
Research Article
A Lamus-Based Flight Data Sharing Model on
Consortium Blockchain

Fengyin Li ,1 Yang Cui ,1 Baogui Huang ,1 Siqi Yu ,1 Peiyu Liu ,2 Yilei Wang ,1

and Tao Li 1,3

1School of Computer Science, Qufu Normal University, Rizhao 276800, China
2School of Information Science and Engineering, Shandong Normal University, Jinan 250014, China
3State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University,
Guiyang 550025, China

Correspondence should be addressed to Tao Li; litao_2019@qfnu.edu.cn

Received 24 February 2022; Revised 29 March 2022; Accepted 18 April 2022; Published 9 May 2022

Academic Editor: Zhijun Wu

Copyright © 2022 Fengyin Li et al. -is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Currently, traditional flight data sharing models cannot resist quantum attacks, which poses the risk of data leakage. -e research
on the flight data sharing model against quantum attack has become one of the research hotspots. Lattice-based cryptography is
recognized as an effective way to resist quantum attacks. A flight data sharing model on consortium blockchain is proposed in this
paper to resolve data leakage during data sharing. First, a new lattice-based multisignature scheme (Lamus) is proposed, capable of
resisting quantum attacks. We prove the security of the proposed Lamus scheme in the random oracle model. Moreover, a flight
data sharing model on consortium blockchain is proposed by applying the proposed Lamus scheme to resist quantum attacks.
Security and performance analysis show that the model guarantees antiquantum security, and it achieves good performance in
terms of storage efficiency and operating efficiency.

1. Introduction

-eAir Transport industry is a highly interconnected industry
that relies on data sharing to function properly. Data sharing
process is vulnerable to attack such as eavesdropping attacks,
which makes many data owners unwilling to share flight data.
In view of the above reason, existing aviation data sharing
systems can only realize data sharing in a certain range, which
affects the effect of aviation data sharing to different degrees.

With the development of network technology, network
security requirements are also increasing. Blockchain is a
representative high-security network technology, which uses
a unique data structure to verify and store data. Blockchain
uses cryptography to achieve its nontampering. Digital
signature technology is used to ensure the integrity and
correctness of data transmission in blockchain.

-e use of multisignature schemes in blockchain is
mainly to improve storage efficiency by reducing the size of
signatures, and most of these multisignature schemes are
based on elliptic curves. With the development of quantum

computers, the security of the existing signature schemes
based on elliptic curves or integer factorization confronts
severe challenges. Lattice-based cryptography is a typical
postquantum cryptography [1]. -is paper proposes a new
lattice-based multisignature scheme and applies it to a
blockchain-based flight data sharing system to improve the
quantum resistance of the data sharing scheme.

-is paper mainly consists of the following parts. -e
first part is a brief introduction to the background of this
paper.-e second part is an overview of related works. In the
third part, a lattice-based multisignature scheme is pro-
posed. -e security and correctness of lattice-based multi-
signature schemes are proved in Section 4. -e fifth part is
the flight data sharing model based on the Lamus scheme.
-e last section concludes and lists some future work.

2. Related Work

In recent years, many schemes for flight data sharing systems
have been proposed, such as Air Traffic Management data

Hindawi
Security and Communication Networks
Volume 2022, Article ID 5717185, 11 pages
https://doi.org/10.1155/2022/5717185

mailto:litao_2019@qfnu.edu.cn
https://orcid.org/0000-0002-5730-3315
https://orcid.org/0000-0002-8892-515X
https://orcid.org/0000-0002-5153-5932
https://orcid.org/0000-0002-8933-6445
https://orcid.org/0000-0001-9450-3837
https://orcid.org/0000-0003-1524-2064
https://orcid.org/0000-0002-1448-3619
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5717185

sharing. However, there are some cybersecurity threats in
flight data sharing: eavesdropping and jamming. -e in-
terference in the data sharing process is mainly caused by
malicious users publishing wrong information, which leads
to wrong judgments on aircraft and ground stations. -e
authenticity and integrity of shared data is very important to
management. In order to prevent the flight data from being
maliciously tampered with, digital signature technology is
used in many flight data sharing mechanisms. In [2], He
et al. proposed a certificateless designated verifier proxy
signature scheme to solve the problems of digital certificate
management and key escrow in unmanned aerial vehicle
networks. In [3], Li and Pu proposed a lightweight digital
signature protocol to protect drones from man-in-the-
middle attack. In [4], the authors proposed a lightweight
authentication and key agreement scheme to implement the
authentication problem between drones and users. In order
to protect the integrity of flight data, a variety of digital
signature schemes have been proposed. However, research
of postquantum signature for flight data has not received
much attention.

Blockchain is a decentralized distributed storage system,
and the data stored in it is immutable. Many flight data
sharing systems have been proposed on the basis of
blockchain [5, 6]. In [7], the authors implemented secure
communication between aircraft and ground station on the
basis of blockchain. In [8], the authors implemented a
blockchain-based PKI that implements “Secure Broadcast
Authorization.” In [9], the authors treated each flight plan as
a blockchain transaction but does not deal with the verifi-
cation of the flight data. Reference [10] proposed a block-
chain and cloud storage based framework to guarantee the
unmanned aerial vehicle data integrity. In [11], the authors
presented a data integrity assurance mechanism based on
digital signatures in IoT environment. Reference [12] pro-
posed a data placement strategy named DE-DPSO-DPS to
consider shared datasets across various geographically dis-
tributed environments.

