
Research Article
A Noninteractive Multireplica Provable Data Possession Scheme
Based on Smart Contract

Zhengwen Li ,1 Yang Xin,1 De Zhao ,2 and Yixian Yang1

1School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China
2School of Information Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China

Correspondence should be addressed to Zhengwen Li; lizhengwen@bupt.edu.cn

Received 19 November 2021; Revised 25 January 2022; Accepted 8 March 2022; Published 6 April 2022

Academic Editor: Xin-Yi Huang

Copyright © 2022 Zhengwen Li et al. .is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the explosive growth of data, cloud storage has become a widely used storagemethod. To protect the integrity and availability
of data in cloud storage systems, multireplica provable data possession has gradually become a research hotspot. .is paper uses
smart contracts to replace traditional third-party auditor (TPA) and proposes a noninteractive multireplica provable data
possession scheme based on smart contracts, making the verification process public, immutable, traceable, and able to be carried
out periodically and automatically. .is paper introduces the concept of noninteractivity to reduce the transaction fees caused by
the frequent operation of blockchain in the verification process. By stipulating payment rules in the smart contract, we can ensure
the fairness of all parties. Finally, we give the correctness proof of the scheme and the security proof in the random oracle model,
comparing it with other schemes and verifying the practicability of our scheme through experiments.

1. Introduction

In recent years, with the continuous development of the
Internet of .ings, big data, artificial intelligence, mobile
Internet, and other fields, the amount of data generated by
people has increased explosively. According to IDC [1], the
total amount of data in the world will increase from 33ZB in
2018 to 175 ZB in 2025, and the data will become a precious
strategic resource. Cloud storage has gradually become the
data storage trend due to its low cost, flexible scalability, and
anytime and anywhere access. .e most popular products
are Amazon S3, Google Drive, Microsoft Azure, Dropbox,
Alibaba Cloud, etc.

Generally, after uploading local data to the cloud server
using cloud storage services, users will delete the original
data to save local storage resources. Due to the separation of
cloud storage data ownership and physical control, users
cannot timely understand the actual storage status of data,
which makes the availability and integrity of data one of the
most concerning issues of cloud storage security for users.

Data availability means that users can get data in time
when they need it and recover the original data when there is

a certain degree of error in the data. To ensure data avail-
ability, multireplica and erasure code are two widely used
technologies. Multireplica technology usually stores multi-
ple replicas on multiple servers. If a replica of data is
damaged, it can be recovered using replicas of other data
centers. Erasure code is a coding technology, which uses
redundant blocks to provide fault tolerance. When part of
the data is damaged, it can be reconstructed by coding.
Compared with erasure code, multireplica technology uses
more storage space, but its implementation is more
straightforward and consumes less computing resources, so
it is more widely used.

Data integrity means that specific data remain com-
pletely unchanged during storage or transmission. To ensure
data integrity, Provable Data Possession (PDP) and Proofs of
Retrievability (POR) are two widely used methods. PDP is
used mainly to complete data integrity verification quickly,
and POR is used to ensure data integrity due to its ability to
recover data. It consumes additional computing resources
and storage space.

Cloud storage service providers (CSP) are not entirely
credible. User data may be damaged and unavailable due to

Hindawi
Security and Communication Networks
Volume 2022, Article ID 6268449, 14 pages
https://doi.org/10.1155/2022/6268449

mailto:lizhengwen@bupt.edu.cn
https://orcid.org/0000-0002-1126-8710
https://orcid.org/0000-0003-3941-2654
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6268449

power interruption, hacker attacks, and software and
hardware failures, and even some CSPs deliberately tamper,
destroy, and delete user data for some purpose. To avoid
downloading data before finding that the data are un-
available, users should periodically check the data integrity
in the CSP. Combined with the current situation that CSP
has widely adopted multireplica technology, doing multi-
replica provable data possession safely and efficiently has
become a research hotspot in recent years.

1.1. RelatedWork. Ateniese et al. [2] first proposed the PDP
scheme, which obtains the probability of data integrally
possessed by the server through random sampling of data
blocks, allowing users to check whether the server has stored
the entire data without downloading all data. It uses the
homomorphic verification tag based on RSA to reduce the
computational overhead and improve the efficiency of in-
tegrity verification. .is scheme is also the first to support
public verification, which can meet the needs of third-party
verification. Around the same time, Juels and Kaliski [3]
proposed the POR scheme, which is based on the sentinel
mechanism and can restore damaged data while providing
integrity verification. Since the number of sentinels is fixed
and the verification consumes several sentinels each time,
the scheme has finite verification times. In addition, this
paper presents a formal security definition of integrity
verification for the first time, which is instructive for follow-
up research. Shacham and Waters [4] proposed two POR
schemes based on BLS signature and pseudorandom
functions. .ey presented complete proofs of security of the
two schemes under the random oracle model and the
standard model through the interactive analysis of a series of
games. Wang et al. [5] proposed a PDP scheme based on the
BLS signature, which supports public verification and dy-
namic data update by constructing Merkle hash trees of the
data block tag authenticator. To fully ensure data security
and conserve the computational resources of users, Wang
[6] introduced the TPA to complete the verification work
and propose a public verification scheme supporting privacy
preserving by combining homomorphic linear authenticator
and random masking technique, which can batch process
multiple verification tasks.

To satisfy users’ demands for data availability, CSP
duplicates the data into corresponding replicas and stores
multiple replicas on multiple servers. For multireplica
provable data possession, Curtmola et al. [7] proposed an
MR-PDP scheme to reduce the overhead of integrity veri-
fication of all copies to roughly the same as a single copy.
Unfortunately, this scheme only supports private verifica-
tion. Hao and Yu [8] proposed a multireplica remote data
possession check protocol with public verifiability by
combining a homomorphic verification tag and BLS sig-
natures. Wei [9] proposed an efficient dynamic replicated
data possession verification scheme, which uses the fully
homomorphic encryption (FHE) algorithm to generate
multiple replicas and resist forgery, replacement, and replay
attacks. Ya-Xing [10] proposed a new multiuser and mul-
tiple-replica provable data possession scheme. .e scheme

adopts random mask technology to process ciphertext to
ensure data privacy. It adopts a multibranch authentication
tree to improve the efficiency of data block signature, which
can support dynamic data update operation and batch audit.
Peng et al. [11] proposed an identity-based multiple-replica
data integrity checking scheme (EDID-MRPDP), intro-
ducing a newHomomorphic Verifiable Tag (HVT) structure
and a new Compressed Authentication Array (CAA) data
structure, which can simultaneously and efficiently conduct
batch authentication for multiple owners and cloud servers.
Yu et al. [12] proposed a dynamic multiple-replica auditing
scheme, which can simultaneously verify the integrity and
geographic location of the replica data of cloud users by
introducing an Indexed Merkle Hash Tree (IMHT), and the
problem of the excessive overhead of the existing Merkle
hash tree can be reduced.

