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In smart grid systems, electric utilities require real-time access to customer electricity data; however, these data might reveal users’
private information, presenting opportunities for edge computing to encrypt the information while also posing new challenges. In
this paper, we propose an Edge-assisted Lightweight Power Data Aggregation Encryption (E-LPDAE) scheme for secure
communication in a smart grid. First, in the edge privacy aggregation model, the data of smart meters are rationally divided and
stored in a distributed manner using simulated annealing region division, and the edge servers of trusted organizations perform
key one-time settings. The model encrypts the data using Paillier homomorphic encryption. It then runs a virtual name-based
verification algorithm to achieve identity anonymization and verifiability of the encrypted data. The experimental results indicate
that the E-LPDAE scheme reduces overall system power consumption and has significantly lower computation and commu-

nication overhead than existing aggregation schemes.

1. Introduction

In recent years, with the rapid development of modern sci-
ence and technology and urbanization, the combination of
power systems and information technology has produced a
new concept—Smart Grid [1]. Smart Grid is the intelligence
of the power grid. Building a smart grid can optimize resource
allocation, reduce consumption, and increase efficiency. In
smart grid applications, smart meters are deployed in all
households in a residential area, each smart meter can collect
the user’s electricity consumption data and report it to the
control center periodically (for example, every 15 minutes),
and the control center can perform actions based on the
reported data and real-time data analysis and take corre-
sponding measures to ensure the health of the power system.
Therefore, in the process of data transmission, a large number
of real-time electricity consumption data of users is interacted
with and calculated on the transmission line [2].

By using container technology, edge computing [3] is
able to collect heterogeneous data in real time across a wide

range of devices and can provide elastic computing resources
for deep learning models. The resource configuration of edge
computing can satisfy offline processing and analysis of
small-area data, thereby ensuring the safe transmission and
processing of various data. In addition, edge computing can
reduce network latency and improve the utilization of
network transmission bandwidth with the help of high-
speed communication technology. In the implementation
process of smart grid, the introduction of edge computing
has a good development prospect, as shown in Figure 1.
Interaction and calculation of real-time electricity
consumption provide a great convenience for power com-
panies to fully grasp the electricity consumption of their
customers but, at the same time, pose serious security and
privacy risks. As pointed out by the National Institute of
Standards and Technology (NIST) in the United States, there
are more and richer data in smart grid systems. While
bringing convenience to services, data leakage will also bring
many security threats. Once the real-time electricity con-
sumption information is stolen by the attacker, through the
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FIGURE 1: The edge computing paradigm extends cloud computing
capabilities to the edge of the network to provide real-time response
to local processes, as well as aggregated bandwidth savings.

analysis of the data, the user’s detailed family life habits and
other information can be obtained. Therefore, how to
protect user privacy and data security in smart grids has
become a research hotspot in recent years [4].

In order to overcome the above challenges, we propose
an edge-assisted lightweight power data aggregation and
encryption scheme. The main contributions of this paper are
summarized as follows:

(i) Anedge privacy aggregation model is proposed. The
model uses simulated annealing (SA) to propose a
segmentation algorithm for smart meters, Simu-
lated Annealing Region Division (SARD). The al-
gorithm can generate optimal area division
according to the energy consumption of electricity
meters, which is convenient for data collection and
analysis of cluster electricity meters. The realization
of distributed data storage is conducive to the
privacy protection of smart meter data.

(ii) The Trusted Organization (TO) can set all keys in
the system at one time, improve the efficiency of the
smart grid, and reduce the power consumption of
the system. Since a trusted organization stores a
large amount of sensitive information such as keys,
if it is stolen by an attacker, it will seriously threaten
the data privacy and security of users. Such issues
can be resolved by using edge servers, which are
relatively trustworthy.

(iii) A virtual name-based authentication algorithm is
proposed. The algorithm wuses an encryption
mechanism combining chameleon signature and
Paillier cryptography to encrypt and verify the data
to ensure the security of transmitted data while
reducing the communication overhead; a selection
strategy is developed using an attribute decision tree
to improve the value of the data. Finally, the ag-
gregated encrypted data is sent to the Cloud Power
Distribution Center (CPDC). The CPDC decrypts
the data in order to obtain the final result.