An important concept in blockchain technology is ac-
counts, which includes multiple signature accounts [13].-e
multisignature was first proposed by Itakura, which refers to
a group of signers signing the same binary string infor-
mation and finally forming a signature result of the size like a
single ordinary signature [14]. A multisignature scheme
enables a group of signers to produce a compact, joint
signature on a common document and has many potential
uses [15]. Micali et al. were the first to give the formal model
and security proof of multisignature and proposed a mul-
tisignature scheme based on the Schnorr signature scheme
[16]. If multisignature is not applied, the size of each block in
the blockchain will be much larger. -erefore, the combi-
nation of multisignature and blockchain received wide-
spread attention. -e widely used signature scheme in the
blockchain is ECDSA digital based on the elliptic curve.
Lindell et al. proposed a multiparty ECDSA signature
scheme with distributed key generation. Kansal et al. pro-
posed a lattice-based multisignature scheme for the first time
at the 2020 African Cryptographic Conference and im-
proved the original scheme in 2021 [17, 18]. Chen et al.

proposed a novel certificateless multisignature scheme over
NTRU lattices in [19].

2.1. Our Contribution. -is paper proposes a new identity-
based multisignature scheme on lattice.

(1) A lattice-based multisignature scheme is proposed in
this paper. In order to solve the high overhead of
certificates storage and management in current
signature schemes, a lattice-based multisignature
scheme is proposed by introducing the identity
cryptography mechanism into the multisignature
schemes. Moreover, we prove the security of the
proposed scheme in the random oracle model.

(2) A flight data sharing model on consortium block-
chain is proposed in this paper. By applying the
proposed lattice-based multisignature scheme into
flight data management, a flight data sharing model
on consortium blockchain is proposed in this paper.
-e proposed model solves data leakage during data
sharing, flight resources wasting, and information
leakage. -e proposed model obtains high storage
efficiency and high operating efficiency, ensuring
high security against quantum attacks.

(3) -e proposed flight data sharing model is secure
against quantum attacks. -e lattice-based multi-
signature scheme is secure under the assumption of
the R–SIS hardness, which guarantees the post-
quantum security of our data sharing model.

3. Preliminary

3.1. Notations. -e notations used in this paper are pre-
sented in Table 1.

3.2. Blockchain. Blockchain is a linked list data structure.
Each block is linked to the previous one and stores a series of
ordered things. It is a particular type of distributed database.
-e main difference between blockchain and ordinary da-
tabases is that blockchain guarantees decentralization, as
well as the consistency, nontampering, and traceability of the
stored data. Among them, the characteristic of decentral-
ization is the most critical. Essentially, the blockchain can be
seen as a decentralized database.

According to the degree of network centralization,
blockchain is generally divided into public blockchain,
private blockchain, and consortium blockchain. -e public
blockchain is completely decentralized. Users may join the
blockchain at any time, participate in any activity in the
blockchain, and maintain and manage the ledger. A private
blockchain is a completely closed blockchain, and only
private individuals participate in releasing blocks and
storing blocks. -e private blockchain usually runs in a
relatively controllable and credible intranet environment.
-e consortium blockchain is a kind of blockchain for
specific groups or organizations. It is a semipublic block-
chain, and only certain members participate in releasing and
storing blocks [20, 21].

2 Security and Communication Networks

3.3. Basic Knowledge of Lattice Cryptography.
Lattice-based cryptography is the use of conjectured hard
problems on point lattices in Rn as the foundation for secure
cryptographic systems. Lattice-based cryptography is a
typical postquantum cryptography [22, 23]. Another at-
tractive feature of it is security under worst-case intracta-
bility assumptions [24].

Definition 1. (Lattice)
If B � (b1, b2, . . . , bm) by Rn is composed of m linearly

independent vectors, then the lattice L(B) is defined as the
linear combination of all integer coefficients of this group of
vectors, denoted as

Λ � L(B)

�
m

i�1
xibi|xi ∈ Z

⎧⎨

⎩

⎫⎬

⎭.
(1)

Let n be the dimension of the lattice L(B), m is the rank,
and B is a set of bases of the lattice.

Definition 2. (R-SISn,m,q,β problem)
Given a security parameter n and a uniform random

matrix A � [a1, a2, . . . , am] ∈ R1×m
q , find a nonzero solution

u � (u1, u2, . . . , um)T ∈ Rm that satisfies the following
conditions:

Au � 0mod q, ||u||∞ ≤ β. (2)

3.4. iNTRU Trapdoor. -e iNTRU is an inhomogeneous
NTRU problem [25]. -is paper mainly uses a kind of
gadget-based iNTRU lattice trapdoor. Compared with other
trapdoor functions, the size of the signature and key gen-
erated by the iNTRU trapdoor has obvious advantages. At
the same time, the calculation process has no obvious dis-
advantage compared with other trapdoor generating func-
tions, so we choose the iNTRU trapdoor function [26]. -e
iNTRU lattice trapdoor function contains two algorithms,
which, respectively, implement the functions of trapdoor
generation and preimage sampling (see Algorithm 1 and
Algorithm 2).

