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*e control flow hijacking attack poses a serious threat to the integrity of the software. *e attacker exploits the loophole to hijack
the control flow of the running program to achieve the purpose of the attack. Remote control flow attestation is a method for
embedded devices to ensure the integrity of the software. With the continuous development of Internet of *ings (IoT)
technology, embedded devices have exploded. None of the existing control flow attestation schemes can adapt to the real-time
attestation requests of such massive embedded devices. *is paper proposes a blockchain-assisted distributed fog computing
control flow attestation scheme BDFCFA to deal with this scenario. *e scheme uses a simplified control flow representation
model, which can effectively represent the control flow of the program and reduce the runtime overhead of the prover in the
attestation process. We use SGX technology to protect the integrity and confidentiality of verifier and prover data during the
attestation process. Our proposed bidirectional control flow attestation protocol based on the elliptic curve can greatly protect the
communication security between verifiers and provers without incurring excessive performance overhead and communication
cost. We evaluate the performance of BDFCFA through the SNU real-time benchmark and demonstrate that BDFCFA has better
performance. Finally, compared to the existing remote control flow attestation scheme, the results show that BDFCFA has the
highest security.

1. Introduction

With the rapid development of IoT technology, a large
number of embedded devices appear in our lives. A large
part of it is deployed in critical information infrastructure
and plays an important role. Once these embedded devices
are maliciously attacked, it will pose a great threat to our
lives. In recent years, control flow hijacking attacks have
caused great security threats to embedded devices by tam-
pering with the runtime behavior of programs. Control flow
integrity (CFI) [1] was proposed to defend against this
threat. *e CFI obtains the control flow graph (CFG) of the
program by analyzing the normal control flow of the pro-
gram so that the control flow is transferred within the range
limited by the control flow graph, and the execution process
of the program is guaranteed to be safe and credible.

Remote attestation is a method of verifying the integrity
of software on a remote device. It usually consists of two
entities, a verifier who wants to know the state and one or
more provers who provide reports of their state. Typically,
there is agreement between a verifier and a prover. *e
verifier accepts a report of the hash value of the running state
of the software to be executed signed by the security chip
inside the device (such as the Trusted Platform Module,
TPM) sent by the prover to verify whether the software state
meets expectations. Remote attestation transfers the most
expensive part of the entire attestation process to the verifier,
thereby reducing the performance overhead of the prover.

In the early years, people used static measurements to
verify the state of programs. In this way, the prover obtains a
static measurement that is usually a signature or MAC
calculated from the hash value of the program code and

Hindawi
Security and Communication Networks
Volume 2022, Article ID 6128155, 17 pages
https://doi.org/10.1155/2022/6128155

mailto:shentao@kust.edu.cn
https://orcid.org/0000-0002-0077-1345
https://orcid.org/0000-0003-1273-7950
https://orcid.org/0000-0002-2505-0288
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6128155


sends them to the verifier. However, static attestation cannot
detect return-oriented programming (ROP) [2] and jump-
oriented programming (JOP) [3] in control flow hijacking
attacks. *e ROP attack is the most common code reuse
attack today. It does not need to call the complete function
block but calls the program code segment and the gadget
that ends with the ret instruction in the dynamic link library
code. By operating the program running stack, the program
control flow is controlled so that the program jumps to the
corresponding instruction segment when the execution
function returns to achieve the purpose of attack. *e JOP
attack is achieved by using a chain of gadgets that ends with a
Jmp instruction. In recent years, it has been proposed to
measure and attest the integrity of the program runtime
control flow through the prover [4–6] in order to more
accurately verify the runtime program control flow. *is
adds overhead as it gets more contextual information at the
basic block level. To balance runtime overhead and control
flow security, some people have proposed a mutable control
flow attestation scheme based on probability prediction [7]
and a granularity adaptive control flow attestation scheme
based on Non-dominated Sorting Genetic Algorithm-II
(NSGA-II) [8]. A log-based control flow attestation scheme
[9] has also been proposed to deal with ROP [2] attacks and
uses Physical Unclonable Functions (PUF) as a lightweight
root of trust for the prover.

None of the above control flow attestation schemes can
adapt to today’s explosive growth of embedded devices.*ey
are all single-server and single-database architectures that
cannot handle real-time attestation requests from massive
embedded devices, and because they are stand-alone data-
bases, they cannot resist a centrally managed database being
tampered with. Once the database is tampered with, it will
affect the attestation results of the entire system. Moreover,
the resources of the embedded devices are limited. Although
MGC-FA [7] and GACFA [8] reduce runtime overhead to a
certain extent, it comes at the cost of reducing control flow
security. We use a simplified control flow representation
model to effectively reduce the runtime overhead without
reducing the security of the control flow, making the whole
scheme more suitable for resource-constrained embedded
devices. Moreover, the control flow attestation schemes
mentioned above all use the challenge-response method for
control flow attestation, and only perform one-way identity
authentication, that is, the verifier authenticates the prover,
which will cause great security risks.

In recent years, blockchain technology has been widely
used in the Internet of *ings [10, 11]. A blockchain is a
distributed ledger distributed throughout a distributed
systemwhere multiple nodes maintain the same information
without requiring a central authority. *erefore, this tech-
nology can not only mitigate the tampering attack of the
centrally managed database but also reduce the communi-
cation overhead between the data center and the regional
manager.

In this paper, we propose a blockchain-assisted dis-
tributed fog computing control flow attestation scheme to
alleviate the above problems. *e main contributions of this
paper are as follows:

(1) We propose a blockchain-assisted distributed fog
computing control flow attestation scheme, which
can adapt to today's explosively growing embedded
devices and mitigate centralized database tampering
attacks.

(2) We use fog computing to deploy verifiers and
blockchain nodes to the edge of the network, thereby
reducing the communication overhead between
verifiers and provers and improving the real-time
nature of control flow attestation.

(3) We propose a simplified control flow representation
model by simply using the <source address, desti-
nation address, number of jumps> of the jump in-
struction to represent the program control flow,
thereby effectively representing the control flow of
the program and reducing the runtime overhead of
the prover during the attestation process.

(4) We propose a lightweight bidirectional control flow
attestation protocol based on elliptic curves, which
can greatly ensure the communication security be-
tween the verifier and the prover and does not
generate excessive performance overhead and
communication cost.

(5) We use SGX technology to protect the control flow
remote attestation, and protect the integrity and
confidentiality of the data of the verifier and the
prover during the attestation process.

2. Related Work

2.1. Remote Attestation. Remote attestation obtains the
running status of software on a resource-constrained prover
through a resource-rich verifier. *is reduces the attestation
overhead for resource-constrained devices. *e early remote
attestation is mostly based on static, which can only protect
the binary code when the program is started, but cannot
prevent the control flow hijacking attack during the program
execution. Later, the proposed C-FLAT [4] realized a more
comprehensive runtime remote attestation of the program,
and completed the work that could not be done by static
remote attestation. *e program control flow is protected
from alteration by computing the cumulative hash of the
basic blocks of program code. During the running of the
program, all control flow instructions are intercepted by the
runtime tracker trampoline and transmitted to the safe area
for hash operation, and finally a hash value representing the
execution state of the current program control flow is ob-
tained. *e resulting LO-FAT [5] uses a microcontroller to
intercept instructions, instead of using a runtime tracker tool
for software to intercept instructions in C-FLAT, allowing
C-FLAT to be implemented with a lower performance
overhead. ATRIUM [6] is a hardware-based runtime at-
testation protocol that not only checks the control flow of the
program but also checks the specific instructions. It provides
resilience against software- and hardware-based Time of
Check Time of Use (TOCTOU) attacks while incurring
minimal area and performance overhead. Although the
hardware-based control flow attestation scheme reduces the
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attestation overhead of the prover, the hardware imple-
mentation increases the cost and reduces the scalability of
the scheme. MGC-FA [7] uses the probability model in
machine learning to predict the fragile probability of each
function in the program, thus distinguishing the normal part
from the fragile part of the program. It is then subjected to
lightweight coarse-grained checks and expensive fine-
grained checks, respectively, balancing runtime overhead
and control flow security. GACFA [8] optimizes the security
and performance overhead of the attestation of the control
flow of the program using the NSGA-II algorithm and then
adaptively performs coarse- and fine-grained checks on the
functions in the program according to the optimization
results, thus reducing the performance overhead. Liu et al.
[9] proposed to record the control flow through a program
status log, and the verifier can effectively verify whether the
target program has been damaged using the information in
the log. At the same time, for more secure storage, they used
a lightweight root of trust based on on-chip SRAM Physical
Unclonable Functions in the attestation. However, this
scheme log records function pointers and function return
addresses, so it may be powerless against JOP attacks and
attacks against decision data (branch variables or loop
variables) in the program.