Most of the above integrity verification schemes assume
that TPA is credible, which is bold and dangerous. If the
auditor colluded with the CSP or the attacker, the provable
data integrity provided by the auditor would become un-
reliable [13–17]. Meanwhile, TPA is also faced with a single
point of failure and performance limitations. Fortunately,
the emergence of blockchain technology provides a new way
to solve these problems because the essence of blockchain
technology is a mutual trust mechanism based on mathe-
matical algorithms. In addition, blockchain has the char-
acteristics of decentralization, openness, transparency,
tamperproof, and traceability, which coincide with the re-
quirements of data integrity audit. Nowadays, more and
more scholars have begun to combine blockchain tech-
nology to research provable data integrity.

Some schemes [18–20] only take advantage of the
openness, transparency, and tamper-proof characteristics of
the blockchain to store verification logs on the blockchain
but do not eliminate the threat of malicious TPA. Huang
et al. [21] proposed a collaborative auditing blockchain
framework for cloud data storage by using all consensus
nodes substituting the single third-party auditor to execute
auditing delegations and record them permanently, but not
for multiple replicas. Xu [22] proposed a decentralized and
arbitrable data auditing scheme based on blockchain. It
mainly uses the communicative hash technique to randomly
verify the integrity of a group of data blocks to probabi-
listically verify the integrity of all data, and it completes the
information interaction in the verification process through
blockchain transactions. It uses smart contracts to realize the
adjudication mechanism without TPA. However, the
scheme is too idealized, almost every data block needs to
participate in the verification, and the interaction process
will produce a large number of blockchain transaction costs,
which makes the scheme very impractical. Chen et al. [23]
proposed the first decentralized system BOSSA for proofs of
data retrievability and replication. Since the blockchain
cannot actively issue challenges and reacts based on received
transactions, this paper proposes a time-restricted proof
forcing the cloud to prove data availability. In addition, the
scheme is aimed at the decentralized storage network, where
other nodes store replicas, so the replicas must be encoded
and encrypted to ensure privacy and reliability. Fan et al.

2 Security and Communication Networks

[24] used a smart contract to replace TPA and proposed a
decentralized audit scheme on Ethereum called Dredas;
anyone can obtain audit results from Ethereum without
worrying about semihonest TPA. .is solution uses a smart
contract and ether to propose a deposit mechanism to pay
audit fees and punish malicious behavior. At the same time,
the solution also supports batch audit and dynamic data
audit. However, the scheme does not consider the case of
multiple replicas, and a large amount of information needs
to be stored in the contract in the audit process, which has
the problem of high interaction cost. Wang et al. [25] used
blockchain to replace TPA and designed a blockchain-based
fair payment smart contract for a public audit of cloud
storage. .is contract ensures that CSP needs to submit
provable data possession termly. To reduce the number of
times of interactions during the execution of the contract,
the concept of noninteractive provable data possession was
first proposed. Unfortunately, multireplica is not consid-
ered. Li et al. [26] proposed a decentralized storage
framework supporting provable data possession based on
blockchain—IntegrityChain, which can simultaneously
protect data confidentiality, integrity, and availability by
using pseudorandom function and multireplica technology.
However, all interactions in this scheme are completed
through transactions of blockchain, and gas is consumed in
each step, so the transaction cost is significantly increased.
Chen et al. [27] proposed a decentralized outsourcing
storage system that supports dynamic provable data pos-
session based on the blockchain. .e applicable scenario is
P2P storage network. All storage and audit behaviors will
generate transactions, and then blockchain is used to record
all transactions. .e scheme utilizes smart contract to
support public verification, ensures fairness of all parties by
deposit mechanism, and takes advantage of an authenticated
data structure (ADS) called rank-based Merkle hash tree to
support updating operations. However, the scheme is not
lightweight enough, and additional Merkle tree structure
and auxiliary verification information need to be stored in
the transaction, which has a great burden on the operation of
blockchain.

Existing schemes do not fully account for the transaction
fees on the blockchain, which would be higher if the data
were to be manipulated in a complex manner. In addition,
the storage capacity of each block is so small that it is
impossible to store large amounts of data or complex data
structures in practice. .erefore, considering the limited
storage capacity of blocks and the high transaction fees
caused by frequent interactions, we improved the multi-
replica provable data possession protocol based on the BLS
signature and homomorphic authentication tag and pro-
posed a noninteractive lightweight scheme combined with a
smart contract.

1.2.OurContribution. Our contributions are summarized as
follows.

(1) A noninteractive multireplica provable data pos-
session protocol NI-MR-PDP is designed to support
public verification, batch processing, and privacy

preserving; all parties in the system do not need to
carry out challenge-response interaction. A series of
games are constructed for interactive analysis to
prove that the protocol is safe in the random oracle
model.

(2) A noninteractive multireplica provable data pos-
session scheme based on smart contracts is proposed.
Deploying smart contracts on blockchain to elimi-
nate the dependence on untrusted TPA can auto-
matically verify data integrity openly, transparently,
and periodically. According to the content of the
smart contract, the rights and obligations of the
participating parties are stipulated. Once the con-
ditional contract is triggered, automatic execution of
the contract can protect the legitimate rights of all
parties and reduce the settlement cost of disputes.
After deploying the contract, the parties in the
system do not need to interact, which helps the
consensus nodes in the blockchain to efficiently
implement the smart contract.

(3) A series of games are constructed for interactive
analysis to prove that the scheme is safe under the
random oracle model. Experiments show that the
scheme is practical and has good efficiency.

1.3. Organization. .e rest of the paper is organized as
follows. Section 2 recalls some preliminaries used in our
scheme. Section 3 defines the model of our scheme, gives the
formal definition, and presents the concrete construction.
Section 4 provides the security proof of the protocol. Section
5 evaluates the performance of our scheme. Finally, we give a
conclusion in Section 6.