3.5. Lattice-Based Multisignature Scheme (Lamus). -e lat-
tice-based multisignature scheme proposed in this paper is
postquantum security under the assumption of the R–SIS
hardness. At the same time, our scheme is an identity-based
multisignature scheme, which directly uses the signer’s
identity ID as the public key. Identity-based signature solves
the high overhead of certificate storage and management in
PKI-based signature schemes. In addition, our scheme uses
the TrapGen and the Sample in the iNTRU scheme to
improve the efficiency of the key extraction algorithm. In
this paper, we prove the security of the scheme in the
random oracle model.

-ere are several types of entities in the scheme: Key
Generation Center (KGC), signers, designated signer, and
verifier. KGC is responsible for the production of public
parameters and the signer’s private key in the multisignature
scheme. -e signer and the designated signer jointly gen-
erate a multisignature to protect the integrity of the signed
data. -e verifier verifies the multisignature to confirm its
integrity.

-e lattice-based multisignature scheme includes five
algorithms: ParameterGen, ExtractKey, Aggregation, Sign,
and Verify. -e ParameterGen algorithm is run by KGC to
generate system parameters and the master key pair of KGC.
-e system parameter pp is the input of all other algorithms
in the scheme. -e Extract Key algorithm is run by the KGC
and generates signer’s private key after receiving the identity
of the signer. -e Aggregation algorithm is usually run by a
designated signer. -e designated signer generates an ag-
gregated public key from the IDs of all signers to verify the
validity of the signature. (-e Aggregation algorithm can
also be run by the verifier.) -e Sign algorithm is run by
multiple signers and the designated signer. -e signers
generate their own partial signatures and send them to the
designated signer. -e designated signer generates a single
multisignature from multiple partial signatures. -e final
output of the Sign algorithm is a multisignature. -e Verify
algorithm is run by the verifier and outputs 0 or 1 as the
verification result. -e overall structure is shown in Figure 1.

KGC runs the system parameter generation function.
-is function generates related parameters of multi-
signature, such as master key pairs. -e specific algorithm
steps are described in Algorithm 3.

When receiving the identity idi sent by the signer, KGC
generates the corresponding private key ski for the signer
(see Algorithm 4).

-e aggregation public key algorithm (Lamus.Ag-
gregation) is executed by the specified signer or verifier. Lid

is the identity list of signers (see Algorithm 5).
M is the message for all signers to sign. Lsk is a list of all

signers’ private keys. -e signing process is divided into
three steps. -e first step is mutual interactions between
signers to negotiate unanimous signature parameter R. -e
signers generate their partial signaturesZi using their private
key in the second step. In the third step, all signers send their
partial signatures to the designated signer, and the desig-
nated signer combines the received partial signatures to
form a multisignature σ (see Algorithm 6).

Table 1: Notations.

Notations Description
pp System parameters
R, Z Set of real numbers (integers)
n, q, l Security parameter
Rq Rq � (R/qR) � (Zq[x]/f(x))

mpk, msk Master public key and master private key
id, Lid Identify signer and the list of signer private key
sk, Lsk Private key of signer and the list of signer private key
pk Aggregation public key
M Message
σ Multisignature of message
i -e order of signers, 1< i< k.

k -e number of participating signers

Security and Communication Networks 3

-e verifier extracts the M, Z, pk, r from the multi-
signature and verifies the validity of the received multi-
signature (see Algorithm 7).

3.6. Security Analysis. -is section contains the correctness
and security proofs of the multisignature scheme.

3.6.1. Proof of Correctness. A multiple signature generated
according to the above scheme can be successfully verified,
which means that the scheme proposed in this paper is
correct. If signers correctly generate a multisignature, then
the verifier can verify the following equation using A, Z, R in
the signature, the result of the hash function c, and the
aggregation public key pk of signers.

Signer 1

Z1

Signer 2 Signer 3

Designed
Signer

Lamus.Aggregation

→

Lamus.Sign

Lamus.KeyExtract

KGC

Lamus.ParameterGen
System Parameter

pp

Verifier

Lamus.Verify

(0,1)

(pp, Z , pk)

Multi–signature Z
pk

pp
Private key ID

Z2 Z3

Tid pk

Figure 1: -e lattice-based multisignature scheme.

(i) Input: -e security parameter 1λ.
(ii) Output: A function-approximate trapdoor partial (vk, T).
(1) Sample r←X, e←Xm.
(2) Set A: � r− 1(f + e) ∈ Rn

q

(3) Return (vk, T): � (A, (r, e)) ∈ Rn+1
q × Rn+1

q

ALGORITHM 1: iNTRU.TrapGen.

(i) Input: A cost u ∈ Rq, and a trapdoor (r, e).
(ii) Output: An approximate pre-image u.

(1) Sample perturbation p←DRn+1 ,
����
 ≤

for p: � s2In+1 − σ2g

e
t
d −re

t

−re rrIm

 .