However, in today’s environment of explosive growth of
embedded devices, none of these solutions can adapt to new
challenges—real-time attestation requests of massive em-
bedded devices and attacks on centralized databases are
tampered with. Hence, we use blockchain technology and
fog computing to deal with these problems. Moreover, there
are certain problems in their attestation protocols, so we
propose a lightweight bidirectional control flow attestation
protocol based on elliptic curve encryption.

2.2. Blockchain Technology. *e blockchain is a chain data
structure in which blocks are linked in chronological order
and are protected by cryptographic algorithms, and the
security of the ledger in the entire blockchain network is
jointly maintained by means of distributed accounting. At
present, according to the open authority of the network [12],
the blockchain system can be divided into the public
blockchain, the alliance blockchain, and the private block-
chain. In this paper, we mainly study the consortium
blockchain that is jointly managed by several different or-
ganizations or institutions. Unlike the public blockchain, the
entities of the consortium blockchain are no longer a single
individual but multiple organizations, so as long as most of
the organizations in the consortium obtain a consensus, the
data can be operated and managed. In a consortium
blockchain, it is not the nodes participating in the chain that
have permission to access data, but need to be preapproved
by the institution to gain access, and because the consortium
blockchain is semi-centralized, it is more efficient than the
public blockchain.

In the past few years, due to the rapid development of
blockchain technology, blockchain technology has been
widely used in a large number of fields, such as finance,
medical care, Internet of *ings, edge computing, etc., for

example, the application of blockchain technology in the
field of cross-data center authentication of vehicular fog
services (VFSs) [13]. By effectively combining modern
cryptography and blockchain technology, the communica-
tion between service managers during user authentication is
eliminated because the records of all service managers are
updated synchronously and can effectively resist the attack
of tampered database managed by a central because the
public ledger is maintained by all service managers. *ere
are also applications of blockchain technology to distributed
data systems IoT [14]. To solve the conflict between the
operation performance and security of the blockchain sys-
tem, the conflict between transparency and privacy, and the
compatibility problem of a large number of IoT devices that
run together, a distributed data system for IoT based on
blockchain technology is proposed. It provides a new system
architecture for different industrial IoT devices to deploy
high-performance blockchain systems in many scenarios.
*ere is also the application of blockchain technology to the
radio frequency identification (RFID) supply chain au-
thentication protocol in the 5G mobile edge computing
environment [15]. By applying 5G and blockchain tech-
nology to the supply chain, the supply chain process can be
simplified and allow automatic payment upon receipt of
goods. It will help save the company millions of dollars in
operating costs by eliminating the need for distributors who
have to handle accounts receivable and pay bill with de-
partment personnel to track unpaid invoices. Additionally,
this will also help avoid the legal fees that it may incur in
disputes. However, our extensive literature survey shows
that no one has applied blockchain technology to the realm
of program control flow attestation. *is article adopts
blockchain as the database to improve the security and
performance of BDFCFA.

Consensus algorithms are used mainly in distributed
systems to ensure data consistency.*e consensus algorithm
used in blockchain is to solve the “block conflict” problem
that may arise when a new transaction block is added to the
blockchain. Nowadays, common consensus algorithms in
blockchain include proof of work (PoW) [16], proof of stake
(PoS) [17], DPoS (delegated proof of stake), practical byz-
antine fault tolerance algorithm (PBFT) [18] and RAFT
algorithm [19], and so on. *ese five consensus algorithms
have their own advantages, and their performance com-
parisons are shown in Table 1. First of all, since the man-
agement departments in BDFCFA are all credible, the
consensus algorithm we choose does not need to consider
Byzantine fault tolerance, only crash fault tolerance. Second,
since the blockchain in BDFCFA is mainly managed by
multiple management departments, the selected consensus
algorithm does not need to have a high degree of decen-
tralization. Finally, due to the high real-time requirement of
control flow attestation, the selected consensus algorithm
should have a lower communication complexity, faster
verification speed, and higher throughput. After considering
the Byzantine fault tolerance, crash fault tolerance, degree of
decentralization, communication complexity, verification
speed, and throughput of each algorithm, we chose the
RAFT algorithm. Although the scalability of the RAFT
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algorithm is not strong, its resource consumption is low, and
its other properties are also very suitable for the high real-
time and high security scenarios of control flow attestation.

2.3. FogComputing. *e concept of fog computing was first
proposed by Cisco. By allowing devices deployed at the
edge of the network to provide computing, storage, and
network transmission services for terminal devices in a
small area, the efficiency of data analysis and processing can
be improved, and latency and network transmission
pressure can be reduced. Today, the rapidly developing IoT
faces many new challenges, such as strict latency re-
quirements, network bandwidth constraints, resource-
constrained devices, etc. [20], which cannot be adequately
addressed by today’s cloud computing and mainframe
computing models alone. *erefore, to adapt to these new
challenges, we adopt fog computing in BDFCFA to deploy
verifier and blockchain nodes to the edge of the network,
thereby improving the real-time performance of control
flow attestation and alleviating the performance bottleneck
of the central authority.

2.4. Intel SGX Technology. SGX (Software Guard Exten-
sions), the Intel Software Guard Extensions, is a set of in-
struction sets supported by Intel since 2013 [21]. SGX
provides an isolated Trusted Execution Environment TEE
(Trusted Execution Environment) called enclave, which
protects the safe operation and data of legitimate software
from malicious attacks. No one, but the CPU, can access the
code and data in it. SGX can now provide a trusted execution
environment for many application scenarios, such as by
introducing a trusted execution environment in edge
computing, that is, software protection extension technol-
ogy, to ensure the confidentiality of the medical IoT data
analysis process [22]. *ere are also applications of SGX to
verifiable confidential cloud computing, which guarantees
code and data confidentiality, as well as the correctness and
integrity of its results [23]. Confidentiality and integrity are
preserved even when large components such as Hadoop, the
operating system, and the hypervisor are compromised, and
it outperforms Hadoop without SGX protection. *ere is
also the use of SGX technology in the authentication of the
IoT end device, enabling shielded execution of measure-
ments and attestation procedures. *e sensitive data in the
authentication process are hidden through the specific key of
the SGX enclave, which ensures the security of the sensitive
data [24]. We enable SGX on the verifier and the prover, and

the verifier and the prover process the remote control flow
attestation related data in the enclave area, such as attes-
tation request, program control flow data, and attestation
report. Because the data processing process is carried out in
the enclave area provided by SGX, malicious programs
outside the enclave area cannot view the data, let alone
tamper with them.

