversary can identify whether the packet is between the
device and the cloud.

3.4.2. Event Detection. Event detection is to identify the
event of the packet sequence and determine whether the
event is a privacy event. -e private event refers to the event
that we can obtain the privacy of the user’s behavior, so
privacy events include device physical state change infor-
mation and device operation command. For example, the
motion sensor reports movement.

In order to identify privacy events, we define the name of
all events set on a certain device as ϕ, the name of private
events set as α, and the name of nonprivate events set as β, so
ϕ � α + β. We can define all the events Eϕ as shown in
formula (3), among which Ek

α represents the privacy event
with k packets.

Eϕ � 

max(k)

k�1
E

k
α + E

k
β. (3)

Event detection is a concrete realization of privacy event
identification for encrypted traffic based on event signature.
IoTEvent uses the trained kNN model to achieve event
detection.-e names of all privacy events are put into a set α,
and when the privacy event name is detected, an alarm will
be raised.-e implementation of event detection is shown as
follows.

(1) IoTEvent extracts the information from the packet,
pn � (tn,Δtn, IPd, IPs, l). Each packet sequence is an
event to be detected. -e packet sequence can be
represented by a 1 × n vector, En

j � [d1 × l1, d2 × l2
· · · dn × ln], and the j is event name, which need to be
identified.

(2) Measure the distance. According to the number n of
event En

j , IoTEvent screens out the events  En
i with

the number n in the signature file and then calculates
the distance di between the events En

j and the events
En
i in signature file, dij � |En

i − En
j |.

(3) Select K events with the smaller distance dij as the
nearer neighbors of En

j . IoTEvent returns the event
name of the most points in the K neighborhood as
the result. If it belongs to privacy events set α, an alert
is issued; otherwise no alert is issued.

4. Evaluation

In this section, we evaluated the effectiveness of IoTEvent.
Specifically, we conducted experiments on nine smart home
devices which use five different cloud platforms. We

described how the experiment was set up in and then
presented the experiment result.

4.1. Experiment Setup. Before the experiment, we need to
complete the construction of the experimental environment.
We used mobile phones to control devices, which model is
SEN-AL00 and the system is Android 10.0. -e encrypted
traffic capturing and sniffing were conducted by the sniffer
we built. In particular, the traffic capture used the wireless
network card, of which the interface is USB 3.0, the speed is
300–866Mbps, and the wireless standard is IEEE 802.11ac/a/
b/g/n. -e traffic detection was conducted on a Windows 10
equipped with a Intel Core i7-10710U CPU.

Table 1 provides the smart home devices of the exper-
iments. -e first column shows the cloud platforms used by
the devices. -e second column presents the device vendor.
-e third column is the device name.-e fourth is the device
model. IoTEvent runs with a local Python 3.6 programming
environment in Windows 10, which achieves traffic capture,
training, and event detection of the devices.

4.2. Experiment Results

4.2.1. Data Collection. During the experiment, the protocol
of devices is given in Table 2, which includes TLS, TCP,
UDP, and MQTT. In addition, we recorded the domain
name in Table 2 used by the cloud to send control com-
mands. We found that the state of smart home devices is
limited. When the smart home device connects to the cloud
platform for the first time, it should report the device
hardware and network information, which we call device
connection events. In normal operation, the limited state of
smart home devices is converted to each other. In general,
the events of smart gateway mainly include heartbeat
package, device log, and subdevice information, while the
gateway with additional functions has relatively more events.
Moreover, the number of smart gateway events also depends
on the number of connected subdevices. -e subdevice
reports the heartbeat package and the status change infor-
mation through the smart gateway. -erefore, the more
subdevices the smart gateway connects to, the more events
there are.

4.2.2. Training. -e manual analysis indicates that the
packet sequences of different events are different. In addition

Table 1: List of smart home devices.