The rest of this paper is organized as follows. Section 2
summarizes the related work. In Section 3, we do some
preparatory work. In Section 4, we describe the procedure
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and algorithm of the scheme. The results of the experimental
analysis are reported in Section 5. Finally, the conclusions
are discussed in Section 6.

2. Related Works

Although many secure communication schemes to protect
the privacy of smart grid users have been introduced over the
years, not many privacy-preserving aggregation schemes
such as [5-8] have been proposed so far. Electricity con-
sumption data collection is an important process in smart
grid communication systems. However, a report from the
Netherlands argues that frequent reading of smart meters is
problematic from a legal point of view [9], violates the
European Convention on Human Rights, and generates
many load issues. Fortunately, integrating edge computing
into smart grids and designing data aggregation schemes
that protect privacy can avoid these problems. First, Pacific
Northwest National Laboratory first proposed “edge com-
puting” in an internal report in 2013. With the rapid growth
of the Internet of Things, edge computing has received a lot
of attention. Shi et al. summarize typical examples of the
smart home and collaborative edge and present some of the
challenges and opportunities in the area of edge computing
[10]. It moves some of the workloads used in the cloud to the
edge nodes. The security of sensitive data stored on cloud
servers through edge nodes will be of great concern to users.
Therefore, consideration should be given to the resource
requirements of edge devices, as well as the privacy of smart
grid users.

To address these issues, we use data aggregation tech-
nology to solve the transmission conflict problem of a large
number of data packets for smart grids in edge computing.
To improve the security of the data aggregation model,
traditional secure data aggregation schemes use hop-by-hop
aggregation encryption [11]. However, frequent encryption
and decryption operations may affect the aggregation effi-
ciency and increase the corresponding additional energy
consumption and the delay of the data aggregation process.
An efficient privacy-preserving aggregation scheme (EPPA)
for smart grid communication [7] was proposed by Lu et al.
They used a super-incremental sequence to construct
multidimensional data and encrypted the data with Paillier
homomorphic encryption [12]; however, the scheme has
security flaws. Shi et al. used an untrusted aggregator to
differentially aggregate multiple time slots, which is more
costly based on computationally intensive systems [13]. Fan
et al. [14] proposed a secure power usage data aggregation
scheme for smart grids, but it critically requires a third-party
trust mechanism for distribution, adding an additional
burden. Li et al. proposed a distributed incremental data
aggregation approach where they used homomorphic en-
cryption to solve the repetitive regular data aggregation task
[5]. Garcia and Jacobs used homomorphic encryption to
ensure the privacy of users and gave a measurement method
[6]. Lu et al. proposed a lightweight privacy-preserving data
aggregation scheme called Lightweight Privacy-Preserving
Data Aggregation (LPDA), but it cannot achieve identity
anonymization [15]. Hua et al. proposed an effective smart
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grid aggregation scheme against malicious data mining
attacks but increased the computational overhead and
communication overhead [16].

3. Preparation

This section reviews the main basic concepts related to our
work, including Paillier homomorphic encryption, simu-
lated annealing region partition [17], chameleon hash
function [18], and Attribute decision tree.

3.1. Paillier Homomorphic Encryption. Paillier cryptography
is an additive homomorphic public key cryptography, which
has been widely used in the field of encrypted signal pro-
cessing or third-party data processing. Its homomorphic
property is that the corresponding arithmetic operation can
be performed on the ciphertext directly after encryption, and
the result of the operation is the same as that of the cor-
responding operation in the plaintext domain. Its proba-
bilistic property is that for the same plaintext, different
ciphertexts can be obtained by different encryption pro-
cesses, thus ensuring the semantic security of the ciphertext.
The mechanisms used for encryption and decryption are as
follows:

(1) Key generation: randomly select two large prime
numbers p and g, calculate their product N and the
least common multiple of p — 1 and g — 1, and then
randomly select an integer that satisfies the following
conditions:

gcd(L(gAmodNZ),N) =1 (1)

Among them, function L(u)= (u-1)/N and
function ged(.) are used to calculate the greatest
common divisor of two numbers. Z. is the set of
integers less than x € Z% » while Z3, is the set of
integers coprime with N* in Z3;; . (N, g) and A are
public key and private key, respectively.