2.5. Elliptic Curve. *e application of elliptic curves in
cryptography first appeared in 1986, proposed by Miller
[25] and Koblitz [26] based on the elliptic curve logarithm
problem. After that, elliptic curve cryptography (ECC)
became a popular research direction in cryptography and
gradually became the mainstream of public-key cryp-
tography. *e security of ECC relies on the discrete
logarithm problem of the elliptic curve (ECDLP), that is,
for two points P, Q on an elliptic curve over a finite field,
solve k so that k·P �Q holds. On a classical computer, the
time complexity of solving the discrete logarithm problem
of the elliptical curve is exponential [27], which guar-
antees the security of the encryption of the elliptical curve.
Compared to encryption techniques such as DSA, RSA,
DH, etc., ECC is a more efficient security encryption
technique that uses a shorter key to provide the same level
of security. *erefore, ECC is often used in the authen-
tication of the identity of devices constrained by re-
sources, such as the Internet of *ings. For example,
Mahmood et al. [28] applied elliptic curve encryption to
the communication authentication of smart grid. *eir
scheme not only provides mutual authentication with low
computational and communication costs but is also re-
sistant to most attacks, while also providing anonymity
and privacy. However, Sadhukhan et al. [29] proposed an
ECC-based lightweight remote user authentication
scheme for IoT devices and remote user authentication,
which uses three-factor authentication to protect user
privacy and data confidentiality from multiple attacks.
Rostampour et al. [30] proposed an efficient scheme to
secure communication between IoT edge devices and
cloud servers, where the authors used an ECC-based
authentication protocol. We design a lightweight two-way
control flow attestation protocol based on an elliptic
curve. By using elliptic curve encryption, we can effec-
tively ensure the security of communication between the
verifier and the prover and at the same time reduce the
performance overhead and communication cost as much
as possible.

Table 1: Comparison of the consensus algorithm.

Consensus algorithm PoW PoS DPoS PBFT RAFT
Byzantine fault tolerance 50% 50% 50% 33% N/A
Crash fault tolerance 50% 50% 50% 33% 50%
Decentralization High High Low Low Low
Resource consumption High Medium Low Low Low
Scalability Strong Strong Strong Weak Weak
Communication complexity O(n) O(n) O(n) O(n2) O(n)
Verification speed >100 s <100 s <100 s <10 s <10 s
*roughput (TPS) <100 <1000 <1000 <2000 >10 k
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3. Problem Statement and Assumptions

At present, the implementation of control flow hijacking
attacks mainly includes controlled data attacks and non-
controlled data attacks. Among them, control data attacks
can be divided into code injection attacks and code reuse
attacks according to the source of the attack code. In code
injection attacks, the attacker uses the input operation of the
software to inject malicious code into the memory space of
the target software and then tampers with the control flow
data to make the program jump to the malicious code. In
code reuse attacks, attackers use existing instructions in
programs and shared libraries to achieve attack goals, such as
ROP [2] and JOP [3]. Non-controlled data attack is to
modify the user identity data, configuration data, user input
data, decision data, and other data in the program and then
hijack the program control flow to complete the attack, such
as (Data-oriented Programming, DOP) [31].

*ere are two assumptions about our scheme. First, we
assume that the embedded device deploys the DEP (Data
Execution Prevention) scheme that makes the executable
area read-only, which is a built-in protection scheme
commonly used on embedded platforms. *erefore, we do
not consider code injection attacks. Second, we assume that
attackers can carry out code reuse attacks and attacks on

decision data (branch variables or loop variables) in the
program as well as replay attacks, man-in-the-middle at-
tacks, and impersonation attacks in network attacks.
However, the attacker cannot perform any other attack such
as pure data attack and physical attack.

4. BDFCFA System Model

Figure 1 shows the system framework designed in this paper,
which consists of multiple areas. Each zone includes a peer
node, multiple fog verifiers, and multiple embedded devices.
*ere are five types of entities in the system.

4.1. Management Department. *e management depart-
ment is a completely credible institution and is a member of
the blockchain network. *ere are multiple management
departments in the entire system. *e management sector
includes software service providers and control flow attes-
tation service providers. *e software service provider is
responsible for registering programs that require attestation
of the control flow. When registering a program, first in-
strument the target program, obtain the control flow data of
each possible control flow path, and measure the control
flow data of each possible control flow path, respectively, to
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obtain the expected measurement value. Finally, all the
expected measurement values of the program and the
program input range corresponding to the expected mea-
surement values are uploaded to the local blockchain
through smart contracts, consensus is reached among var-
ious management departments, and finally the data are
synchronized to each peer node,

H E1(  � H E1, H(0)( , n � 1,

H En(  � H H En−1( , En( , n> 1,

H � H(H(En), F), F � fi|i ∈ n .

⎧⎪⎪⎨

⎪⎪⎩
(1)

*e measurement calculation formula is shown in
equation (1), where H is the final measurement value, and
H(0) is the initial hash value, which is set by the man-
agement department, and is generally 0. E represents the
jump edge in the control flow graph, the data in the edge
includes the source address of the jump instruction and the
destination address of the jump instruction, and
F � fi|i ∈ n  is the set of execution times of all the jump
instructions in the current path (see Section 5.1 for details).

4.2.KeyGenerationCenter (KGC). *e key generation center
is another trusted entity in the system, responsible for
generating a public-private key pair for the fog verifier and
prover in BDFCFA, which is used for identity authentication
between a fog verifier and prover in control flow attestation.
For the specific key generation process, see Section 5.3.

4.3. Peer Node. A peer node is a member of the blockchain
network. In BDFCFA, not every fog verifier needs to
maintain the blockchain ledger but establishes a peer node in
an area to join the blockchain network, reducing the number
of nodes in the blockchain network, thereby reducing the
cost of deploying the infrastructure. *rough smart contract
settings, peer nodes cannot push data to the blockchain in
the blockchain network but can only query the data on the
blockchain, thereby reducing the possibility of peer nodes
becoming malicious nodes. Peer nodes provide query ser-
vices to fog verifiers by providing services.

4.4. Fog Verifier. *e fog verifier provides program control
flow attestation services for embedded devices within a
certain physical range. Before performing control flow re-
mote attestation, fog verifiers need to register with the key
generation center. During attestation, the fog verifier needs
to query the blockchain for all expected measurement values
of the program to be verified and the program input range
corresponding to the expected measurement values. *e
query process is shown in Figure 2.

First, the fog verifier sends a query request to the peer
nodes in the area to which it belongs, and then randomly
selects to send a query request to 2n nodes in the blockchain
network. Finally, after receiving all the results of the request,
the final result is determined according to most principles,
and according to this result, we attest to the target program.
*ere is a special case, where the randomly selected nodes

include the nodes of the management department, and the
final result is the result of the node of the management
department because the management department is a
completely trusted authority. *rough such a query
mechanism, the harm of attackers tampering with a single
database can be greatly alleviated.

4.5. Prover. *e prover is an embedded device that needs to
attest the control flow of the program running on it. It can be
industrial control equipment and other important embed-
ded devices deployed in critical information infrastructure.
*e program on the prover is provided by the software
service provider. Before remote attestation of the control
flow, it needs to be registered with the key generation center.

5. BDFCFA Design

5.1. Simplified Control Flow Representation Model. To au-
thenticate the program control flow, the verifier needs to
measure the program running path on the prover. However,
it is obviously not feasible for the prover to directly transmit
every executed instruction to the verifier. *is requires the
prover to store lengthy control flow data, resulting in a large
performance overhead and attestation delay. To reduce the
complexity of program control flow representation, thereby
reducing the performance overhead and attestation delay of
the prover, this paper proposes a simplified control flow
representation model. *e model is specifically defined as
follows:

Definition 1. *e simplified control flow representation
model is a directed graph G that represents the control flow
of a program, represented by a quadruple 〈V, S, D, F〉.

Definition 2. S � si|i ∈ N , S is the set of source addresses of
all jump instructions in the directed graph G;
D � di|i ∈ N , D is the set of destination addresses of all
jump instructions in the directed graph G; and
F � fi|i ∈ N , F is the set of execution times of all jump
instructions.

Peer in the regionFog verifier
Other nodes in the 
blockchain network 

request r (id)r1 (id)

r2n (id
)

result

result1

result2n
...

...

Figure 2: Query mechanism.
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Definition 3. V � vi|i ∈ N , V is the set of all vertices in the
directed graph G, and a node represents a basic block. *e
basic block is a sequence of code instructions with only one
entry and one exit without branching, so the basic block ends
with a jump instruction. Hence, si is the exit of vi and di is the
entrance of vi+1.