(2) Set coset v: � u–Atp ∈ Rq.
(3) Sample the G-lattice x � (x1, x2)←SamplePre(v, σg).

(4) Define the iNTRU · trapdoor as R: �
−e

t

rIm

 .

(5) Set the approximate pre-image y: � Rx2 + p ∈ Rm.

(6) Return y.

ALGORITHM 2: iNTRU.SamplePre.

4 Security and Communication Networks

(i) Input: -e security parameter 1λ.
(ii) Output: -e system parameter pp.
(1) Run the TrapGen function, input the security parameter 1λ, and get the system parameter A ∈ Rn

q and the corresponding trapdoor
(r, e).

(2) Samples three cryptographically secure hash functions H0: Rq⟶ Rq , H1: 0, 1{ }∗ ⟶ Pn, H2: 0, 1{ }∗ ⟶ Dn
32. n, q is the

parameter of Rn
q

(3) Publish system parament pp � A, n, q, H0, H1, H2 . Let A be the master public key mpk and (r, e) the master private key msk.

ALGORITHM 3: Lamus.ParameterGen.

(i) Input: -e system parameter p , master key pairs msk, mpk, and the i d of the signer.
(ii) Output: -e private key ski for the signer.
(1) Run the function SamplePre , input the identity idi and trapdoor (r, e). Output the approximate pre-image ski of idi.
(2) Send the private key ski to the signer via secure communication.
(3) Return 0.

ALGORITHM 4: Lamus.ExtractKey.

(i) Input: -e system parameter pp, and the identity list Lid of the signers.
(ii) Output: -e aggregation public key pk for the signers.
(1) Input the public key list Lid.
(2) Calculate ci

′ � H1(Lid, idi), for 1< i< k, k is the number of signers in the identity list.
(3) Computer pk �

k
i idi · ci
′, for 1< i< k.

ALGORITHM 5: Lamus.Aggregation.

(i) Input: -e system parameter pp, and the private key list Lsk of the signers.
(ii) Output: -e multisignature σ � (Z, pk, M, R).
(1) All signers randomly select a vector ri, calculate vi � A · ri and ti � H(vi), and send (ti, vi) to other signers.
(2) Computer R �

k
i vi, for 1< i< k, k is the number of signers in the identity list. c � H2(M, R), and ci

′ � H1(Lid, idi), the ci � c · ci
′.

-e partial signature Zi � ski · ci + ri is using the signer’s private key sk.
(3) All signers send their ownZi and r to the designated signer.-e designated signer computers the signatureZ �

k
i Zi, and runs the

Lamus.Aggregation outputting the aggregate public key pk.

ALGORITHM 6: Lamus.Sign.

(i) Input: -e system parameter pp, multisignature σ.
(ii) Output: 0 or 1.
(1) -e verifier confirms the Z ∈ Rn

q, computers c � H2(M, R).
(2) -e verifier verifies A · Z � c · pk + R. If the equation is true, output 1, otherwise output 0.

ALGORITHM 7: Lamus.Verify.

Security and Communication Networks 5

A · Z � A ·
k

i

zi

� A ·
k

i

ski · ci + ri

�
k

i

a · ski · ci +
k

i

a · ri

�
k

i

idi · ci +
k

i

vi

� c ·
K

i

idi · ci
′ + R

� c · pk + R.

(3)

-e verifier can legally obtain the parameters of the left
and the last row on right of equation (3). -e correctness of
the Lamus scheme is proved.

3.6.2. Proof of Security. -e security of the proposed scheme
mainly proves the unforgeability of multisignature. To prove
the unforgeability of multisignature, we will prove the fol-
lowing theorem in the random oracle model.

Theorem 1. When there exists at least one honest signer, our
scheme satisfies the unforgeability in the random oracle
model.

Proof. of -eorem 1 In -eorem 2, we construct a security
game between the simulator B and the malicious adversary
A. Simulator B acts as KGC responds to adversary A queries.
Meanwhile, simulator B controls the identity of an honest
signer. Adversary A can act as all the signers except the
honest signer. In the security game, it is assumed that the
adversary A can forge a multisignature involving one honest
signer. -e simulator B can then use this ability of adversary
A to solve the R–SIS problem instance. -is is inconsistent
with the fact that R–SIS does not have a polynomial-time
solution algorithm, which proves the assumptions wrong in
the security game. If -eorem 2 holds, it is proved that the
multiple signature scheme with an honest signer is secure.
-eorem 2 holds; then -eorem 1 holds. □

Theorem 2. Suppose there exists a polynomial-time adver-
sary A, who makes at most h0, h1, h2 queries to H0, H1, H2
oracle, makes s queries to signature oracle, and succeeds in
forging a multisignature with nonnegligible advantage ϵ
within time t. @en there exists a simulator B that uses the
ability of adversary A to solve R − SIS(q,n,m,d) problem in-
stance within time t + t1 + t2 (t1 is the running time of
TrapGen, t2 is the running time of SamplePre with the
advantage of (ϵ/qH), qH � h0 + h1 + h2).