(2) Encryption process: a random integer r € Z; is se-
lected. For any plaintext m € Z,, , the corresponding
ciphertext ¢ is obtained by using public key (N, g)
encryption:

c=E[m,r] )

= g"r" mod N°.

According to the properties of the Paillier encryption
system, when ciphertext ¢ € Z3, is encrypted with
the same public key, because the selection of ci-
phertext r is random, different ciphertext ¢ can be
obtained for the same plaintext m , but the same
plaintext m can be restored after decryption, thus
ensuring the semantic security of ciphertext.

(3) Decryption process: decrypt ciphertext ¢ with private
key n to get the corresponding plaintext m.

3
m = D|c]
L(c/\ mod Nz) (3)
L(g mod N )

3.2. Simulated Annealing Region Division

3.2.1. Regional Division. For a given smart meter, the di-
vision of area Q is expressed as follows:

SQ i d 2
— S S

@) e

sq is the number of regions, L is the number of links
between smart meter nodes in the smart grid, [, is the
number of regions in region Q, L is the number of links
between smart meter nodes in the smart grid, I is the
number of links between smart meter nodes in region Q, and
d, is the sum of degrees of smart meter nodes in region Q.
First, we use equation (4) to randomly place smart meters on

the device layer into the area. Finally, we use a simulated
annealing algorithm to find the optimal partition.

3.2.2. Simulated Annealing Algorithm. It is a general
probabilistic algorithm that is used in our scheme to find the
optimal solution to the zoning problem, where one can find
low-cost smart meter regions, but not local minima for high-
cost smart meter regions. We introduce the energy con-
sumption T, of smart meters to achieve this. Starting from
high T,, it gradually decreases and the system gradually
approaches the minimum cost, avoiding the high-cost local
minima.

The purpose of identifying modules is to maximize the
use of modules, where costs C = —Q and Q are the areas
defined in equation (4). We update each energy con-
sumption randomly, and the probability is expressed as

1C(S")<C(T,),

exp (—M)C (8"y>c(t,),

where C (S') is the cost after the update and C (T,) is the cost
before the update, AC = C(S') - C(T,) .

p= (5)

3.3. Chameleon Hash Function. Traditional cryptographic
hash functions are difficult to find collisions. But the cha-
meleon hash function can artificially set up a “back door”: if
you master it, you can easily find collisions. This breaks the
collision resistance of the hash function, but for most people,
these properties remain, and the hash is still secure.
Accenture applied the characteristics of the chameleon hash
function and applied for a patent on an editable blockchain.



Although the decentralization and irrevocability of the
blockchain are damaged to a certain extent, on the other
hand, it also expands the application scenario of the
blockchain and meets part of the needs of the government’s
regulatory requirements [19].

Principle description: suppose there exist two prime
numbers p,q , and g = kp + 1 is large enough. The private
key of the chameleon hash function is x € Z% , Z7 is the
group of order g, and g is its generating element. The public
key is h = g*mod p. Given an arbitrary message m with
random value € Z*, now tampering the content m to m’, it
is now desired to find a random number 7' such that
H(mr)=H(@m) . By the exponential property
g * g =g, (g*)" = g\ . The solution procedure for
r! is as follows:

(m+xr)

H(m) = g"h" mod p = g"g"" mod p = g™ mod p,

(mytxry)

H(m)=g"h " modp=g"g" " modp=g mod p.

(6)

Therefore, m, wm!/, x, and r are known,

r1 = (m+ xr —ml)/x mod p.