2. Preliminaries

2.1. BilinearMap. Let G1, G2, and GT be multiplicative cyclic
groups of prime order p, g1 a generator of G1, and g2 a
generator of G2. A bilinear map e: G1 × G2⟶ GT has the
following properties.

(1) Bilinear: ∀u ∈ G1, v ∈ G2 and ∀a, b ∈ Zp, there is
e(ua, vb) � e(u, v)ab

(2) Nondegenerate: e(g1, g2)≠ 1
(3) Computable: ∀u ∈ G1, v ∈ G2, and there is an effi-

cient algorithm to calculate e(u, v)

2.2. BLS Signature. Dan Boneh [28] proposed the BLS
signature scheme, which uses bilinear mapping to verify the
elements in the elliptic curve group..e core idea is to verify
the correctness of the digital signature while protecting the
user’s private key from being leaked. .e signature length of
BLS is shortened to 160 bits, which is shorter than a typical
signature at the same security level.

Let the signature algorithm be based on bilinear map-
ping e: G1 × G2⟶ GT, where G1, G2, and GT are multi-
plicative cyclic groups of prime order p, g1 is a generator of
G1, and g2 is a generator of G2.

Security and Communication Networks 3

BLS signature algorithm includes three algorithms: key
generation algorithm, signature algorithm, and verification
algorithm. .e specific description is as follows.

(1) SKg: it is used to generate a pair of the public and
secret keys of the signature scheme. .e user ran-
domly selects a value x ∈ Zp as the secret key, and
the corresponding public key is gx

2 ∈ G2.
(2) SSing: it is used to complete the signature of the

message. Given a secret key x and message
m ∈ 0, 1{ }∗, compute the hash of the message h �

H(m), h ∈ G1 and output the signature
σ � hx, σ ∈ G1.

(3) SVerify: it is used to verify the validity of the sig-
nature. Given a message m, signature σ, and public
key gx

2 , check whether e(σ, g) � e(h, gx
2) holds. If it

holds, the signature is valid. Otherwise, it is invalid.

2.3. Blockchain and Smart Contract. In 2008, Satoshi
Nakamoto [29] proposed the concept of bitcoin, and
blockchain as the core technology of bitcoin was proposed
for the first time. Blockchain is essentially a chained data
structure that combines data blocks in chronological order
and is a tamper-proof and unforgeable distributed ledger
guaranteed by cryptography.

In the blockchain, data are permanently stored in blocks,
and blocks are generated one by one in chronological order
and connected into a chain. As shown in Figure 1, each block
contains a block header and a block body. .e block header
contains the previous block’s hash value, version number,
random value, timestamp, Merkle root hash, and difficulty
value. .e block body contains all transaction information
generated during the block creation process. Each block in
the blockchain is identified by a hash value obtained by the
secondary SHA256 hash calculation of the block header.
Each block can find its previous block by the previous block
hash value contained in its block header. Any change to a
block on the blockchain will lead to a series of changes in
subsequent blocks. Distributed nodes synchronously update
the hash chain by running a consensus protocol. .erefore,
blockchain has the characteristics of decentralization,
transparency, openness, tamper-resistant, and traceability.

In 1997, the smart contract was formally proposed by
Nick Szabo [30], which is an electronic quantitative trading
protocol for contract terms in reality. .e essence of a smart
contract is a piece of code running on the blockchain. .e
logic of the code defines the content of the smart contract.
After the smart contract is successfully deployed, once the
agreed rules are met, the contract content can be auto-
matically executed without the participation of intermedi-
aries, and no one can prevent it from running. We can say
that blockchain provides a trusted execution environment
for smart contracts, and smart contracts extend blockchain’s
application. .e smart contract has been applied in many
fields, such as electronic voting [31] and insurance [32], and
has broad prospects.

3. Our Scheme

3.1. System Model. .e system model of a noninteractive
multireplica provable data possession scheme includes three
entities: data owner, cloud storage service provider, and
verifier (see Figure 2).

(1) Data Owner (DO): cloud storage service users
choose to pay a certain fee to store their data in
remote servers of the cloud storage service provider
to save local storage costs and use data flexibly and
conveniently.

(2) Cloud Storage Service Provider (CSP): it is composed
of multiple replica servers, which adopt multireplica
technology to improve data availability and provide
computing resources, storage resources, and net-
work bandwidth resources for DO. CSP needs to
verify the data integrity of multiple replicas peri-
odically. If the verification fails, it will compensate
for a certain fee to DO.

(3) Verifier: it is the proof verification algorithm exec-
utor; because of the public verification of the scheme,
theoretically all members of the blockchain can act as
verifiers, usually by third-party miners. .e verifier
obtains a certain reward by executing the smart
contract deployed on the blockchain.

3.2. Formal Definition. .e scheme is divided into two
phases: the setup and audit phases. It consists of five
algorithms: KeyGen, ReplicaGen, TagGen, ProofGen, and
ProofVerify. Each algorithm is formally defined as
follows.

(1) Key Gen(1λ)⟶ (pk, sk): key generation algorithm
is run by DO. .e algorithm’s input is a security
parameter λ, and the output is public key pk and
secret key sk.

(2) ReplicaGen(F)⟶ Fd􏼈 􏼉: replica generation algo-
rithm is run by DO. .e algorithm’s input is ci-
phertext F, and the output is t different replicas
Fd􏼈 􏼉, 1≤ d≤ t.

(3) TagGen(sk, Fd)⟶ (τd,ψ): tag generation algo-
rithm is run by DO. .e algorithm’s input is the
secret key sk and replica Fd, and the output is the tag
of replica τd and the tag set of blocks ψ.

(4) Proof Gen(θ, Fd, τd,ψ)⟶ Pd: proof generation
algorithm is run by CSP. .e algorithm’s input is
public state information θ, replica Fd, the tag of
replica τd, and the tag set of blocks ψ, and the output
is proof Pd, 1≤d≤ t.

(5) Proof Verify(pk, θ, P)⟶ (SUCCESS, FALSE):
proof verification algorithm is run by the verifier.
.e algorithm’s input is public key pk, public state
information θ, and proof P � Pd􏼈 􏼉. If the verification
succeeds, the output is SUCCESS, and if the verifi-
cation fails, the result is FALSE.