Definition 4. : E � vi⟶ vi+1|i ∈ N , E is the set of all
edges in the directed graph G; there are two types of edges,
jump edges and sequential edges. *e jump edge indicates
that the jump instruction at the exit of the basic block ex-
ecutes the jump, while the sequence edge indicates that the
jump instruction at the exit of the basic block does not jump
but executes the next instruction. A jump edge is represented
by a two-tuple 〈S, D〉.

*eoretically, the two-tuple 〈S, D〉 can fully represent
the control flow of a program. However, a large number of
basic block jump edges will be generated by loops and re-
cursive calls during program operation, resulting in a large
number of repetitions of control flow data information and
increasing performance overhead. *erefore, when we
represent the control flow, we choose to use the triple
〈S, D, F〉 to represent it.

Taking Figure 3 as an example, we explain the control
flow model and its measurement results.

We can see V � B1, B2, B3, B4, B5, B6, B7, B8{ } from
Figure 3, where B8 is the basic block of the scanf function
that contains the return instruction, and there is only one
basic block of B7 in the func1 function.
E � E1, E2, E3, E4, E5, E6, E7, E8, E9{ }, where E6 and E7 are
sequential edges.

As shown in Figure 3, the control flow graph has two
paths, and their expected measurement results are as follows:

B1⟶ B2⟶ B5⟶ B6: H1 � H H(H(H(H(H(E1, H(0)), E2), E3), E4), E5), F1( ,

B1⟶ B2⟶ B3⟶ B6: H2 � H H(H(H(H(E1, H(0)), E2), E8), E9), F2( ,
(2)

where F1 and F2 are the set of execution times of all jump
instructions in the two paths, respectively. Since in the
second path, E6 and E7 are sequential edges and no jumps
are performed, they are not added to the measurement
calculation. *e specific measurement calculation formula is
mentioned in Section 4.

*en, we use the simple program shown in Figure 3 as an
example to demonstrate the detection of five types of attacks,
including the four types of attacks mentioned in Section 3:

(1) ROP attack: the attacker tampered with the return
address of the function func1 so that the jump edge
E5, which should have returned B7 from the exit of
the node to the entry of the B6 node, pointed to an
illegal malicious code address. *erefore, the desti-
nation address of the edge E5 will be different from
expected, thus detecting that the program has been
attacked by control flow hijacking.

(2) JOP attack: the attacker tampered with the jump
address of the Jmp class instruction so that the jump
edge E3, which should have jumped from the exit of
node B2 to the entrance of node B5, pointed to an
illegal malicious code address. *erefore, the

destination address of the edge E3 will be different
from expected, thus detecting that the program has
been attacked by control flow hijacking.

(3) Branch variable attack: the attacker tampers with the
prover’s input so that the sequential edge that should
be executed sequentially from node B2 to node B3
becomes a jump edge to jump to the entry of node
B5, causing the control flow to enter an unexpected
but legal path. However, the input of the prover does
not conform to the program input range corre-
sponding to this legal path, so it can also be detected
that the program has been attacked by control flow
hijacking.

(4) Loop variable attack: the attacker altered the value of
the loop control variable m, causing the number of
loops to change, resulting in a different number of E8
than expected. Finally, it was detected that the
program was attacked by control flow hijacking.

(5) Function pointer attack: the attacker tampers with
the code pointer so that the jump edge E1, which
should be called from the exit of node B1 to the entry
of node B8, points to an illegal malicious code

void main (){
int n;
int m;

① scanf ("%d", &n);
② if (n>=0){
③ while (m)
④ m--;

}else{
⑤ fun1 ();

}
⑥ return;
}
void func1 (){
......
⑦ return;
}

B1

B2

B3B5

B7

B6

B8

B4

Jump edge
Sequential edge

E1

E2

E3

E4

E5

E6

E7 E8

E9

Figure 3: Control flow diagram for a simple program.
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address. *e destination address of the edge E1 will
be different than expected, thus detecting that the
program has been attacked by control flow hijacking.

In summary, our method can detect these five attacks.

5.2. SGX-Based Control Flow Attestation. As shown in
Figure 4, SGX-based control flow attestation includes two
roles of the fog verifier and prover. Each role is divided into a
secure area and an insecure area. *e SGX enclave is the
security area inside the role. We deploy the request gen-
eration part and the report verification part of the fog verifier
in the SGX enclave. Guarantee the security of the fog verifier
request and report the verification process and key infor-
mation during the remote attestation process of the control
flow. At the same time, we deploy the runtime tracking part
of the program in the unsafe area in the prover, and deploy
the authentication, counting, measurement, and report
generation part in the SGX enclave to protect the security of
the attestation report, key information, and control flow
measurement process.

First, the fog verifier generates the attestation request
and session key in the request generator and sends the
session key to the report verifier and then the attestation
request to the prover through the network communicator.
*e request contains the timestamp, program id, program
input in, authentication information, and auxiliary infor-
mation of encrypted session key. After the prover’s network
communicator receives the attestation request, it forwards
the request to the authenticator. *e authenticator first
verifies whether the timestamp meets a certain threshold,
otherwise the session is terminated. *en verify the identity
information of the fog verifier and ensure that the verifi-
cation does not pass the session termination. Finally, the
auxiliary information of the session key will be decrypted
through the attestation request to calculate the session key,
which will be forwarded to the report generator, and the
runtime tracker will execute the corresponding program and
instrument program according to the program id and
program input in the attestation request. When the appli-
cation runs to the jump instruction, the interceptor in the
runtime tracker will intercept it, and then judge whether the
instruction is executed for the first time; if so, send the
instruction address and destination address to the measurer.
*emeasurer performs hash operation according to formula
(1); if not, it sends a signal that the instruction count is
incremented by one to the counter, and the counter in-
crements the execution times of the target instruction by one
according to the signal. When the program ends, the counter
sends the set of execution times of the jump instruction to
the measurer for the final hash operation to obtain the final
measure, which is then sent to the report generator. *e
report generator generates an attestation report and sends it
to the fog verifier through the network communicator. *e
fog verifier’s network communicator receives the attestation
report and sends it to the report verification. *e report
verification first verifies whether the timestamp meets a
certain threshold, otherwise the session is terminated. *en
verify the identity information of the prover, and the

verification does not pass the session termination. *en use
the session key calculated by the request generator to verify
the information in the attestation report, and if the verifi-
cation fails, the session is terminated. Finally, query the
blockchain for the expected measurement value corre-
sponding to the input of the program to be verified and
check whether the measurement value calculated according
to the attestation report is the same as the expected mea-
surement value. *e specific calculation process in the above
process is shown in Section 5.3.

*e key modules are described in the following:

(1) Request generator: this part uses the fog verifier’s
private key, the prover’s public key, timestamp,
program id, program input, and a random number
to generate the attestation request and session key
and send to the network communicator and report
verification device, respectively.

(2) Report verification: authenticates the attestation
report received by the network communicator from
the prover and verifies whether the control flow
measurement value meets the expectations, thereby
determining whether the program on the prover is
subject to a control flow hijacking attack.

(3) Network communicator: the part of the fog verifier
and prover that performs network communication,
providing network communication and data for-
warding functions for modules in the SGX enclave.

(4) Authenticator: the part of the prover that verifies the
identity of the fog verifier. *e identity of the fog
verifier is verified through the attestation request,
and the session key is further calculated to generate
the attestation report.

(5) Runtime tracker: this part is used to track the target
application. We rewrite the Pin tool in Intel Pin-3.15
as a tool for intercepting jump instructions when the
program is running.

(6) Interceptor: intercepts the jump instruction when
the target application is running, and judges whether
it is a jump instruction that has been intercepted. If it
is, it will send a signal to the counter that the number
of executions of the instruction is incremented by
one. If not, it will intercept the received address
information of the instruction being sent to the
measurer for measurement.