Proof. of-eorem 2-e proof of the scheme is proved by a
security game and analysis of game output. -e security

game includes two entities, simulator B and adversary A.-e
security game has three stages: Setup, Oracle query, Forgery.
If the multisignature is successfully forged, the game is over.
We analyse the output of the security game to get a solution
to the R − SIS(q,n,m,d) problem. □

3.7. Security Game

3.7.1. Setup. Simulator B runs the function TrapGen and
obtains (A, (r, e)). Simulator uses A and (r, e) as the master
key pairs and randomly extracts an id∗ from the identity list
Lid as the identity of the honest signer and runs SamplePre

to extract the original image sk∗ of id∗ as the private key.

3.7.2. Oracle Query. -e adversary A carries out ExtractKey
oracle, H1 oracle, H2 oracle, and signature oracle queries.

(1) ExtractKey Oracle Query. First, simulator B checks
whether the queried id is stored in the ExtractKey oracle
query table. If it is in the table, return the result directly to the
adversary A. Else if the queried id (not idi∗) exists in the
identity list Lid, simulator B returns the corresponding private
key sk for the adversary A and stores it. If the queried id does
not exist in the identity list Lid or the queried id � idi∗ , abort.

(2)H1 Oracle Query. Simulator B checks whether the queried
(idi, Lid) is stored in the H1 oracle query table. If it is in the
table, return the result directly to the adversary A. Else if the
queried idi exists in the identity list Lid, simulator B returns
the corresponding QI from the QqH

for the adversary A and
stores it. If the queried id does not exist in the identity list
Lid, randomly select a result to return.

(3)H2 Oracle Query. Simulator B checks whether the queried
(Ml, rl) is stored in the H2 oracle query table. If it is in the
table, return the result directly to the adversary A. Else
simulator B returns the corresponding H2(Ml, rl) for the
adversary A and stores it.

(4) Signature Oracle Query. Firstly, simulator B checks whether
the (idi∗) is existing in the queried identity list Lid

′ . If it is not in
the Lid
′ , abort. Else simulator B checks whether the queried

(Ml) is stored in the H2 oracle query table. -en simulator B

returns the corresponding σi∗ for the adversary A and stores it.

3.7.3. Forgery. -e adversary A produces a forged result of
the message M; if the Lid corresponding to the message does
not contain idi∗ , abort. Andmessage M should be queried by
H2 oracle or signature oracle. Check the validity of the
signature. If the signature is valid, the security game is over.

3.8. Analysis of Security Game Output. By using Tid, simu-
lator B obtains Tsk. Simulator B makes another signature Z′
by using Tsk. Because the random number ri∗ corresponding
to the signature is randomly selected by the simulator B, we
make R of the two signatures the same. According to this
conclusion, we obtain the following equation:

6 Security and Communication Networks

R � R′,

AZ − pk · c � AZ′ − pk · c,

A Z − Z′(� 0,

A Tsk · c − Tsk
′ · c(� 0,

A ski∗ − sk
i
∗
′ · c � 0.

(4)

-en the simulator B finds the solution
Q � (ski∗ − sk

i
∗
′) · c of a R − SIS(q,n,m,d) problem instance,

and Q satisfies A · Q � 0. -eorem 2 is proved.

4. Lamus-Based Flight Data Sharing Model on
Consortium Blockchain

-e current traditional flight data sharing model has privacy
leakage in the quantum computer environment. -is section
proposes a flight data sharing model on consortium
blockchain. -e proposed flight data sharing model realizes
flight data sharing among different agencies. At the same
time, this model uses the lattice-based multisignature
scheme proposed in the third section, enhancing security
against quantum attacks. Our flight data sharing model
ensures data integrity when data is shared between different
institutions. In addition, the unforgeability of flight data and
the traceability of signer are obtained.

4.1. Model Architecture. -e model consists of four types of
entities: Flight Data Center (FDC), Flight Management
Agency (FMA), KGC, and client user (client). -e clients
include aircrew, airline, ground personnel, and data con-
sumers. Client users do not participate in the operation and
storing of the blockchain. Aircrew, airline, and ground
personnel sign the flight data together and submit it to FDC.
-e FDC is the main component of the blockchain. It is
responsible for storing blocks and providing transaction
uploads and transaction queries for clients. -e FMA is
responsible for the ordering of transactions and the releasing
blocks. -e KGC is responsible for providing the private key
query for the client user. -e user provides the KGC with an
ID, and the KGC sends the user’s private key to the user
through a secure channel.

-e generation of the transaction requires the partici-
pation of aircrew, airline, and ground personnel. FDC for-
wards the transaction sent by the client to FMA.-e following
is the process of block release. Transactions sent to the FMA
are deposited in the transaction pool in order. When the
number of transactions is enough, the transactions are
packaged into blocks, which are sent to all FDCs. After re-
ceiving the blocks, the FDC updates the local blockchain. In
the transaction inquiry process, the data consumer first
initiates a flight data request to the FDC. After receiving the
request, the FDC performs signature verification on the re-
quest message. If the received request is valid, FDC extracts
the flight data from the corresponding transaction. -e FDC
sends the flight data to the data consumers.