4 Security and Communication Networks

3.3. Scheme Implementation. In this part, we first introduce
the noninteractive multireplica provable data possession
(NI-MR-PDP) protocol. .en we propose our noninterac-
tive multireplica data possession scheme combined with
smart contract technology.

3.3.1. NI-MR-PDP.
(1). Setup Phase. Let G and GT be multiplicative cyclic groups
of prime order p and g a generator of G, and there is a
bilinear map e: G × G⟶ GT. Two hash functions are
H(·): 0, 1{ }∗ ⟶ G and h(·): 0, 1{ }∗ ⟶ Zp. Two

CSPDO

Blockchain

Verifier

Pay I/F from ADDRESSCSP to ADDRESSV

If activate T1 , Pay SF from ADDRESSDO to ADDRESSCSP
If activate T2 , Pay CF from ADDRESSCSP to ADDRESSDO

2. Deploy T
1

3. G
en

era
te P

d
, d

eploy T
2

4. G
en

era
te p

roof P
 with

 sta
te

inform
ati

on θ,
deploy T

3

peri
odica

lly

6.
 A

ct
iv

at
e T

1 o
r T

2
ac

co
rd

in
g

to
 th

e
ve

rifi
ca

tio
n

re
su

lts5.Execute T
3

periodically

1.Generate (pk, sk), Fd, τd, ψ , Send {Fd, τd, ψ} to CSP

Figure 2: System model.

Block N

Block Header

Block Body

Prehash Nonce Version

Timestamp

Merkle Root Hash

Difficult Value

Tx Tx Tx

Merkle Root
Hash

Hash Value Hash Value

H (Tx_2)H (Tx_1) H (Tx_n-1) H (Tx_n)

......

......

Block N+1

Block Header

Block Body

Prehash Nonce Version

Timestamp

Merkle Root Hash

Difficult Value

Tx Tx Tx

Value

State

Address

Functions

Conditions

Smart Contract

......

SHA 256^2 SHA 256^2 SHA 256^2

Figure 1: Blockchain structure.

Security and Communication Networks 5

pseudorandom functions areα(·): 0, 1{ }∗ ⟶ 0, 1{ }∗ and
β(·): 0, 1{ }∗ ⟶ [1, n]. Let the number of challenge blocks
be an integer c, 1≤ c≤ n.

KeyGen: it selects λ as the security parameter, randomly
generates a pair of public and secret keys (spk, ssk)←R SKg

for signature, and computes v←gssk. .e public key is pk �

(spk, v) and the secret key is sk � ssk.
ReplicaGen: DO encrypts the file to get the ciphertext F,

divided into n blocks with the same size and expressed as
F � fi􏼈 􏼉, 1≤ i≤ n. To prevent the adversary from using files
of different replica servers to restore the complete F, DO
needs to generate a unique and distinguishable replica file.
By adding random values, t various replicas Fd � md,i􏽮 􏽯 are
generated, where md,i � fi + rd,i, rd,i � α(d‖ i),
1≤ d≤ t, 1≤ i≤ n. .e more replicas, the higher reliability of
the data, and the corresponding fee charged by CSP will
increase.

TagGen: DO randomly selects name←R Zp and t values
u1, u2, · · · , ut←

R
G and calculates the tag

σd,i � (H(name‖ i) · u
md,i

d)sk of each block md,i in the replica.
Due to the aggregation of the BLS signature, the tags of the
same subscript blocks of different replicas Fd can be ag-
gregated into σi � 􏽑

t
d�1 σd,i, and the tag set of blocks is

ψ � σi􏼈 􏼉. Let τo d � name‖n‖d‖u1‖ · · · ‖ ut, and the tag of
each replica is τd � τo d‖ S Signsk(τo d).
(2). Audit Phase. At this phase, the Verifier does not need to
randomly select the challenge set to challenge CSP, like the
traditional PDP scheme. Instead, the CSP uses the current
public state information θ as the input of the pseudorandom
function to simulate the challenge set generation process. In
this way, the Verifier can generate a challenge set by itself to
meet the requirement of no interaction.

In our scheme, θ should be publicly available and not
controlled by the CSP while changing over time. Consid-
ering the blockchain structure, the timestamp or hash value
of the previous block in the block header can meet the above
requirements and be used as θ.

ProofGen: CSP selects an appropriate integer c, 1≤ c≤ n.
For ∀j ∈ [1, c] it computes sj←β(θ‖ j); we can get
I � s1, s2, · · · , sc􏼈 􏼉. For ∀i ∈ I, it calculates Vi←h(θ‖ j), so the
challenge set isQ � (i, Vi)􏼈 􏼉, i ∈ I. Each replica server of CSP
generates the corresponding proof for its stored replica and
computes μd � 􏽐(i,Vi)∈QVi · md,i and σ � 􏽑(i,Vi)∈Qσ

Vi

i ; the
proof of replica Fd is Pd � θ, τd, μd, σ􏼈 􏼉, 1≤d≤ t.

ProofVerify: Verifier first compares the state informa-
tion to verify the correctness of the public state information
θ, and if it fails, it returns FALSE, and if it succeeds, it
computes I � β(θ‖ 1), β(θ‖ 2), · · · , β(θ‖ c)􏼈 􏼉 and Vi←h(θ ‖

i) and then gets the challenge set Q � (i, Vi)􏼈 􏼉, i ∈ I.
.en spk is used to verify the tag of the replica τd. If it

fails, it returns to FALSE. If it succeeds, it returns name, n, d

and u1, u2, · · · , ut.
Finally, we check the equation

e(σ, g)�
?

e(􏽑(i,Vi)∈Q 􏽑
t
d�1 H(name‖ i)Vi · u

μd

d , v). If the
equation holds, output SUCCESS. Otherwise, return FALSE.