-e cloud Vendor Device name Device model
Xiaomi Yeelight Yeelight light strip YLDD04YL
Xiaomi Chuangmi Mi plug mini ZNCZ02CM
Xiaomi Lumi Mi control hub DGNWG02LM
Tuya Tuya WiFi lamp 2AJ3WABEQPZ05
Tuya Hongshi WiFi plug F2s501-GB
Tp-Link Tp-Link Smart WiFi plug HS100
Hicloud ORVIBO Smart socket S30c
Hicloud Jellyfish Tur LED light bulb BRO-16565
JD BroadLink Smart plug SP mini 3

Security and Communication Networks 5



to network traffic of triggerable events, the device also
generates other network traffic (e.g., device heartbeat, device
logs).

For example, Mi control hub is a smart home device that
connects to Mi Home. We use it as an illustrated example

and manually analyze its network traffic. We get all events
that can be triggered fromMiHome App, as given in Table 3,
which relate to user privacy marked in gray.

We connected the mobile phone and the device to the
LAN. -en, we simulated the user clicking the button and

Table 2: Summary of experimental results.

-e cloud Device name Protocol -e domain name of command Trigger event WiFi sniffing WAN sniffing
Accuracy (%) Accuracy (%)

Xiaomi

Yeelight light strip
plus TLS https://ots.io.mi.com

Turn on

100 100

Turn off
Color

Color setting
Flow

Flow setting
Schedules
Timer

Favorites

Mi plug mini TLS https://ots.io.mi.com
Power on/off

100 100Set time on/off
Schedules

Mi control hub UDP https://ots.io.mi.com

Alert enabled/disabled

98.54 98.88

Light turn on/turn off
Colored lamp color

Colored lamp brightness
Scene color of colored lamp

Timed alert
Alert trigger device
Timer colored lamp
Add child device

Snooze alarm clock
Doorbell trigger device
Delay effective time
Volume settings

Language of voice prompt
Network radio

Hub alert ringtone
Alert volume

Alert red light blink time
Alert time

Linkage alert

Tuya

WiFi lamp MQTT https://mq.gw.tuyancn.com Light turn on/turn off 100 100

WiFi plug TLS https://m2.tuyacn.com

Turn on/off

100 100Schedules
Set time on/off

Electricity consumption

Tp-Link Smart WiFi plug TLS https://use1-api.tplinkra.com

Turn on/off

98.75 98.82Scheduling on/off
Set time on/off

Away mode on/off

Hicloud

Smart socket TCP https://iomplatform.hicloud.
com

Turn on/off
99.60 99.54Timer on/off

Delay on/off

LED light bulb TCP https://iomplatform.hicloud.
com

Turn on/off

100 100
Fast on
Slow on
Timer
Delay

JD Smart plug TCP https://live.smart.jd.com Turn on/off 100 100Set time on/off
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recorded the timestamp of the click. At the same time, we used
tcpdump to capture network traffic of the device. -rough
manual analysis of network traffic, we found the packet se-
quences are different for each event, and the packet sequences
of three different events are shown in Figure 4. For the events
light turn on/turn off, the packet sequences are the same. We
observed an exchange of UDP application data packets be-
tween the Mi Home Hub and Internet host where the packet
lengths were (138, 154), (106, 106). However, for the event alert
enabled, the device sends UDP packets of lengths (154, 186) to
an Internet host and receives reply packets of lengths (106,
106). Similarly for the event of alert disabled, these packets
were of lengths (170, 138, 170), (106, 106, 106).

All trigger events of different devices are given in Table 2.
Except for trigger events, other device events (e.g., heartbeat
packet and device log) are signed as other events. Not all
trigger events have traffic between the device and the cloud
platform, and part events are recorded in the cloud and are
triggered when the set conditions are reached. IoTEvent only
recorded trigger events that generate traffic. In our exper-
iment, the kNN algorithm is used. -e average precision for
the different k is shown in Figure 5.

4.2.3. Event Detection. Among the devices we tested were
smart gateways and cloud-connected devices. Different types
of devices contain different types of privacy information, as
given in Table 4. -e privacy information contained in the
smart gateway that we can detect by encrypting the traffic
includes the connected subdevices, the subdevice sensor status,
the operation commands, and the state change information.
-e privacy information contained in the cloud-connected
devices that we can detect by encrypting the traffic includes the
statue change information and the operational commands.