-e data of the blockchain data sharing system is stored
in blocks. -e block is mainly divided into two parts: the

Block Header and the Block Body. -e Block Header stores
PreHash, MerkleRoot, TimeStamp, and Index. PreHash
stores the hash result of the previous block to ensure data
immutability. -e MerkleRoot in the Block Header is
generated from the hash values of all transactions in the
Block Body. -rough MerkleRoot, it is possible to quickly
determine whether a transaction is included in this block.
TimeStamp marks the release time of the block. Index is the
height of the block in the blockchain. -e Block Body stores
multiple transactions. -e flight data and corresponding
multisignatures are stored in the transaction.

-e structure of transaction and block is shown in
Figures 2 and 3.

Because client users do not participate in specific
transactions and block storage, the model provides three
interfaces for clients.

4.1.1. Key Registration Interface. -e reply from this in-
terface is answered by KGC, and the client users obtain the
private key that matches their identity through this
interface.

PrevHash

MerkleRoot

Timestamp

Index

Block Header

Transaction 1

Transaction 2

.

.

Transaction n

Block Body

Figure 2: -e structure of block.

Hash of Transaction

Transaction Index

Transaction Header

Transaction Data

Transaction Body

Multi-Signature

SignerList

Figure 3: -e structure of transaction.

Security and Communication Networks 7

4.1.2. Transaction Generation Interface. -is interface is
mainly used by FDC to accept flight data and multisignature
uploaded by client users. After receiving the relevant data,
FDC generates a transaction and forwards it to FMA.

4.1.3. Transaction Query Interface. -e reply from this in-
terface is answered by FDC. Client users apply to the FDC to
query a transaction on the blockchain through this interface.

Figure 4 contains “data upload” and “data download”
areas. -e area on the left shows the process of FDC sub-
mitting a transaction. -e area on the right shows the
process of querying a transaction. Aircrew, airline, and
ground personnel can perform these two operations, but the
only one-way operation is shown in the figure.

In this model, all clients need to obtain the key corre-
sponding to the identity from the KGC through the key
registration interface. -e detailed process is as follows.

(1) KGC runs TrapGen, inputs security parameter 1λ,
and outputs trapdoor pair [A, (r, e)](A ∈Rn

q).
(2) Randomly select H0: Rq⟶Rq, H1: 0, 1{ }∗ ⟶

Pn, H2: 0, 1{ }∗ ⟶ Dn
32. n, q is the parameter ofRn

q .
(3) Public system parameters pp � A, n, q, H0, H1, H2 .

Let A be master public key mpk; (r, e) is master
private key msk.

(4) -e signer sends the identity to the KGC. KGC runs
SamplePre after receiving the identity and inputs the

signer identity idi and master private key (r, e). KGC
outputs the original image ski of idi.

(5) KGC sends the signer’s private key ski to the signer
through a secure channel.

4.2. Sharing of Flight Data. -e model is divided into three
stages: the creation of the transactions, block release, and
transaction query. -e block creation in the data sharing
system is the process of data upload. Data is stored in
transactions of block and uploaded as the block is released.
-e transaction query is corresponding to the data download
in the data sharing system. Data consumers obtain the flight
data through the corresponding transaction.

4.3. @e Creation of the Transactions. To prevent malicious
users from creating false flight data, an effective flight data
needs to be signed jointly by aircrew, airline, and ground
personnel.

-e transaction generation process is as follows:

(1) Aircrew, airline, and ground personnel generate
their partial signatures of flight data. -ey sign Zi for
the data M generated during the flight process.

(2) -e FDC composes the partial signatures of all
signers into multisignature and generates a trans-
action with multisignature and flight data. As a
designed signer, the FDC generates an aggregate

…

Blockchain

Data upload

Data download

Aircrew Airline Ground
Personnel

Transaction
Publish a

new block

FDC
FMA

Multi-Signature
 and Flight data

Multi-Signature
 and Flight data

FDC

Data Consumers

Synchronizing
the blockchain

Block Header

Transaction 1
Transaction 2

.

.
Transaction n

Transaction 1
Transaction 2

.

.
Transaction n

Transaction 1
Transaction 2

.

.
Transaction n

Transaction 1
Transaction 2

.

.
Transaction n

Block Body
Block Header

Block Body
Block Header

Block Body
Block Header

Block Body

Figure 4: Model architecture.

8 Security and Communication Networks

public key and multisignature σ. FDC generates a
transaction T by using the message M, σ, and pk.

(3) Furthermore, the transaction T is submitted to the
FMA by the FDC.

-e process of transaction generation is contained in
Figure 5. -e specific process is as follows:

(1) First, the aircrew, airline, and ground personnel,
respectively, generate a random polynomial ri, cal-
culate vi � A · ri and ti � H(vi), and send (ti, vi) to
other signers.

(2) Calculate R �
k
i vi, for 1< i< k. Calculate

c � H2(M, R), ci
′ � H1(Lid, idi), ci � c · ci

′. Aircrew,
airline, and ground personnel use sk to generate
partial signatures Zi � ski · ci + ri.

(3) All signers send partial signatures Zi and r to the
FDC. -e FDC calculates Z �

k
i Zi and the ag-

gregate public key pk �
k
i idi · ci
′. -e FDC uses

multiple signatures and flight data to generate a
transaction Ti.

(4) -e FDC sends the generated transaction Ti to the
FMA.