It is easy to prove the correctness of the scheme because
v � gsk, σi � 􏽑

t
d�1 σd,i, σd,i � (H(name‖ i) · u

md,i

d)sk, μd �

􏽐
(i,Vi)∈Q

Vi · md,i and σ � 􏽑(i,Vi)∈Qσ
Vi

i ; the equation is as

follows:

e(σ, g) � e 􏽙

i,Vi()∈Q

σVi

i , g⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

� e 􏽙

i,Vi()∈Q

􏽙

t

d�1
σd,i

⎛⎝ ⎞⎠

Vi

, g⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

� e 􏽙

i,Vi()∈Q

􏽙

t

d�1
H(name‖ i) · u

md,i

d􏼐 􏼑
sk⎛⎝ ⎞⎠

Vi

, g⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

� e 􏽙

i,Vi()∈Q

􏽙

t

d�1
H(name‖ i)

Vi · u
md,i ·Vi

d , g
sk⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

� e 􏽙

i,Vi()∈Q

􏽙

t

d�1
H(name‖ i)

Vi · u
μd

d , v⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(1)

3.3.2. Smart Contract Scheme. In the traditional cloud
storage system, DO needs to pay a certain fee to CSP to
purchase storage space. Once the DO data is unavailable or
tampered with, it is challenging to obtain economic com-
pensation for data rights. On the one hand, DO will no
longer store the original data locally, and the proof process
will become arduous. On the other hand, the laws and
regulations of various countries on data security are not
necessarily complete, especially in the case of transnational
disputes. Moreover, legal litigation usually means extra
money and time costs.

.e emergence of smart contracts brings dawn to solve
these problems. Since the smart contract has the charac-
teristics of tamper-resistant and automatic triggering, once
the contract content is agreed by all parties, as long as the
contract conditions are met, the contract results will be
implemented immediately. No one can change the contract
content again.

.erefore, we design a noninteractive multireplica
provable data possession scheme based on smart contracts in
the cloud storage system. By deploying smart contracts on
the blockchain, we provide tamper-resistant multireplica
integrity verification for all parties and guarantee fair pay-
ment through the deposit mechanism. A consensus mech-
anism needs to be used to fight against dishonest verifiers
and ensure the correctness of the verifier’s smart contract
execution. .is article does not discuss that in depth.

.e flow logic of the scheme is shown in Figure 3, which
is described as follows.

(1) DO, CSP, and Verifier register on the blockchain to
obtain public-secret key pairs and account addresses
ADDRESSDO, ADDRESSCSP, and ADDRESSV

6 Security and Communication Networks

respectively. .e public-secret key pair is used for
signature and verification on the blockchain. .e
public key usually generates the account address to
identify the identity and conduct transactions. DO
and CSP need to pay a certain deposit respectively to
ensure the smooth completion of subsequent
transactions.

(2) DO runs the algorithm KeyGen to generate public-
secret key pair (pk, sk), runs the algorithm Repli-
caGen to generate t different replicas Fd of file F, and
runs the algorithm TagGen to generate the tag of
replica τd and the tag set of blocks ψ.

(3) DO uploads Fd, τd,ψ􏼈 􏼉 to each replica server of CSP,
generates a smart contract T1 (see Table 1), and
deploys it on the blockchain. .e smart contract
includes the basic information of F (file name, file
hash, and upload time), transaction information
(storage fee, account address of DO, account address
of CSP), and the signature of DO. It can ensure that if
the CSP completely stores a replica of the file, it can
pass the verification, and DOmust pay the cost to the
CSP in time.

(4) After receiving Fd, τd,ψ􏼈 􏼉, each replica server of CSP
runs the algorithm ProofGen to generate Pd and then
sends it to CSP to obtain the proof set P � Pd􏼈 􏼉. CSP
generates a smart contract T2 (see Table 2) and
deploys it on the blockchain. .e smart contract

DO CSP

Send {Fd,τd,ψ} to CSP

Deploy smart contract T1

Deploy smart contract T2

Execute T3, activate T1 or T2
depended the verification result

Deploy smart contract T3

Run ProofGen to generate P

Run ProofGen to generate proof
P make use of θ

Block chain Verifier

Run KeyGen to generate (pk,sk)
Run ReplicaGen to generate Fd
Run TagGen to generater τd and ψ

Figure 3: .e flow logic of the scheme.

Table 2: Compensation smart contract T2.

Smart contract T2

File name FN
File hash FH
Receiving time RT
Compensation fee CF
Account addresses of DO ADDRESSDO

Account addresses of CSP ADDRESSCSP

Signature of DO SignCSP

Contract content:
Promise
{if Proof Verify(pk, θ, P)⟶ FALSE
Pay CF from ADDRESSCSP to ADDRESSDO}

Table 1: Storage smart contract T1.

Smart contract T1

File name FN
File hash FH
Upload time UT
Storage fee SF
Account addresses of DO ADDRESSDO

Account addresses of CSP ADDRESSCSP

Signature of DO SignDO

Contract content:
Promise
{if Proof Verify(pk, θ, P)⟶ SUCCESS
Pay SF from ADDRESSDO to ADDRESSCSP}

Security and Communication Networks 7

includes the basic information of F (file name, file
hash, and receiving time), transaction information
(compensation fee, account address of DO, and
account address of CSP), and the signature of CSP. It
can ensure that if the CSP does not store complete
replicas and the integrity verification fails, the CSP
must pay a certain fee to compensate the DO in time.

(5) CSP will periodically generate the corresponding
proof combined with the current public state in-
formation θ, generate a smart contract T3 (see Ta-
ble 3), and deploy it on the blockchain. .e smart
contract includes the basic information of the file
(file name, file hash, generation time of evidence,
status information, and evidence information), the
contract information to be called, transaction in-
formation (verification fee, CSP account address,
and verifier account address), and the signature of
the CSP. .e verifier will execute a smart contract to
complete multiple-replica data integrity verification
for a reward and then activate T1 or T2 based on the
verification result.

3.4. Brief Summary. We propose a noninteractive multi-
replica provable data possession scheme based on smart
contract, which not only meets the basic requirements of
correctness and security but also has the following
characteristics:

(1) Public verification: the evidence verification algo-
rithm is public and does not need to use the private
key, so any third party can obtain a public conclusion
about whether the data have integrity.

(2) Noninteractive: during the whole verification pro-
cess, DO and CSP do not need to interact with the
third-party verifier, and it DO and CSP do not need
to remain online all the time, making the operation
of the scheme more flexible.

(3) Batch verification: batch verification can be carried
out simultaneously on all replicas. Only one equation
needs to be verified, and then it will tell whether all
replicas are stored completely.

(4) Fair payment: the payments of DO, CSP, and Verifier
follow the agreed smart contract, which cannot be
tampered with, and cannot be denied by anyone.

(5) Privacy-preserving: during the whole verification
process, the relevant information that the Verifier
can access of DO is all encrypted files and cannot
obtain any knowledge of DO’s original file without
knowing the secret key.