We simulated using the device, and each event was
triggered ten times. We captured the traffic using WiFi

sniffing and WAN sniffing, and then IoTEvent was used to
detect. -e definition of the accuracy is shown in formula (4).
TP indicates the number of trigger events that are correctly
detected, FN indicates the number of trigger events that are
erroneously detected, TN indicates the number of nontrigger
events that are correctly detected, and FP indicates the
number of nontrigger events that are erroneously detected.

Accuray �
TP + TN

TP + TN + FP + FN
. (4)

-e result of event detection is given in Table 2. Most
event signatures of the devices are unique, so the event
would be detected. -rough the detection results of events,
we can infer the privacy of users’ behaviors. For example, if
the light is turned off at night, we can judge that users will go
to sleep.When themobile sensor detects someonemoving, it
can judge someone’s activity in the house. Such privacy can
be obtained only by monitoring network traffic, which
greatly increases the risk of people’s privacy leakage.

4.3. Comparison with the Existing Work. We selected two
representative works for comparison: the [7] and the [15].
-e comparison is mainly carried out from the following
three aspects: the range of detection, the accuracy, and the
computational overhead (Table 5).

IoTEvent is not designed for specific types of protocols.
In our experiments, we proved that IoTEvent is suitable for
TCP, UDP, TLS, and MQTTprotocol. In the [15], their tool
is only suitable for TCP protocol. In the [7], the author
identified the event based on the traffic rate, thus which
applied any protocol. IoTEvent can accurately detect the
name of the event, and the average accuracy can reach 99%.
In contrast, the [7] cannot accurately detect the occurrence
of the event. -e [15] cannot determine the event is unique,
because it only clusters for a particular event. -e event
detection accuracy of [15] is 97%. Compared to [15],
IoTEvent required more computation time and memory,
but which is within a reasonable range. -e [7] required
more storage overhead and do not have computational
overhead.

5. Discussion

According to the results of event detection, we analyzed the
reason for privacy leakage, proposed several suggestions,
and discussed the limitations.

5.1. >e Reasons. Different cloud platforms have their own
communication protocols, Huawei, Tuya, Xiaomi, and JD
use custom protocols, so the protocol name is also named by
themselves. Before the device development, the device de-
veloper should first select a cloud platform and develop the
device according to the SDK provided by the cloud platform.
Currently, the smart home cloud platform provides a variety
of communication protocols in the SDK, including platform
custom protocols, MQTT, Coap, Soap, Http, and Https. -e
experiment found that the device using the platform’s
custom protocol had a high probability of privacy leakage of

Table 3: All events of Mi Hub.

-e smart home devices -e events

Mi control hub

Alert enabled/disabled
Light turn on/turn off
Colored lamp color

Colored lamp brightness
Scene color of colored lamp

Timed alert
Alert trigger device
Timer colored lamp
Add child device

Snooze alarm clock
Doorbell trigger device
Delay effective time
Volume settings

Language of voice prompt
Network radio

Hub alert ringtone
Alert volume

Alert red light blink time
Alert time

Linkage alert
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encrypted traffic. Taking the custom protocol of Xiaomi
platform as an example, the Xiaomi cloud platform adopts
AES-128-CBC [20] encryption, which requires (key, iv),
which are both 16 bytes, and adopts UDP for data

transmission.-e plaintext must be a multiple of 16, and the
ciphertext must be the same length as the completed
plaintext. Any change of more than 16 bytes in the trans-
mitted plaintext data will change the length of the trans-
mitted encrypted packet. Moreover, the number of packets is
different for different events of the platform custom
protocol.

5.2. >e Suggestion

5.2.1. Fill in a Random Information. For the custom pro-
tocol of smart home cloud platform, random information is
added in the design process of the protocol so that the size of
the packet is independent of the content. Adding a random
information independent of the command to the command
data sent can make the information size of the communi-
cation packet to change randomly, but it does not change the
packet rate.

5.2.2. Change the Encryption Method. For the smart home
cloud platform with privacy disclosure of encrypted traffic,
the purpose of traffic shaping can be achieved by using
encryption. If the number and size of all event packets are
unified through encryption, privacy events cannot be de-
tected, so as to alleviate the privacy disclosure of encrypted
traffic.