4.4. Block Release. -e FMA sorts the received transaction
information to form a transaction pool (T1, T2, T3, . . . , Tn).
-e FMA takes out the transactions in the transaction pool
to generate blocks B1 � (T1, T2, T3, . . . , Tj) and sends the
generated blocks to each FDC. Figure 6 shows the process of
block release.

-e specific process is as follows:

(1) -e FMA extracts a set of (Z, pk, m, R) from the
transaction Ti and calculates c � H2(m, R).

(2) -e FMA verifies the following equation, A · Z �

c · pk + R. If the equation holds, the transaction is
considered legal.

(3) Add legitimate transactions to the transaction pool.
(4) -e FMA writes the timestamp, the Merck tree, the

current block ID, and the hash of the previous block into
the Block Header. Write the transaction to the block.

(5) -e FMA broadcasts the block to all FDCs.

4.5. Transaction Query. Transaction queries are initiated by
data consumers to the FDC. -e FDC verifies the request
message after receiving the request. If the message is

Aircrew

Airline

Ground
Personnel

Multi-signature
and Flight data

Flight data center Transaction Flight Management
Agency

Figure 5: Creation of transactions.

Transaction 1Flight data center 1

Transaction 2

Transaction 3

Flight Management
Agency

T1

T2

T3

Block Header

Transaction 1
Transaction 2

.

.
Transaction n

Transaction 1
Transaction 2

.

.
Transaction n

Block Body
…

Blockchain Block Header
Block Body

Transaction 1
Transaction 2

.

.
Transaction n

Block Header
Block Body

Transaction 1
Transaction 2

.

.
Transaction n

Block Header
Block Body

Publish a new block

Flight data center 2

Flight data center 3

Figure 6: Block release.

Security and Communication Networks 9

successfully verified, the transaction in the blockchain is
queried. If the verification fails, an error will be returned.
After querying the transaction information, the FDC needs
to extract the flight data and multiple signatures in the
transaction information. -e FDC checks whether the re-
quester is in the multisignature public key list. Furthermore,
the FDC returns the corresponding flight data of the queried
transaction to the requesting user if the requester’s identity is
in the public key list. Figure 7 shows the process of trans-
action query.

-e detailed process is as follows:

(1) Data consumers initiate a request for flight data. -e
request message contains the message itself and the
multisignature of the message.

(2) -e FDC extracts a set of (Z, pk, m, R) from the
request message and calculates c � H2(m,R).

(3) -e FDC verifies the following equation, A · Z � c·

pk + R. If the equation holds, the request message is
considered legal. Otherwise, FDC returns an error
message to the querier.

(4) FDC performs message query in blockchain and
returns error messages if message query fails. After
the query is successful, FDC returns the query data.
-e FDC returns the flight data to the querier.

5. Conclusion

-is paper proposes a lattice-based multisignature scheme
(Lamus) and applies it to the flight data sharing model on
consortium blockchain. -e proposed data sharing model
has solved the problem of data islands and the information
leakage of flight data. In addition, the proposed Lamus
scheme is secure against quantum attacks.

-e proposed Lamus scheme requires the interaction
of signers. In the scenario of the proposed data sharing
model, the efficiency of Lamus scheme achieves the de-
sired effect. However, the network delay affects the effi-
ciency of the Lamus scheme when the signers are in
different locations. -erefore, the efficiency of the Lamus
scheme is affected by network conditions. In future work,
we will consider constructing a noninteractive multi-
signature scheme to avoid network conditions affecting its
efficiency.

Data Availability

No data were used to support this study.

Disclosure

An earlier version has previously been published as con-
ference [27].

Conflicts of Interest

-e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

-is study was supported by Natural Science Foundation of
Shandong Province, no. ZR2019MF062.

References

[1] A. Deo, L. Beno, K. Nguyen, and O. Sanders, “Lattice-based
E-cash, revisited,” in Advances in Cryptology
– ASIACRYPTSpringer International Publishing, Daejeon,
Korea, 2020.

[2] L. He, J. Ma, L. Shen, and D. Wei, “Certificateless designated
verifier proxy signature scheme for unmanned aerial vehicle
networks,” Science China Information Sciences, vol. 64, no. 1,
Article ID 112101, 2020.

[3] Y. Li, DroneSig: Lightweight Digital Signature Protocol for
Micro Aerial Vehicles, Marshall University, Huntington, West
Virginia, 2020.

[4] Y. Zhang, D. He, L. Li, and B. Chen, “A lightweight au-
thentication and key agreement scheme for Internet of
Drones,” Computer Communications, vol. 154, pp. 455–464,
2020.

[5] G. D’Angelo, S. Ferretti, and M. Marzolla, “A blockchain-
based flight data recorder for cloud accountability,” in Pro-
ceedings of the 1st Workshop on Cryptocurrencies and
Blockchains for Distributed Systems, Munich, Germany, June
2018.

[6] D. Coĉırlea, G. Jeon, M. M. Hassan, M. R. Hassan, and
K. Kaur, “Blockchain in intelligent transportation systems,”
Electronics, vol. 9, no. 10, p. 1682, 2020.