4. Security Proof

.e security of the scheme is defined by formally describing
a security game between challenger C and adversary A:

C generates a public-private key pair (pk, sk) by running
KeyGen, sends pk to A, and reminds sk for responding to A’s
query.

(1) A can query replicas by interacting with C. A ran-
domly selects a file F and sends it to C. C generates t
different replicas Fd(1≤d≤ t) by running the Rep-
licaGen algorithm and responds to A.

(2) A can query tags by interacting with C. A randomly
selected replica Fd and sends it to C, and C generates
the tag of replica τd and the tag set of blocks ψ by
running the TagGen algorithm and responds to A.

(3) A generates proof P′ according to responses from
multiple queries.

Definition 1. .e advantage of adversary A in the game is
A dvA � Pr[Proof Verify(pk, θ, P′) � SUCCESS]. We say A
wins the game if A dvA is nonnegligible.

Definition 2. A noninteractive multireplica provable data
possession scheme is secure. If there is an effective extraction
algorithm Extr, for any adversary who wins the security
game and the output of the proof of file F is P′, the
probability that the Extr can recover the replicas Fd􏼈 􏼉 (i.e.,
Extr(pk, θ, τd, P′) � Fd􏼈 􏼉) is nonnegligible.

Theorem 1. If the signature algorithm used to generate file
tags is existential unforgeability, the computational Diffie-
Hellman problem on bilinear groups and the discrete loga-
rithm problem are difficult; then, in the random oracle model,
the probability that an adversary which breaks the security of
our scheme, through the verification algorithm using proof not
generated by ProofGen, is negligible.

We prove the theorem as a series of games with inter-
leaved analysis. The restrictions of the games for the ad-
versary are gradually tightened.

Game-0: Game-0 is the first game, the security game
defined at the beginning of this chapter.

Game-1: Game-1 is the same as Game-0, with a slight
difference. The challenger keeps a list that stores all signed
file tags that have been responded to in the tag query. If the

Table 3: Verification smart contract T3.

Smart contract T3

File name FN
File hash FH
Proof generated time PGT
State information θ
Proof information P

Storage smart contract T1
Compensation smart contract T2
Verification fee VF
Account addresses of CSP ADDRESSCSP

Account addresses of verifier ADDRESSV

Signature of CSP SignCSP

Contract content:
Promise
{Execute the ProofVerify algorithm if
Proof Verify(pk, θ, P)⟶ SUCCESS, activate T1
if Proof Verify(pk, θ, P)⟶ FALSE, activate T2
Pay VF from ADDRESSCSP to ADDRESSV}

8 Security and Communication Networks

adversary submits an effective tag τd but is not in the list
signed by the challenger, the challenger outputs failure and
aborts.

Analysis: if an adversary causes the challenger outputs
failure with nonnegligible probability in Game-1, we can use
the adversary to construct a forger to break the unforge-
ability of the signature scheme.

If the adversary does not cause failure in Game-1, its
view is identical in Game-0 and Game-1. Through the de-
scription in Game-1, we know that the verification algorithm
and extraction algorithm will get the parameters name, n, d

and u1, u2, . . . , ut from the tag τd, and these values can only
be generated by the challenger.

Therefore, if the adversary’s success probability in
Game-0 and Game-1 has a nonnegligible difference, we can
construct a simulator to break the existence of the signature
scheme by using the adversary.

Game-2: Game-2 is the same as Game-1, with a slight
difference. The challenger keeps a list of tag queries and
responses initiated by all adversaries. If the adversary sub-
mits proof that proves the verification algorithm successfully
but σ is not equal to 􏽑(i,Vi)∈Qσ

Vi

i , the challenger outputs
failure and aborts.

Analysis: it is assumed that the failed replica file is di-
vided into equal-length n blocks, expressed as
Fd � md,i􏽮 􏽯, 1≤d≤ t, 1≤ i≤ n, and the corresponding pa-
rameters are name, n, d and u1, u2, · · · , ut. .e tag set of
blocks ψis generated by TagGen. Suppose Q � (i, Vi)􏼈 􏼉, i ∈ I

is the query that leads to failure, and the proof that responds
to the adversary is μt

′, μt
′, . . . , μt
′ and σ′. Let the expected

response generated by an honest prover be μ1, μ2, . . . , μt and
σ, where μd � 􏽐(i,Vi)∈QVi · md,i and 􏽑(i,Vi)∈Qσ

Vi

i . According
to the proof of correctness, we know that the expected re-
sponse satisfies the equation e(σ, g) � e(􏽑(i,Vi)∈Q 􏽑

t
d�1

H(name‖ i)Vi · u
μd

d , v). According to the description of
Game-2, the adversary’s response can also satisfy the
equation e(σ′, g) � e(􏽑(i,Vi)∈Q 􏽑

t
d�1 H(name‖ i)Vi · u

μd
′

d , v),
but σ′ ≠ σ. If there is μd

′ � μd for each d, it satisfies the
equation σ′ � σ, which contradicts the above assumption.
.erefore, letΔμd � μd

′ − μd, and we know that at least one of
△μd􏼈 􏼉 is not 0.

Now we prove that if the adversary leads to the chal-
lenger outputs failure in Game-2 with nonnegligible prob-
ability, we can construct a simulator to solve the
computational Diffie-Hellman problem.

The input value of the simulator is g, gsk, h ∈ G, and its
goal is to output hsk. .e behavior of the simulator is similar
to the challenger in Game-1, but there are the following
differences:

(1) When generating the key, it sets the public key to gsk

received in the challenge, which means the simulator
does not know the secret key sk.

(2) .e simulator programs the random oracle H and
keeps a list of queries and responses. When the
adversary randomly selects r←R Zp to query, its re-
sponse is gr ∈ G. It also responds to queries
H(name‖ i) in a particular way, seen later.