(7) Counter: the part that obtains the execution times of
the jump instruction and puts it in the enclave
container to protect the execution times of the jump
instruction from being tampered with. Because the
address information will be hashed after interception
and the set of execution times needs to be completed
after the program runs, the counter is deployed in the
safe area.

(8) Measurer: when a hash operation is performed in the
enclave container, the security of the measurement
process is guaranteed. After the final measurement h

is calculated, it is sent to the report generator.
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(9) Report generator: using the prover’s private key, the
fog verifier’s public key, and the session key calcu-
lated by the authenticator, an attestation report is
generated and sent to the verifier through the net-
work communicator.

5.3. A Lightweight Bidirectional Control Flow Attestation
Protocol Based on Elliptic Curve

5.3.1. Protocol Scheme Design. *is section proposes a
lightweight bidirectional control flow attestation protocol
scheme based on elliptic curves. *e scheme is divided into
three stages: initialization stage, registration stage, and at-
testation stage. *e initialization stage is executed only once
by the KGC during the system establishment process. *e
symbols used in this paper are shown in Table 2.

(1) Initialization stage: in this stage, the KGC performs
the following operations to initialize a set of system
parameters.

(1) Set a system security parameter k and generate
two large security prime numbers p and q.

(2) Choose an elliptic curve
y2 ≡ x3 + ax + b(modp), denoted by EP(a, b),
where a, b ∈ Zp and 4a3 + 27b2modp≠ 0.

(3) Choose an additive cyclic groupG of order q, and
choose a generator P for G, which contains the
elliptic curve points defined by EP(a, b).

(4) Define the following secure hash functions:
H1: 0, 1{ }∗ ⟶ Z∗q , H2: 0, 1{ }∗ × G⟶ Z∗q , and
H3: 0, 1{ }∗ ⟶ 0, 1{ }∗.

(5) Public system parameter (q, EP(a, b), H1,

H2, H3).

Table 2: Description of the notation.

Notations Description
p, q Large prime numbers
GF(p) A finite field over prime p
Ep(a, b) An elliptic curve over GF(p)
G An additive cyclic group of points on the elliptic curves with prime order q
P A generator of G
k·P Multiplication of elliptic curves, k·P� P+P+ ···+P (k times), where k ∈Z∗q and P ∈Ep(a, b)
Z∗q A finite additive group of nonzero integers modulo q
Zp A finite additive group of integers modulo p
||,⊕ Data concatenation and bitwise XOR operations
H1, H2, H3 Secure hash function
IDv, IDp Unique identities of the fog verifier and prover
PKi *e public key of i
SKi *e private key of i
Comp (M, N) Compare if M and N are the same

Unsafe zone Unsafe zone
Runtime Tracker

SGX Enclave

Interceptor

Execution 
starts

Jump 
instruction

Execution 
ends

Measurer
h

Counter

6

6

7

5

Report 
Generator 8

SGX Enclave

Request 
Generator

Report 
Verification

Network 
Communicator

Network 
Communicator

9

1 2
Request

10
Report

3
11

Authenticator

4

4

1

Data flow
Program execution flow The prover component

Fog verifier components

Figure 4: SGX-based control flow attestation architecture.
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(2) Registration stage: this stage completes the regis-
tration of fog verifiers and provers, as shown in
Figure 5. It is executed only once in the lifetime of
each fog verifier and prover. *e fog verifier regis-
tration process will do the following. *e prover
registration process is similar to that of the fog
verifier, which will not be described here.

(1) *e fog verifier uses the hardware information
on the device (such as CPU serial number,
motherboard serial number, hard disk serial
number, physical MAC, etc.) to calculate its
unique IDV, and transmits it to the key gener-
ation center through a secure and trusted
channel.

(2) After receiving the unique identity IDV of the fog
verifier, the key generation center randomly
selects an integerR, connects IDV and R, and uses
the formula SKV � H1(IDV

����R) to calculate the
private key of the fog verifier SKV, SKV ∈ Z∗q .
*en, the public key PKV of the fog verifier is
calculated by PKV � SKV•P. Finally, the key
generation center transmits PKV and SKV to the
fog verifier using a secure and trusted channel.

(3) After the fog verifier receives the keys PKV and
SKV generated by the key generation center, the
registration process ends.

(3) Attestation stage: this stage completes the attestation
of the program control flow on the prover by the fog
verifier, as shown in Figure 6. Among them, the fog
verifier attests the operation of the program on the
prover through a series of operations and judgments,
that is, judges whether the running path of the
program on the prover is safe and credible. *e
attestation protocol stipulates that both the fog
verifier and the prover can access the binary of the
program, and through the traditional static attesta-
tion protocol, the program being executed on the
prover is guaranteed to be unmodified and complete.
*e specific process of the attestation stage is as
follows:

(1) *e fog verifier first calculates the shared key
DHK used for identity authentication according
to DHK � PKp•SKv, and then randomly gen-
erates a number n, n ∈ Z∗q . N is calculated by
elliptic curve multiplication N � n•P, and ses-
sion key S is calculated using S � N•SKv. Use
h1 � H3(in‖T‖id) to hash the program id,
program input in, and current timestamp T1 to
get h1. *en calculate the XOR of h1, n and
DHK, C1 � h1⊕n⊕DHK, and then perform hash
operation C2 � H2(C1, S) on C1 to get C2. Fi-
nally, the input in of the program, timestamp T1,
program id, and identity of the authentication
information C1 and C2 are spliced together to
form an attestation request Req, which is sent to
the prover.

(2) After the prover receives the attestation request
Req from the fog verifier, it first checks the
freshness of the timestamp. If the difference
between timestamps exceeds a certain threshold,
the session abruptly ends. *en use the secure
hash function H3 to calculate h1 � H3(in‖T‖id),
and then calculate the shared key DHK′ used for
identity authentication through
DHK′ � PKv•SKp. *rough
n′ � C1⊕ h1′⊕DHK′, n' is calculated, which is
used to calculate the session key. Use S′ � n•PKv

to calculate the session key S′, and then perform a
hash operation C2′ � H2(C1, S′) on C1 to ob-
tain C2'. *en Comp(C2, C2′) compares
whether C2 and C2′ are the same; if not, the
session is terminated. So far, the prover has
completed the identity authentication of the fog
verifier. *en the prover executes the target
program aid according to the program id and the
program input in and obtains the address in-
formation [Src0, Dest0], ···, [Srcn, Destn] and the
set F of the execution times of the jump in-
struction. *en, according to formula (1), the
secure hash function H3 is used to calculate the
cumulative hash value h through the address
information [Src0, Dest0], ···, [Srcn, Destn] of the
jump instruction and the set F of execution times
of the jump instruction. *en use hs � h⊕S′ to
encrypt the final measurement value h to cal-
culate hs, and then perform hash operation Cr �

H2(T2‖h,DHK′) on the timestamp T2 and the
final measurement value h to obtain Cr. Finally,
the timestamp T2, the encrypted measurement
value hs′ and the identity authentication infor-
mation Cr are spliced together to form an at-
testation report Rep, which is sent to the fog
verifier.