3.4. Attribute Decision Tree. The attribute decision tree is
modeled after the access control tree and is set up according
to the needs of the data collector. The leaf nodes of the
attribute decision tree represent various attributes, and the
intermediate nodes and roots are replaced by AND and OR.
When an attribute of the data satisfies the requirements of
the attribute decision tree, it is passed and the next calcu-
lation is performed; if not, other calculations or steps are
performed.

For example, Mr. Li is a professor in the school of
computer science of a university, so his attribute set matches
the attribute strategy, as shown in Figure 2. Miss Wang is a
professor in the school of information security of a uni-
versity. Her attribute set does not match the attribute policy,
as shown in Figure 3.

4. Edge-Assisted Lightweight Power Data
Aggregation Encryption Scheme

4.1. Edge Privacy Aggregation Model. The edge privacy ag-
gregation model contains four subjects: the User’s Smart
Meter (USM), the Marginal Power Services Institutions
(MPSI), the Cloud Power Distribution Center, and the
trusted organization. First, the USM encrypts data and di-
vides it into optimal regions according to the change of
energy consumption at different moments using a simulated
annealing region partitioning algorithm, and as the energy
consumption of USM changes at different moments, the
number and location of clustered meters also change, thus
realizing distributed data storage, which is conducive to the
privacy protection of user data. Secondly, MPSI aggregates
data with user identity anonymized and without affecting the
privacy of any party. Finally, CPDC performs secure de-
cryption, and TO performs key generation and distributes
the key to the system. The model is shown in Figure 4.
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User’s Smart Meter. Smart meters use TPM chips to
securely store and encrypt data. The SARD algorithm is
executed using the handheld unit (including the sen-
sor). Divide the smart meters of all users to meet the
power load balance of the meters. The cluster meter
regularly sends the collected data to the edge server.
Perform data encryption calculation and chameleon
signature calculation.

Marginal Power Services Institutions(MPSI). It consists
of edge servers. The edge server performs chameleon
signature aggregation and verification calculations and
data aggregation calculations.

Cloud Power Distribution Center. The cloud server
receives the aggregated data and decrypts it.

Trusted Organizations. The real identities of all users are
virtualized to form virtual names and distribute system
parameters and all private keys, and the distribution
channels are all secure channels. The three parties of
cloud, edge, and smart meter collaborate with trusted
organizations to generate all private keys, as shown in
Figure 5. Compared with existing solutions, our private
keys require only a one-time setup between the three
parties, which is beneficial for resource-limited sys-
tems. In addition, the private keys owned by TO are
involved in decrypting the ciphertext and verifying the
ciphertext, confusing the attacker, and making it im-
possible to tamper with the ciphertext.

4.2. Scheme Construction. The scheme proposed in this
paper realizes the security and integrity of real-time power
consumption data transmission between the smart meter
and power server. The steps are as follows.

4.2.1. Initialization. TO inputs safety parameter (1*) and
gets related parameter (q, G, G,,G,, g;, g, 0, €) , where g,
is a large prime, G, and G, are two additive cyclic groups, G,
is a multiplicative cyclic group, g, is the order of the cyclic
group, g, and g, are the generators of groups G, and G,,
respectively, satisfying that w(g,) =g, and w is an iso-
morphic mapping, e: g, x g, — ¢, is bilinear mapping,
and the storage list is established. TO chooses a system
master key s € Z*% , Z* is a multiplication cycle group, and
y =g5 is the system public key. Two hash functions
H,(.): {0,1}" — G, and H, (.): {0,1}* — G, .

TO publishes system parameters and functions, selects a
security parameter for the Paillier encryption algorithm, and
sends it to the smart meter for initialization of the Paillier
encryption algorithm. TO generates other parameters of the
Paillier encryption algorithm: select two large prime num-
bers p and g, where |p| = |q| = k. The smart table computes
n = pq and chooses g € Z7, as the generator to use (n, g) as
the public key of the Paillier encryption algorithm. CPDC
computes the private key of the Paillier encryption algorithm
A=lem(p-1,9-1).