(3) When asked to store some file whose coded repre-
sentation comprises the n blocks md,i􏽮 􏽯, 1≤ d≤ t,

1≤ i≤ n, the simulator behaves as follows. It chooses a
name name←R Zp at random. Because the space for
choosing the name is large enough, the probability that
the simulator chooses a name that has been queried by
name ‖ i in random oracle H is negligible.
For each d, 1≤d≤ t, the simulator chooses random
values δd, cd←

R
Zp and set ud � gδd · hcd . For each

i, 1≤ i≤ n, the simulator chooses a random value
ri←

R
Zp, and the response of the random oracle H is

H(name‖ i) �
g

ri

g
􏽐

t
d�1 δd · md,i · h

􏽐
t
d�1 cd · md,i􏼒 􏼓

.
(2)

Now the simulator can calculate because we have

H(name‖ i) · 􏽙
t

d�1
u

md,i

d

�
g

ri

g
􏽐

t
d�1 δd · md,i · h

􏽐
t
d�1 cd · md,i􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ · 􏽙

t

d�1
u

md,i

d

�
g

ri

g
􏽐

t
d�1 δd · md,i · h

􏽐
t
d�1 cd · md,i􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

· g

􏽘

t

d�1
δd · md,i

· h 􏽘
t

d�1
cd · md,i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� g
ri .

(3)

Therefore

σi � 􏽙
t

d�1
σd,i � 􏽙

t

d�1
H(name‖ i) · u

md,i

d􏼐 􏼑
sk

� H(name‖ i) · 􏽙
t

d�1
u

md,i

d
⎛⎝ ⎞⎠

sk

� g
sk

􏼐 􏼑
ri

.

(4)

(4) .e simulator continues to interact with the ad-
versary until the particular situation defined by
Game-2 occurs: the adversary successfully proves the
verification with σ′ that is different from the ex-
pected σ.

The analysis of Game-0 and Game-1 ensures that the
parameters name, n, ud􏼈 􏼉, md,i􏽮 􏽯, σi􏼈 􏼉 used in the protocol
are generated by the challenger; otherwise, it will output

Security and Communication Networks 9

failure. .is means that these parameters are generated
gradually by the simulator described above. By dividing the
tag σ′ and the expected tag σ, we get

e
σ′
σ

, g􏼠 􏼡 � e 􏽙
t

d�1
u
Δμd

d , v⎛⎝ ⎞⎠

� e 􏽙
t

d�1
g
δd · h

cd􏼐 􏼑
Δμd

, v⎛⎝ ⎞⎠

� e g􏽐
t

d�1 δd ·Δμd · h􏽐
t

d�1 cd ·Δμd , v􏼒 􏼓.

(5)

Rearranging terms yields

e σ′ · σ−1
· v

− 􏽐
t

d�1 δd ·Δμd , g􏼒 􏼓 � e h􏽐
t

d�1 δd ·Δμd , v􏼒 􏼓. (6)

Because v � gsk, we find that the computational Diffie-
Hellman problem has been solved:

h
sk

� σ′ · σ−1
· v

− 􏽐
t

d�1 δd ·Δμd􏼒 􏼓
− 􏽐

t

d�1 δd ·Δμd
(7)

Unless the denominator is 0, we know that at least one of
△μd􏼈 􏼉 is not 0, so the probability of the denominator being 0
can be ignored.

Therefore, we prove that if there is a nonnegligible
difference between the adversary’s probability of success in
Game-1 and Game-2, we can construct a simulator to solve
the computational Diffie-Hellman problem, as required.

Game-3: Game-3 is the same as Game-2, with a slight
difference. If the adversary submits proof that explains the
verification successfully, but at least one μd is not equal to
􏽐(i,Vi)∈QVi · md,i, the challenger outputs failure and aborts.

Analysis: make some definitions like Game-2. We
suppose that the failed replica file is divided into equal-
length n blocks, expressed as Fd � md,i􏽮 􏽯, 1≤d≤ t, 1≤ i≤ n,
and the corresponding parameters are name, n, d and
u1, u2, · · · , ut. .e tag set of blocks ψ is generated by TagGen.
Suppose Q � (i, Vi)􏼈 􏼉, i ∈ I is the query that leads to failure,
and the proof that responds to the adversary is μ1′, μ2′, . . . , μt

′
and σ′. Let the expected response generated by an honest
prover be μ1, μ2, · · · , μt and σ, where μd � 􏽐(i,Vi)∈QVi · md,i

and σ � 􏽑(i,Vi)∈Qσ
Vi

i . Game-2 has ensured that we get σ′ � σ;
only μd

′􏼈 􏼉 and μd􏼈 􏼉 can be different. Define
Δμd � μd

′ − μd, 1≤ d≤ t; then at least one of Δμd􏼈 􏼉 is not 0.
Now we prove that if the adversary leads to the chal-

lenger outputs failure in Game-3 with nonnegligible prob-
ability, we can build a simulator to solve the discrete
logarithm problem.

The input value of the simulator is g, h ∈ G, and its goal
is to output x such that h � gx. .e behavior of the simulator
is similar to the challenger in Game-2, but there are the
following differences.

(1) When it is required to store a file whose coded
representation comprises the n blocks
md,i􏽮 􏽯, 1≤ d≤ t, 1≤ i≤ n, the simulator behaves
according to TagGen. For each d, 1≤ d≤ t, the

simulator chooses random values δd, cd←
R

Zp and
sets ud � gδd · hcd .

(2) .e simulator continues to interact with the adversary
until the particular situation defined by Game-3 oc-
curs: the adversary successfully proves the verification
with μd

′􏼈 􏼉 different from the expected μd􏼈 􏼉.

According to the analysis of Game-1, we know that the
parameters name, n, ud􏼈 􏼉, md,i􏽮 􏽯, σi􏼈 􏼉 used in the protocol
are generated by the simulator. According to the analysis of
Game-2, we know σ′ � σ.

Construct the verification equation with μd􏼈 􏼉, respec-
tively, with

e 􏽙

i,Vi()∈Q

􏽙

t

d�1
H(name‖ i)

Vi · u
μd

d , v⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

� e(σ, g)

� e σ′, g(􏼁

� e 􏽙

i,Vi()∈Q

􏽙

t

d�1
H(name‖ i)

Vi · u
μd

d , v⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

(8)

concluding that

􏽙

t

d�1
uμd

d � 􏽙
t

d�1
uμd
′

d , (9)

and therefore

1 � 􏽙
t

d�1
uΔμd

d

� 􏽙
t

d�1
g
δd · h

cd􏼐 􏼑
Δμd

� g􏽐
t

d�1 δd ·Δμd · h􏽐
t

d�1 cd ·Δμd .