(3) After the fog verifier receives the attestation
report, it first checks the freshness of the time-
stamp. If the difference between timestamps
exceeds a certain threshold, the session abruptly
ends. *en use the session key S to decrypt the
final measurement value h' according to
h′ � hs⊕S, then use the secure hash function H2
to calculate Cr′ � H2(T2‖h′,DHK) to get Cr′,
then Comp(Cr, Cr′) compares Cr and Cr' to see
if they are the same, and if they are different, the
session is terminated. So far, the fog verifier has
completed the identity authentication of the
prover. *en the fog verifier queries the block-
chain for the expected measurement value hex-
pected corresponding to the input in of the
program to be verified, and finally
Comp(hexpected, h′) compares whether hexpected
and h' are consistent; if they are consistent, it
means the target program aid is not subject to
control flow hijacking attacks.
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Figure 5: Registration process.
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Req

Tcurrent−T1 ≤ΔT, abort if not fresh
h1' = H3 (in || T1 || id)
DHK' = PKv·SKp

n' = C1 ⊕ h1' ⊕ DHK' 
S'= n'·PKv
C2'= H2 ( C1, S' )
Comp ( C2, C2'), abort if not identical
( [Src0,Dest0], ···, [Srcn,Destn], F ) ← exec ( Aid (in) )
h= H3 ( [Src0,Dest0], ···, [Srcn,Destn], F)
hs= h ⊕ S'
Cr = H2 ( T2 || h, DHK' )
Rep = T2 || hs || CrRep

Tcurrent−T2 ≤ΔT, abort if not fresH
h'= hs ⊕ S
Cr'= H2 ( T2 || h', DHK)
Comp ( Cr, Cr'), abort if not iDentical
Query hexpected from blockchain
Comp ( hexpected, h'), abort if not identical

DHK = PKp·SKv

Select random number n, n∈Zq*
N = n·P
S = N·SKv
h1 = H3 (in || T1 || id)
C1 = h1 ⊕ n ⊕ DHK
C2 = H2 ( C1, S)
Req = in || T1 || id || C1 || C2

Figure 6: Attestation process.
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5.3.2. Protocol Security Analysis. *e lightweight bidirec-
tional control flow attestation protocol based on the elliptic
curve in this paper has the following security features:

(1) Two-way authentication: the protocol proposed in this
paper realizes two-way authentication between the fog
verifier and the prover, and the identities of both parties
are authenticated before the control flow attestation.
Both the fog verifier and the prover use their ownprivate
key and the other party’s public keywhen calculating the
shared key DHK. It is almost impossible for an attacker
to calculate the shared key DHK only knowing their
public key. *e prover verifies the fog verifier by ver-
ifying whether C2 and C2’ are the same.*e fog verifier
verifies the prover by verifying whether Cr and Cr’ are
the same. *e calculation of C2 and Cr will use DHK.
*erefore, as long as the public key infrastructure is
secure, only legitimate fog verifiers and provers can
perform control flow attestation.

(2) Anti-impersonation attack: the private key SKV of the
fog verifier is strictly kept secret. Although the public key
PKV and the generator P are open to the public, it is
extremely difficult to calculate the private key SKV from
the public key PKV and the generator P, which belongs
to solving the elliptic-curve discrete logarithm problem.
It is also extremely difficult for an attacker to directly
calculate the private key SKV through the IDv of the fog
verifier. Because a random number R is added when
calculating the private key SKV, it is almost impossible to
calculate the private key SKV without knowing the
random number R. *e prover is similar to the fog
verifier, which will not be described here. *erefore, in
the protocol proposed in this paper, attackers cannot

pretend to be fog verifiers and provers and can prevent
impersonation attacks.

(3) Anti-man-in-the-middle attack: when A and B
communicate, the attacking host C becomes a for-
warder in the middle, and the information between
them is forwarded by C. C can not only eavesdrop on
the communication of A and B but also tamper with
the information. *en pass it on to the other party.
We assume that the middleman C intercepts the
attestation request Req = in ||T1 || id ||C1 ||C2 and
forwards it after maliciously tampering with the
attestation request. If the middleman tampers with
the data in in, T1 or id, then the prover will not be
able to get the expected value by calculating
h1’ � H3(in‖T‖ id), resulting in failure to compare
C2 and C2’. If the middleman tampered with the data
of C1, the prover will not be able to calculate the
correct n' through n’ � C1⊕h1’⊕DHK’, resulting in
the termination of the session. If the middleman
tampered with the data of C2, it will directly lead to
the failure of comparing C2 and C2’. Similarly, if the
middleman C intercepts the attestation report
Rep =T2 || hs || Cr, and forwards it to the fog verifier
after maliciously tampering with the attestation re-
port. Assuming that the middleman has tampered
with the data of T2, the fog verifier will make an error
in calculating Cr’ � H2(T2‖h’,DHK), resulting in a
failure to compare Cr and Cr’. If the middleman
tampered with the data of hs, the fog verifier will not
be able to decrypt the final measurement value h'
with h’ � hs⊕S, resulting in the termination of the
session. If the middleman tampered with the Cr data,
it will directly lead to the failure of comparing Cr and

Table 3: Parameters of the Hyperledger Fabric.

Consensus algorithm Batch timeout (s) Maximum message count Block size (kB) Number of order nodes Number of peer nodes
RAFT 2 10 512 3 7

Table 4: Query time of the query mechanism under different peer nodes.

Query number of peer nodes 1 3 5 7
Average query time (ms) 11.894 23.976 37.895 51.682

Table 5: Runtime performance comparison of the two schemes.

Program
BDFCFA Control flow events for MGC-FA

Control flow events for GACFA
Control flow events Runtime overhead (ms) p � 0 p � 0.3 p � 1

adpcm-test.c 509 317.630 2×106 1.1× 105 1× 105 151
fft1k.c 329 18.392 3.6×105 2.7×105 3.3×104 49
fir.c 338 69.569 7800 2400 734 61
lms.c 353 24.363 1.2×105 4.4×104 8912 73
ludcmp.c 367 42.759 571 410 14 17
qurt.c 248 17.900 248 202 14 15
minver.c 310 16.204 310 300 6 25
fft1.c 381 31.720 884 776 136 58
sqrt.c 296 13.189 296 4 4 10
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Cr'. *erefore, for the protocol proposed in this
paper, the attacker cannot achieve the purpose of the
attack through the man-in-the-middle attack.

(4) Anti-replay attack: the replay attack is that the at-
tacker sends an authentication information that the
destination host has received to deceive the other
party. In the protocol proposed in this paper, both
the attestation request and the attestation report
contain the timestamp T, which is not only sent in
clear text but is also hidden in C1 and C2 in the
attestation request and Cr in the attestation report.
*erefore, if an attacker replays the attestation re-
quest from the fog verifier or the prover’s attestation
report, the fog verifier and the prover can identify it
by checking the freshness of T. If the attacker re-
places a new timestamp T′ in the attestation request
or attestation report, the identity authentication of
the prover or fog verifier will also fail. Because the
prover makes an error when calculating C2, which
causes the authentication to fail. *e same applies to
fog verifiers. *e protocol proposed in this paper
ensures that the attestation request or report of each
transmission is different and there is no leakage of
any valuable information, so the attacker cannot
deceive the other party by replaying the intercepted
message.

(5) Known session key security: the fog verifier uses the
random number n, n ∈ Z∗q to calculate N, and then
uses the private key SKv and N to calculate the
session key S. Since n for each calculation of the
session key is randomly selected, the attacker cannot
obtain other session keys through the known session
key. It is not even possible to obtain any valid in-
formation from the known session key because the
session key needs to use the private key SKv of the fog
verifier in addition to N, and it is almost impossible
to obtain any valid information only knowing S.

6. Evaluation

6.1. Query Mechanism Performance Evaluation. We use
Hyperledger Fabric version 1.4.12 to build a blockchain
network for query mechanism performance evaluation. *e
configuration of the blockchain network built by Hyper-
ledger Fabric is shown in Table 3.

In this network, we use fog verifiers to randomly query 1,
3, 5, and 7 peer nodes 45 times, respectively, and get the
average query time, as shown in Table 4. It can be seen that
although the increase in the number of query peer nodes will
increase the query time, in fact, compared with the entire
attestation process, this overhead is not large. During the
attestation process, we ask fog verifiers to randomly query 3
peer nodes in the blockchain network. *e average attes-
tation overhead of obtaining fog verifiers after 45 remote
attestations is 29.50ms. *e overhead of attestation includes
the cost of the fog verifier to generate the attestation request
and the cost of the fog verifier to verify the attestation report,
which includes the query time. *is overhead is acceptable

for fog verifiers. In summary, our query mechanism does not
incur too much overhead, while mitigating the harm of
database tampering by attackers.