[7] A. Arora and S. K. Yadav, “BATMAN: blockchain-based
aircraft transmission mobile ad hoc network,” in Proceedings
of the 2nd International Conference on Communication,
Computing and Networking, March 2019.

[8] R. Reisman, “Air Traffic Management Blockchain Infra-
structure for Security,” in Proceedings of the AIAA Scitech 2019
Forum, American Institute of Aeronautics and Astronautics,
San Diego, CA, USA, January 2019.

[9] I. S. Bonomo, I. R. Barbosa, L. Monteiro et al., “Development
of SWIM registry for Air traffic management with the
blockchain support,” in Proceedings of the 2018 21st

…

Blockchain Block Header

Transaction 1
Transaction 2

.

.
Transaction n

Transaction 1
Transaction 2

.

.
Transaction n

Transaction 1
Transaction 2

.

.
Transaction n

Block Body
Block Header

Block Body
Block Header

Block Body

Flight data
center

Data
Consumers

Synchronizing
the blockchain

Multi-Signature
and Flight data

Figure 7: Transaction query.

10 Security and Communication Networks

International Conference on Intelligent Transportation Systems
(ITSC), Maui, HI, USA, November 2018.

[10] X. Liang, J. Zhao, S. Shetty, and D. Li, “Towards data assurance
and resilience in IoT using blockchain,” in Proceedings of the
MILCOM 2017 - 2017 IEEE Military Communications Con-
ference (MILCOM), Baltimore, MD, USA, October 2017.

[11] N. Kammoun, A. ben Chehida Douss, R. Abassi, and
S. Guemara el Fatmi, Ensuring Data Integrity Using Digital
Signature in an IoT Environment, Springer International
Publishing, Manhattan, NY, USA, 2022.

[12] X. Du, S. Tang, Z. Lu, J. Wet, K. Gai, and P. C. K. Hung, “A
novel data placement strategy for data-sharing scientific
workflows in heterogeneous edge-cloud computing envi-
ronments,” in Proceedings of the 2020 IEEE International
Conference on Web Services (ICWS), Beijing, China, October
2020.

[13] G. Maxwell, A. Poelstra, Y. Seurin, and W. Pieter, “Simple
Schnorr Multi-Signatures with Applications to Bitcoin,”
Designs, Codes and Cryptography, vol. 87, pp. 1–26, 2018.

[14] K. Itakura and K. Nakamura, “A public-key cryptosystem
suitable for digital multisignatures,” NEC Research \& De-
velopment, vol. 71, pp. 1–8, 1983.

[15] M. Bellare and G. Neven, “Multi-signatures in the plain
Public-Key Model and a General Forking Lemma,” in
Computer Science, Mathematics ’06ACM, Alexandria, Vir-
ginia, USA, 2006.

[16] S. Micali, K. Ohta, and L. Reyzin, “Accountable-subgroup
multisignatures,” in Proceedings of the 8th ACMConference on
Computer and Communications Security, November 2001.

[17] M. Kansal, A. K. Singh, and R. Dutta, “Efficient multi-sig-
nature scheme using lattice,” @e Computer Journal,
no. bxab077, 2021.

[18] M. Kansal and R. Dutta, “Round optimal secure multi-
signature schemes from lattice with public key aggregation
and signature compression,” in Proceedings of the Interna-
tional Conference on Cryptology in Africa, July 2020.

[19] X. Chen, Q. Huang, and J. Huang, “A Novel Certificateless
Multi-Signature Scheme over NTRU Lattices,” in Proceedings
of the International Conference on Information Security
Practice and Experience, December 2021.

[20] E. Androulaki, A. Barger, V Bortnikov et al., “Hyperledger
fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the @irteenth EuroSys Con-
ference, Association for Computing Machinery, Porto Por-
tugal, April 2018.

[21] T. Li, Y. Chen, Y. Wang et al., “Rational protocols and attacks
in blockchain system,” Security and Communication Net-
works, vol. 2020, Article ID 8839047, 11 pages, 2020.

[22] C. Peikert, “A Decade of Lattice Cryptography,” Foundations
and Trends® in @eoretical Computer Science, vol. 10, 2015.

[23] V. Lyubashevsky, N. K. Nguyen, and G. Seiler, “SMILE: set
membership from ideal lattices with applications to ring
signatures and confidential transactions,” in Advances in
Cryptology – CRYPTO 2021Springer International Publishing,
Manhattan, NY, USA, 2021.

[24] C. P. Schnorr, “Efficient signature generation by smart cards,”
Journal of Cryptology, vol. 4, no. 3, pp. 161–174, 1991.

[25] N. Genise, C. Gentry, H. Shai, and B. Li, “Homomorphic
encryption for finite automata,” in Advances in Cryptology
(ASIACRYPT 2019), Springer International Publishing,
Cham, Switzerland, 2019.

[26] N. Genise and B. Li, “Gadget-based iNTRU lattice trapdoors,”
in Proceedings of the International Conference on Cryptology in
India, December 2020.

[27] Y. Cui, S. Yu, and F. Li, A Lattice-Based Anonymous Au-
thentication for Privacy Protection of Medical Data, Springer
Singapore, Singapore, 2021.

Security and Communication Networks 11