For the initialization of the chameleon signature, TO
selects an element g; of order g in Z} and an arbitrary index
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FIGURE 2: Schematic diagram of successful matching of policy and attribute collection.
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FIGURE 3: Schematic diagram of policy and attribute collection mismatch.

x , then the private key of the chameleon signature is
CK = x, and the public key is HK = gj.

TO sets the regularized attribute set F as a multiplicative
cyclic group; then, any attribute f in the attribute set F is any
element in the multiplicative cyclic group. The attribute set F
is sent to the smart meter. Similarly, if TO sets the attribute
set A of the attribute decision tree as a multiplicative cyclic
group, then any attribute a in the attribute set A is any
element in the multiplicative cyclic group, and the set at-
tribute set A is sent to CPDC.

4.2.2. User Registration. Assuming a secure channel between

TO and the user, in order to complete the user registration,

the operation steps between the user and TO are as follows:
User i sends ID, serial number of smart meter to TO.
TO sends a Cert to user i after confirmation.

User i uses the Cert to get permission to request the
parameters and key of the algorithm from TO.

TO sends the signature key etc. to the smart meter of
user i.

TO calculation:

DP SI D = H(I D,t)",
pid;, = H(DP SI D,0), (7)
pid,, = H(DP SI D,1).

TO calculates the signature key of user i:

Sio = Pidio’
s (8)
Si1 = pid; .

TO sends the signature key S; = (S;S; ), the real-time
virtual name DP SI D to the smart meter of user i.

4.2.3. Data Processing. Within data acquisition time ¢, the
smart meter of user i encrypts the data with the Paillier
homomorphic encryption and signs the encrypted data with
the chameleon hash function which is referred to as cha-
meleon signature for short. The cluster meter j collects data
within the divided area. Finally, the real-time encrypted data
and signatures are sent to MPSI. The steps are as follows.

The smart meter of user i selects a random number
a € Z% and encrypts data m;,.
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¢; = E(m;) = g"a" mod n’. 9)
The smart meter of user i uses signature key
S; = (8;0S;1), virtual name, and attribute set to sign
encrypted data by the chameleon hash function and
finally send it to the cluster meter j.

h; = Chamelelon.H (c;, HK, DP SI D, f),
. (10)
0i = Si0Si1-

Cluster meter j sends (c;, 0;, DP SI D) to MPSL

MPSI receives the information and runs the virtual
name-based verification algorithm as shown in Algorithm 1.

The algorithm first aggregates chameleon signatures.
After verification, the attribute set f of the data is obtained,
and the attribute set A of the data decision tree is matched in
turn, and the data satisfying the data decision tree can be
data aggregated with other data satisfying that decision tree
for the data aggregation operation.

n
c = Hci mod r’
i=1
n
=Hgm1...gmwa"modn2 . (11)
i=1

n
my+my+...+m,, n 2
= Hg R “q modn
i=1

After aggregation, MPSI sends the aggregated data to the
CPDC through the secure channel. Data decryption: CPDC
decrypts the encrypted aggregate data.

L (c)L mod nz)
m, = ————————~= modn. (12)
i ) 2
L(g modn )
m; =my+my+...... +m,, CPDC stores data for

power grid operation and puts forward decisions.

4.2.4. Track. While making power consumption analysis
and decision-making, CPDC may find that some power
consumption values do not meet its predetermined range or
abnormal conditions. At this time, CPDC will start the
tracking process, and the steps are as follows:

CPDC sends the command to the edge server that
submits the relevant abnormal power consumption: let
MPSI send the stored power consumption and virtual
name at that time to CPDC.

CPDC first decrypts each encrypted data received,
detects and finds the abnormal power consumption,
and locks its DP SI D .

CPDC sends the virtual name of the abnormal power
consumption determined by it to TO and applies for
identity tracking.

TO can query the real identity of the users who send out
abnormal electricity consumption. TO sends the real

identity to CPDC, and CPDC processes the user and his
power consumption accordingly.