6.2. Runtime Overhead Evaluation. Since our BDFCFA
scheme is aimed at embedded devices, to evaluate the
performance of BDFCFA, we use the SNU real-time
benchmark [32] to test BDFCFA. *ere are many C files in
this benchmark, such as adpcm-test.c and fft1.c for em-
bedded platforms. In addition, since the runtime overhead is
mainly determined by the number of control flow events, we
mainly compare the number of control flow events for each
scheme when evaluating the runtime overhead.

*e experimental results of the runtime overhead are
shown in Table 5. We compare the MGC-FA [7] and
GACFA [8] with our BDFCFA scheme. *e experimental
data on the runtime overhead of MGC-FA come from the
literature [7]. *e scheme with p= 0.3 in MGC-FA is the
scheme proposed in the literature [7]. *e scheme when
p= 0 is the same as the control flow checking scheme in the
literature [33], and the scheme when p= 1 is the same as the
control flow checking scheme in the literature [8]. Runtime
overhead is the average value obtained after the experiment
is repeated many times. As can be seen from the table, the
number of BDFCFA control flow events is less than or equal
to the number of control flow events when the probability
threshold p= 0 of the MGC-FA scheme. Among them, the
number of control flow events of the three programs adpcm-
test.c, fft1k.c, and lms.c is very different and is not of the
same order of magnitude. Although the probability
threshold for the MGC-FA scheme is p= 0.3 or 1, there are
some programs with fewer control flow events than our
BDFCFA. However, when the probability threshold is
p= 0.3 or 1 of the MGC-FA schemes, they reduce the
number of control flow events by sacrificing the control flow
security, thereby reducing the runtime overhead. Because
the number of control flow events directly affects the timeto
check and measure control flow events, and the time
overhead of checking and measuring control flow events
accounts for the vast majority of the runtime overhead.
Similarly, GACFAmakes its control flow events smaller than
BDFCFA on the premise of sacrificing control flow security.
In summary, our BDFCFA scheme effectively reduces
runtime overhead without sacrificing control flow security,
making the whole scheme more suitable for resource-con-
strained embedded devices.

6.3. Attestation Protocol Performance Evaluation. Since our
attestation protocol is used for control flow attestation, we
compare the performance of the challenge-response based
unidirectional control flow attestation protocol used in [4–8]
with our elliptic curve-based bidirectional control flow at-
testation protocol. We use two attestation protocols sepa-
rately in the BDFCFA scheme for comparison. Among them,
the elliptic curve used by the bidirectional control flow
attestation protocol based on the elliptic curve is 256 bits,
and the secure hash function is also 256 bits. *e challenge-
response based unidirectional control flow attestation
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protocol uses 256-bit elliptic curve based ECSDA and 256-
bit hash function.

6.3.1. Communication Cost Performance Analysis. First, we
theoretically analyze the communication cost of the two
protocols. In the challenge-response-based unidirectional
control flow attestation protocol, the verifier first needs to
send a challenge C containing the program id, the program
input in, and the random numberN to the prover.*e prover
needs to return an attestation report R containing the ex-
pected measurement value h, the challenge C, and the digital
signature S obtained by signing the expected measurement
value and the challenge. In the bidirectional control flow
attestation protocol based on the elliptic curve proposed in
this paper, the fog verifier first needs to send an attestation
request Req containing the input in of the program, the
timestamp T1, the id of the program, and the identity au-
thentication information C1 and C2. *e prover needs to
return an attestation report containing the timestamp T2, the
encryption measurement value hs, and the identity authen-
tication information Cr.*e theoretical communication costs
of the two protocols are shown in Table 6.

We assume that the size of program id, program input in,
timestamp, and random number N are all 4 bytes, so the size
of challengeC is 12 bytes. Since the bidirectional control flow
attestation protocol based on an elliptic curve uses a 256-bit
elliptic curve, the sizes of C1, C2, and Cr are all 32 bytes, so
the size of the attestation request Req is 76 bytes and the size
of the attestation report Rep is 68 bytes. *erefore, the
communication bandwidth consumption of the bidirec-
tional control flow attestation protocol based on the elliptic
curve is 144 bytes. *e challenge-response-based unidirec-
tional control flow attestation protocol uses 256-bit elliptic

curve-based ECSDA and a 256 bit hash function, so the size
of the attestation report R is 108 bytes. *e communication
bandwidth consumption of the challenge-response-based
unidirectional control flow attestation protocol is 120 bytes.
It can be seen from the data that the communication
bandwidth consumption of the two protocols is almost the
same.

6.3.2. Protocol Operational Efficiency Analysis. We use the
SNU real-time benchmark [32] to compare the runtime
overhead of the two protocols on the prover. By performing
multiple experiments on nine programs selected in the SNU
real-time benchmark and averaging them, we obtain a
comparison chart of the runtime overhead of the two
protocol provers, as shown in Figure 7. It is obvious from the
figure that the prover’s runtime overhead difference between
the bidirectional control flow attestation protocol based on
the elliptic curve and the unidirectional control flow at-
testation protocol based on the challenge response is very
small, only one to two milliseconds. *erefore, the runtime
overhead of the two protocols for the prover is almost the
same.

We also compared the attestation time of the verifiers of
the two protocols.*e attestation time here refers to the time
when the verifier generates the attestation request plus the
time when the verifier verifies the attestation report, and
does not include the time caused by the communication
between the verifier and the prover. Any program in the
SNU real-time benchmark will only generate an attestation
request of the same size for the verifier and will only receive
an attestation report of the same size. *erefore, we used the
two protocols to perform 45 repeated experiments on the
adpcm-test.c program in the SNU real-time benchmark test

Table 6: Comparison of communication cost theory.

Protocol Communication
costs

Communication bandwidth consumption
(byte)

*e elliptic curve-based bidirectional control flow attestation
protocol Req +Rep 144

*e challenge-response-based unidirectional control flow attestation
protocol C+R 120
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Figure 7: Comparison graph of runtime costs for both protocol provers.
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and obtained the comparison chart of the attestation time of
the verifiers of the two protocols, as shown in Figure 8. It can
be seen from the figure that the verifier attestation time of
the unidirectional control flow attestation protocol based on
the challenge response is shorter than that of the bidirec-
tional control flow attestation protocol based on the elliptic
curve. Among them, the average attestation time of the
verifier of the bidirectional control flow attestation protocol
based on the elliptic curve is 29.50ms, and the average
attestation time of the verifier of the unidirectional control
flow attestation protocol based on challenge response is
25.53ms. *e difference between the two is close to 4ms,
and the difference is not big.

By analyzing the communication cost and operation
efficiency of the two protocols, the communication cost and
operation efficiency of our proposed bidirectional control
flow attestation protocol based on the elliptic curve are very
small compared to the unidirectional control flow attes-
tation protocol based on the challenge response. However,
our proposed protocol is more secure and can greatly
ensure the communication security between the verifier
and the prover. *erefore, our protocol is more suitable for
program remote control flow attestation in the field of
software security.

6.4. Security Performance Evaluation. We compare the se-
curity of our scheme BDFCFA with some control flow re-
mote attestation schemes in recent years, as shown in
Table 7. Since the security of the GACFA [8] scheme is
related to specific procedures, there is no security com-
parison here. Both C-FLAT [4] and MGC-FA [7] can detect
all control flow hijacking attacks proposed in the table when
the probability threshold p � 0. However, it is not resistant to
impersonation attacks, there is no two-way authentication,
and there is no way to maintain the security of the known
session key. However, LO-FAT [5] and ATRIUM [6] cannot
resist man-in-the-middle attacks except for the security
features that C-FLATdoes not have. Because the attestation
protocols of these two schemes only digitally sign the
random number in the attestation request when generating
the attestation report, the attacker can completely intercept
the attestation request and tamper with the id or input of the
program to achieve the purpose of the attack. When MGC-
FA has probability threshold p � 1, in addition to not having
the security characteristics of probability threshold p � 0, it
cannot detect the JOP attack, branch variable attack, and
loop variable attack in control flow hijacking attacks. *e
reason for this is because MGC-FA only measures function
pointers and function return addresses in the program when
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Figure 8: Comparison of the attestation time between the two protocol verifiers.