5.2.3. Use VPN. VPN (virtual private network) connects
the two LANs together and encrypts the transmission
function to make the network more secure and confi-
dential. VPN can also change the user’s IP address, making
it difficult for the device to be tracked. At the same time, it
can also change the rate of communication packets,
making it difficult to detect the privacy leakage of
encrypted traffic.
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Figure 4: -e packet sequences of three different events for Mi control hub: light turn on/turn off, alert enabled, alert disabled, the line of
which is marked yellow. -e UDP protocol is used to transmit application data in device and cloud communication. -e arrow represents
packet direction, and the number represents packet length.
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Figure 5: Average precision for the different k values.

Table 4: Type of device privacy.

Device type Privacy information

-e smart gateway

-e connected subdevices
-e subdevice sensor status
-e operation commands

-e state change information

-e cloud-connected devices -e operation commands
-e state change information
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6. Related Work

We review the related work on smart home security from
two perspectives: the identification of smart home devices
and the privacy leakage of smart home devices.

6.1. Events Identified for IoT Traffic. In recent years, there
has been increasing attention paid to the privacy leakage
problem of encrypted traffic. In [15], the author presents a
tool that can automatically extract packet-level signatures for
events from network traffic of TCP-based devices. In [11], an
attack tool that infers the house status by inspecting the bit
rate variation of the wireless camera traffic was proposed. In
[9], the authors design an accurate and efficient smart spying
strategy, which can infer a user’s activity (such as web
browsing, e-mail, and chat) from encrypted wireless traffic.
In [10], the authors infer the state transition of smart home
devices through Zigbee and Z-Wave encrypted traffic to
detect eavesdrop or spoof events of smart home Apps. In [7],
the authors examine four smart home devices and find that
their network traffic rates can reveal potentially sensitive
user interactions even when the traffic is encrypted. In [8],
the authors check the action and state of smart home devices
through network traffic time characteristics. In [12], the
authors showcase risks of machine learning techniques to
develop black-box models to automatically classify traffic
and implement privacy leaking attacks. In [21], the authors
investigate the privacy leakage of encrypted traffic from
smart speakers.

6.2. Devices Identified for IoT Traffic. Before our work, we
need to identify smart home devices through encrypted
traffic. At present, many researchers have studied IoT
device identification. -e authors of [22] propose an ac-
quisitional rule-based engine (ARE) that can automatically
generate rules for discovery and annotation of IoT devices
without any training data. -e authors of [23] used the
network traffic characteristics of IoT devices to train the
machine learning model to detect the types of IoT devices.
-e authors of [24] used the small deviation in the
hardware device to realize the device fingerprint so as to
achieve the purpose of device identification. -e authors of
[25] proposed to detect chip-sets, firmware, or drivers by
observing the response (or lacking of response) of 802.11
wireless devices to a series of nonstandard 802.11 frames.
-e authors of [26] proposed two device-type fingerprint
identification methods to enhance the existing intrusion
detection methods in the integrated circuit environment.
-e first method measures data response processing time

and exploits the static and low-latency nature of the private
industrial control system network to develop accurate
fingerprints, while the second method uses physical op-
eration time to develop unique signatures for each device
type. -ese methods can accurately identify Internet of
-ings devices.

7. Conclusion

Nowadays, smart home devices have become an indis-
pensable part of our life, yet deficiency in privacy protection
will be an obstacle to its development [27]. In this article, we
have proposed a tool to detect the privacy leakage of smart
home devices from encrypted traffic. First, we present the
threat model. -en, the tool for trigger event detection is
designed. Finally, IoTEvent is evaluated with nine smart
home devices on five cloud platforms. We are able to detect
specific behaviors and actions from encrypted traffic. More
specifically, we analyze the reasons for the privacy leakage of
these devices on the cloud platform and put forward sug-
gestions to alleviate this problem. Finally, we briefly in-
troduce the related work. In our future work, we would like
to extend our tool to more devices on different cloud
platforms to make it applicable for a variety of environment.
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