4.3. Safety Analysis

4.3.1. User Identity Privacy Protection. Before sending data
to the CPDC, the USM registers with the TO to obtain a
virtual name and signing key. The USM uses the virtual
name as the identity of the data transfer in the architecture
and performs encryption, signing, and other actions based
on it. The USM has a tamper-proof storage device. This
storage device can be thought of as a “black box” that can
read and write data, but only by the USM; no other device
can read or write information. According to the one-way
and collision-free characteristics of the hash function, even if
the attacker obtains the virtual name, it cannot crack the real
identity. This scheme can effectively protect user identity and
prevent illegal intrusion.

4.3.2. Security Analysis of Chameleon Signature. The cha-
meleon signature is a preferable designated verifier signa-
ture. Compared to other signatures, the chameleon
signatures are more suitable for lightweight aggregated
encryption schemes due to their ability to transmit data
efficiently and reduce computational overhead. Chameleon
signatures are also nontransmissible, nonforgeable, and
nonrepudiation, which also ensure data security and meet
the security requirements of the system.

4.3.3. User Fine-Grained Data Privacy Protection. USM
encrypts the electricity consumption data using the Paillier
encryption algorithm, sends it to MPSI, which does not have
the ciphertext decryption key, and sends the ciphertext to
CPDC after successful verification. CPDC mainly receives
aggregated numbers of electricity consumption data, so it
protects the user’s fine-grained data privacy, while CPDC
can get the complete electricity consumption data.

5. Experimental Analysis

5.1. Simulated Annealing Region Division. Intraregional
connectivity and participation: each region is divided into
relatively balanced regions from one or several fully cen-
tralized regions based on the energy consumption of smart
meters to achieve a balanced electrical load in each region.
We define the intraregional connectivity, in order to mea-
sure whether the smart meter u is well connected to other
smart meters in the region.

7z T B (13)

where k, is the number of links from the smart meter u to
other smart meters in zone s, k, is the average number of
links from all smart meters in the zone s,, and o, is the
standard deviation of all links in the zone. b

Of course, we also need to consider unexpected situa-
tions. For example, a smart meter  may not be connected to



its own area. Therefore, we define the participation degree p,,
of a smart meter u.

Sy k 2
pu:I—Z(f>, (14)

s=1 u

where k, is the number of links from the smart meter u to
smart meters in zone s, and k,, is the total number of degrees
of the smart meter u. According to equation (14), if the
connections of the smart meter u are evenly distributed in all
areas, then the participation degree of the smart meter u is
close to 1. If all its connections are in its own area, the
participation degree is 0.

We use a MATLAB environment with a Dell laptop (i5-
6200u, CPU 2.40 GHz, Windows 10 OS) for simulation
experiments. Assuming that 100 smart meters are randomly
distributed in a 1.0 * 1.0km smart grid, and each smart
meter has a random electricity consumption N(T,), a
zoning model is established. First, the 100 randomly dis-
tributed smart meters are generated as a subset of the
neighborhood of electricity consumption N (T,) Download
the open-source dataset from the website Open Energy Data
Initiative (OEDI) and randomly select the electricity con-
sumption information from 100 apartments with no missing
points and a time granularity of 15 minutes. The average
value is calculated based on the electricity load of 100 users at
different times of the day, as shown in Figure 6. 14:00-20:00,
the user’s electricity load continues to grow, with 20:00
reaching the highest peak of the day; 20:00-24:00, the user’s
electricity load continues to fall to a stable value. After
reasonable analysis, we divide the average value of the
electricity load of 100 users in different time periods of a day
into 6 electricity consumption states. A power consumption
state of S(k) is randomly selected for the regional division
scheme, and the next power consumption state of S’ is
randomly selected as the candidate scheme for the next
regional division scheme. Calculate AC = C(S") — C(T,) ; if
AC<0 , accept S' for the next region division scheme;
otherwise, we judge the random update probability
p=exp(-AC/cT)>a , a € (0,1) ; if true, accept S’ for the
next region division scheme; namely, S(k+1) =S8 , k =
k+1 . Then, we check whether the connectivity and par-
ticipation in the region satisfy equations (13) and (14). Fi-
nally, we use S(k + 1) for the region partition scheme and
return the SARD algorithm.