Table 7: Security comparison.

Security features SF1 SF2 SF3 SF4 SF5 SF6 SF7 SF8 SF9 SF10
C-FLAT [4] × √ √ × × √ √ √ √ √
LO-FAT [5] × × √ × × √ √ √ √ √
ATRIUM [6] × × √ × × √ √ √ √ √
MGC-FA [7] p � 0 × √ √ × × √ √ √ √ √
MGC-FA [7] p � 1 × √ √ × × √ × × × √
Liu et al. [9] √ × √ × √ √ × × × √
BDFCFA √ √ √ √ √ √ √ √ √ √
√: the scheme supports features, ×: the scheme does not support features. SF1: Resist impersonation attacks, SF2: resist man-in-the-middle attacks, SF3: resist
replay attacks, SF4: two-way authentication, SF5: known session key security, SF6: detect ROP attacks, SF7: detect JOP attacks, SF8: detect branch variable
attacks, SF9: detect loop variable attacks, and SF10: detect function pointer attacks.
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the probability threshold p � 1. Liu et al. [9] used PUF as a
lightweight root of trust for the prover, which can resist
impersonation attacks and achieve known session key se-
curity. However, since it only digitally signs the log, it is also
not resistant to man-in-the-middle attacks. Moreover, it
does not perform two-way authentication and only records
the function pointer and function return address in the
program in the log, so only the ROP attack and function
pointer attack in the control flow hijacking attack can be
detected. Our scheme BDFCFA not only can detect all
control flow hijacking attacks proposed in the table but also
resist network attacks such as impersonation attacks, replay
attacks, and man-in-the-middle attacks, and at the same
time realizes two-way authentication, ensuring the security
of known session keys, and each session key is different.

7. Conclusion

*is paper proposes a blockchain-assisted distributed fog
computing control flow attestation (BDFCFA), which can not
only adapt to today’s explosive growth of embedded devices,
reduce the communication overhead between the verifier and
the prover, and improve the real-time performance of control
flow authentication but also mitigate the attack of the cen-
tralized database being tampered with. At the same time, we
use SGX to protect the integrity and confidentiality of the
verifier and prover data during the certification process. In
addition, the query mechanism adopted by the fog verifier
when querying the measurement data of the program from
the blockchain network can spend less time overhead, thereby
mitigating the harm of the attacker tampering with the da-
tabase. Compared toMGC-FA [7], the simplified control flow
representation model used in our scheme can effectively
represent the control flow of the program under the premise
of ensuring the security of the control flow, thus reducing the
runtime overhead of the prover in the attestation process.
*rough comparative experiments with the challenge-re-
sponse-based unidirectional control flow attestation protocol,
it can be inferred that our proposed bidirectional control flow
attestation protocol based on the elliptic curve can greatly
protect the communication security between the verifier and
the prover and does not generate excessive performance
overhead and communication costs. *is protocol is more
suitable for program remote control flow attestation than the
challenge-response-based unidirectional control flow attes-
tation protocol used in the program control flow scheme by
previous researchers. Finally, by comparing the security of
BDFCFA with some remote control flow attestation schemes
in recent years, it can be seen that the BDFCFA scheme has
the highest security and can better protect the security of
program control flow attestation. In summary, BDFCFA can
adapt to today’s explosive growth of embedded devices,
improve the real-time performance of control flow attesta-
tion, alleviate the harm of attackers tampering with the da-
tabase, reduce the runtime overhead of the prover during the
attestation process, and greatly protect the security of the
communication between the verifier and prover, and does not
produce excessive performance overhead and communica-
tion cost.

In the future, we will study remote control flow attes-
tation based on the combination of dynamic and static
measurements. Because of the current runtime control flow
measurement, only the control flow data when the program
is dynamically running are measured. However, if the at-
tacker tampers with the binary code of the program on the
premise of ensuring the original control flow, the existing
control flow remote attestation will not be able to detect this
behavior.

Data Availability

No data were used to support this study.

Conflicts of Interest

*e authors declare no conflicts of interest in this work.

Acknowledgments

*is work was supported in part by the Major Scientific and
Technological Projects in Yunnan Province under Grant
202002AB080001-8, the Yunnan Key Laboratory of Block-
chain Application Technology under Grant
202105AG070005 and Projects YNB202109 and YNB202115,
the Scientific Research Fund Project of Yunnan Provincial
Department of Education under Grant 2022Y160, the Na-
tional Natural Science Foundation of China under Grant
61971208, the Yunnan Reserve Talents of Young and
Middle-Aged Academic and Technical Leaders (Shen Tao)
under Grant 2019HB005, and the Yunnan Young Top
Talents of Ten *ousands Plan (Shen Tao, Zhu Yan, Yunren
Social Development) under Grant 2018 73.

References

[1] M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow in-
tegrity,” in Proceedings of the ACMConference on Computer &
Communications Security, p. 340, Alexandria VA USA, No-
vember 2005.

[2] H. Shacham, “*e geometry of innocent flesh on the bone:
return-into-libc without function calls (on the x86),” in
Proceedings of the ACM Conference on Computer and Com-
munications Security, pp. 552–561, Alexandria, VA, USA,
November 2007.

[3] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-ori-
ented programming: a new class of code-reuse attack,” in
Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security, ASIACCS 2011,
pp. 30–40, ACM, Hong Kong, China, March 2011.

[4] T. Abera, N. Asokan, L. Davi et al., “C-FLAT: control-flow
attestation for embedded systems software,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, pp. 743–754, Vienna, Austria, October
2016.

[5] G. Dessouky, S. Zeitouni, T. Nyman et al., “LO-FAT: low-
overhead control flow attestation in hardware,”vol. 24,
pp. 1–24, in Proceedings of the 54th Annual Design Auto-
mation Conference 2017, DAC 2017, vol. 24, pp. 1–24, ACM,
Austin, TX, USA, June 2017.

[6] S. Zeitouni, G. Dessouky, O. Arias et al., “ATRIUM: runtime
attestation resilient under memory attacks,” in Proceedings of

16 Security and Communication Networks



the 2017 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pp. 384–391, Irvine, CA, USA, No-
vember 2017.

[7] J. Hu, D. Huo, M. Wang, Y. Wang, Y. Zhang, and Y. Li, “A
probability prediction based mutable control-flow attestation
scheme on embedded platforms,” in Proceedings of the 2019
18th IEEE International Conference on Trust, Security and
Privacy Computing And Communications/13th IEEE Inter-
national Conference On Big Data Science And Engineering
(TrustCom/BigDataSE), pp. 530–537, Rotorua, New Zealand,
August 2019.

[8] J. Zhan, Y. Li, Y. Liu, H. Li, S. Zhang, and L. Lin, “NSGA-II-
Based granularity-adaptive control-flow attestation,” Security
and Communication Networks, vol. 2021, Article ID 2914192,
16 pages, 2021.

[9] J. Liu, Q. Yu, W. Liu, S. Zhao, D. Feng, and W. Luo, “Log-
based control flow attestation for embedded devices,” in
Cyberspace Safety and Security. CSS 2019, J. Vaidya, X. Zhang,
and J. Li, Eds., vol. 11982, Cham, Springer, 2019 Lecture Notes
in Computer Science.

[10] H. -N. Dai, Z. Zheng, and Y. Zhang, “Blockchain for Internet
of *ings: a survey,” IEEE Internet of Gings Journal, vol. 6,
no. 5, pp. 8076–8094, 2019.

[11] Q. Wang, X. Zhu, Y. Ni, L. Gu, and H. Zhu, “Blockchain for
the IoT and industrial IoT: A review,” Internet of Gings,
vol. 10, pp. 1–9, 2020.

[12] V. Buterin, “On public and private blockchains,” 2015, https://
blog.ethereum.org/2015/08/07/on-public-and-private-
blockchains/.
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