Figures 7(a)-7(f) show the experimental process of the
SARD algorithm. We performed six rounds of state calcu-
lation, divided the six power consumption states into dif-
ferent regions, and terminated the algorithm. Cluster meters
in each area are used to collect data and process the data
accordingly to realize power load balancing under different
power consumption states.

First, the power consumption of smart meters increases
with the increase of users in the smart grid. Since all the data
eventually needs to be sent to the cloud server of CPDC for
processing, the power consumption of the cloud server also
increases with the increase of data, as shown in Figure 8.
Then, we introduce edge computing into the smart grid, and
the power consumption of MPSI increases with the increase
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of edge servers. This layer processes a large amount of data
and then sends it to the CPDC. Since the CPDC does not
need to process a large amount of data, the power con-
sumption of the cloud server in the CPDC does not fluctuate
much, as shown in Figure 9. Comparing the experiments in
the two figures, the introduction of edge servers to process
large amounts of data in the edge privacy aggregation model
of the smart grid effectively reduces the power consumption
of the CPDC and the total system power consumption.

5.2. Total Computing Overhead. The computational over-
heads of this scheme and the LPDA scheme mainly involve
the following three operations: bilinear pair operation, ex-
ponential operation, and Paillier homomorphic encryption
and a decryption operation, and other operations are
neglected. The bilinear pair operation and the exponential
operation are C, and C,, respectively, and the encryption
and decryption of the Paillier algorithm are C, and Cy,
respectively, and the other computational overheads are
neglected. The AMDM scheme is mainly multiple opera-
tions, C,, is the multiplication operation in the cyclic group

n2> Cpm and C,,, are the multiplication operation in Z°,, C,
is the exponential operation, and C_,, is the multiplication
operation in the group G, because C,,,, and C,, produce little
effect negligible.

The scheme uses the MATLAB environment of a Dell
laptop (i5-6200u, CPU 2.40 GHz, Windows 10 OS) for
simulation experiments. The simulation measures the
amount of time needed by the Dell laptop to perform basic
operations in the experimental environment. It takes 1.1 ms
to calculate a single C,, 3.1 ms to calculate C,, 4.5ms to
calculate C,,, and 2.1ms to calculate C,,. Since all three
scenarios in this paper have only one pair of encryption and
decryption operations, we first disregard C, and Cj .

The scenarios in this paper consider the computational
overhead of each of the three participants, Smart Meter,
MPSI, and CPDC, and compare them with other scenarios,
as shown in Table 1. The total computational overhead of all
the solutions is the total computational overhead of the three
participants. As can be seen from the table, this paper is
significantly more efficient than the other two schemes.

As shown in Figure 10, the computing energy con-
sumption of the scheme in this paper is significantly lower
than the aggregated encryption schemes of the remaining
two schemes, where the AMDM scheme resists malicious
attacks and requires more computing energy and is sig-
nificantly higher than the LPDA scheme and the scheme in
this chapter, while the scheme in this chapter does not cause
additional computation while ensuring data security due to
the use of the chameleon signature, so the total computation
overhead is lower, and it can be said that the scheme in this
chapter is better than the LPDA scheme and the AMDM
scheme.

5.3. Total Communication Overhead. The total communi-
cation overhead of this scheme mainly refers to all the
communication data that needs to be transmitted in the
system. The output data length of the hash function is
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160 bits. Suppose the length of # in Paillier encryption al-
gorithm is 512bits, the length of group G, element is
161 bits, the length of DP SI D is 32bits, the length of at-
tribute set f is 32 bits, and the length of g, is 32 bits. The total
communication data volume of this scheme consists of two
parts: the first part is from SM to MPSI, and the data
transmitted is (c;, 0;, DP SI D); the second part is from
MPSI to CPDC, and the data transmitted is ¢ . The total
traffic of the LPDA scheme consists of two parts. The first
part is from SM to ESP, which transmits 2048 bits through
calculation, and the second part is from ESP to CC, which
transmits 2048 bits through calculation. The total traffic of
the AMDM scheme consists of two parts. The first part is SM
to GW, which transmits 3264 bits through calculation, and
the second part is GW to CC, which transmits 3264 bits

3 T T T T T T T
>
~ 25+ -
5
o
(=)
S
= 2+ ]
=
=
g 15¢ E
g* ° ° °
g 8- o e
5 1t 1
(v}
o)
2
o - Py
L o

0.5‘;’/—0’-/ﬁ ]

4 4.5 5 5.5 6 6.5 7 7.5 8
Number of regions

—8— Power consumption of cloud server
—— Power consumption of smart meter
—o— Power consumption of edge server

FIGURE 9: Energy consumption of edge computing network.

through calculation. The comparison between this scheme
and other schemes is shown in Table 2.The simulation ex-
periment is carried out using MATLAB, and the results are
shown in Figure 11.

We use the smart meter data of a year in London on the
Open Energy Data Initiative (OEDI) website to simulate
the total communication cost per day. As shown in Fig-
ure 12, different colors represent different communication
situations; that is, when the number of edge servers and
smart meters changes, the communication cost also
changes. Based on the actual privacy requirements and
cost requirements of the customer, we implement ap-
propriate electricity usage data delivery mechanisms in
the actual area.
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2
3)
4)
%)
(6)
)

Input: ¢;,0;, DP SI D
Output: ¢
(1) fori=1;i<n;i++ do

Q= H?:l 0

h; = Chamelelon.H (c;, CK, DP SI D, f1),c}, f1€ Z%;
f=f-c¢ -ci/xmod p;

f match A;

pid,, = H(DP SI D,0), pid;, = H(DP SI D, 1);
e(Q,9) = (], Pidi,opidf:’i’)’);

(®) =TI, ¢modn’
(9) end for

(10) MPSI sends ¢ to CPDC;

ALGORITHM 1: Verification algorithm based on the virtual name.

TaBLE 1: Analysis of computational complexity.

Scheme SM MPSI (ESP, DCP) CPDC (CQ)
Our scheme 3C,+Cy NC, +2C, Cp
LPDA C,+Cy NC, NC, +Cp
AMDM 2C,, +2C, +C,,, +C, (N+2)C,+C,, 2C, +C,, +2C, + Cy
. Total communication overhead
Total computing overhead 5 ; ; . ) . . ; ;
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FrGure 10: Total computing overhead. —+— Total communication overhead of LPDA [17]
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FiGgure 11: Total communication overhead.
TaBLE 2: Analysis of communication complexity.
6. Conclusion
Scheme SM (bit) MPSI (ESP, DCP) (bit)
Our scheme 1409 1024 In this paper, we consider the actual smart grid, introduce
LPDA 2048 2048 edge computing, and propose an edge-assisted lightweight
AMDM 3264 3264 5 P 5 prop & 8 5

electricity consumption data aggregation and encryption
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FIGURE 12: Total daily communication overhead.

scheme, which solves the problem of sending electricity
consumption data to the cloud by users securely and efficiently.
The scheme uses a simulated annealing zone partitioning al-
gorithm to reasonably partition smart meters according to their
electricity consumption energy consumption to achieve load
balancing of smart grid systems; at each sending of data, li-
censed users apply for virtual names from trusted organiza-
tions to enable them to communicate with the grid as
anonymous, which effectively protects the privacy of user
identity security; in encrypting data, CPDC uses a virtual
name-based verification algorithm which is used to Paillier
encryption technology combined with chameleon signature to
ensure authentication, integrity, and nonrepudiation of data, so
that CPDC can only obtain encrypted data aggregated by
MPSI, protecting the privacy of users’ fine-grained data.
Performance analysis shows that it is much better than the
LPDA scheme and AMDM scheme in terms of communi-
cation overhead and computation overhead. In future work, we
will evaluate our schemes in realistic smart grid scenarios with
stronger adversarial models and study the impact of different
signatures on system performance and security.
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