(10)

We find that the discrete logarithm problem has been
solved:

h
sk

� σ′ · σ−1
· v􏽐

t

d�1 δd ·Δμd􏼒 􏼓
􏽐

t

d�1 cd ·Δμd

. (11)

Unless the denominator is 0. However, we know that at
least one of Δμd􏼈 􏼉 is not 0, so the probability of the de-
nominator being 0 can be ignored.

Therefore, we prove that if there is a nonnegligible
difference between the adversary’s probability of success in
Game-2 and Game-3, we can construct a simulator to solve
the discrete logarithm problem, as required.

4.1. Wrapping Up. Suppose the signature algorithm used to
generate file tags is existential unforgeability, the compu-
tational Diffie-Hellman problem on bilinear groups and the
discrete logarithm problem are difficult. In that case, there is
a nonnegligible difference between the adversary’s proba-
bility of success in Game-3 and Game-0. From Game-1 to

10 Security and Communication Networks

Game-3, it is limited that τd, σ, μd, only the proof not
correctly calculated by ProofGen, can respond to the
challenge gradually, and Game-0 is the security game of our
scheme. .erefore, the probability that an adversary who
breaks through the security of our scheme uses the proof not
generated by ProofGen to successfully prove the verification
is negligible. .is completes the proof of .eorem 1.

5. Performance Evaluation

5.1. Comparative Analysis. We compare our scheme with
other similar schemes from the dimensions of public veri-
fication, batch verification, privacy preserving, fair payment,
interactivity, and multireplica. It can be seen from Table 4
that compared with other blockchain-based provable data
possession schemes. Our scheme uses multireplica tech-
nology, based on BLS signature and homomorphic verifi-
cation tag, combined with the smart contract with deposit
mechanism, and it achieves all functions well.

5.2. Experiments. To evaluate the performance of our
scheme, we designed a prototype of the scheme with C
Programming language. For the large integer and pairing
operations, we use the GMP Library (version 6.2.1) and PBC
Library (version 0.5.14), respectively. AES256 is used for file
encryption, and the length of signature key is 160 bits. .e
experimental environment is Intel Core i7 2.6GHz, memory
is 16GB 2133mhz lpddr3, and the operating system is
macOS 12.0.1.

In the experiment, we mainly focus on the total running
time of the scheme, including ReplicaGen time, TagGen
time, ProofGen time, and ProofVerify time, as well as the
relationship between the running time and file size N,
number of blocks n, and number of challenge blocks c.

According to the study of [2], it assumes that the CSP
destroys 1% of the data blocks uploaded by the DO; when
c� 300 and 460, the probability that DO can detect mis-
behavior of CSP is 95% and 99%.

.e fixed file size is N� 64KB, the number of blocks is
n� 1024, the number of challenge blocks is c� 300, and the
number of replicas is t� 3. .e experimental results of the

running time of each algorithm are shown in Table 5. It can
be seen from Table 5 that time is mainly consumed in the
TagGen algorithm, which is consistent with our assumption.
In this algorithm, tags need to be calculated for each data
block, and many exponential operations need to be carried
out. Hence, the computational complexity is much higher
than that in other algorithms.

Next, we fixed the number of blocks n� 16384, the
number of challenge blocks c� 300, and the number of
replicas t� 3 and gradually increased the file size N from
16KB to 1024KB. .e experimental results are shown in
Figure 4. We can see that the relationship between the total
time and the file size is basically linear, and the gap is not
apparent when N is very small.

.en we fixed the file size n� 64KB, the number of
challenge blocks C� 300, gradually changed the number of
blocks from n� 1024 to 16384, and took the number of
replicas t as 1, 2, and 3, respectively..e experimental results
are shown in Figure 5. We can see that the total time in-
creases exponentially with the number of blocks, and the
total time increases with the number of replicas, but the
impact is limited.

Table 4: Comparison of schemes’ characteristics.

[17] [18] [19] [20] [21] [22] Our
scheme

Public verification √ √ √ √ √ √ √
Batch verification × √ √ × × √ √
Privacy preserving × × √ √ √ √ √
Fair payment √ √ √ √ √ √ √
Interactivity √ × × √ × × √
Multireplica × √ × × √ √ √

Table 5: Algorithm running time of our scheme (N� 64KB, n� 1024, c� 300, t� 3).

Algorithm ReplicaGen TagGen ProofGen ProofVerify Total
Time(s) 0.009413 3.376702 0.222226 0.003383 3.611731

52.83 53.01
53.95

55.71

60.62

65.59

67.81

50

55

60

65

70

16 32 64 128 256 512 1024

To
ta

l T
im

e (
s)

Size of File (KB)
n=16384, c=300, t=3

Figure 4: .e relationship between total time and file size
(n� 16384, c� 300, t� 3).

Security and Communication Networks 11

3.66

7.16

13.51

26.53

52.10

4.11

7.97

14.27

27.08

53.83

4.57

8.66

15.08

27.78

54.62

0

10

20

30

40

50

60

2^10=1024 2^11=2048 2^12=4096 2^13=8192 2^14=16384

To
ta

l T
im

e (
s)

Number of Blocks

t=1
t=2
t=3

Figure 5: .e relationship between total time and the number of blocks and replicas (N� 64KB, c� 300).

4.39

8.28

14.33

27.46

53.28

4.89

8.85

14.75

28.02

53.99

5.60

9.57

15.97

28.20

54.24

0

10

20

30

40

50

60

2^10=1024 2^11=2048 2^12=4096 2^13=8192 2^14=16384

To
ta

l T
im

e (
s)

Number of Blocks

c=300
c=460
c=1000

Figure 6: .e relationship between total time and the number of blocks and challenge blocks (N� 64KB, t� 3).

12 Security and Communication Networks

Finally, we fixed the file size N� 64KB and the number
of replicas t� 3, gradually changed the number of blocks
from n� 1024 to 16384, and took the number of challenge
blocks c as 300, 460, and 1000, respectively..e experimental
results are shown in Figure 6. We can see that the total time
increases with the number of challenge blocks, but the
impact of the number of challenge blocks on the total time
becomes smaller and smaller as the number of blocks
increases.

6. Conclusion

.is paper proposes a noninteractive multireplica provable
data possession scheme based on smart contracts. .e
scheme replaces TPA with the smart contract, which pro-
vides a trusted environment for data integrity verification so
that the verification process is public, tamper-proof, trace-
able, and periodically automatic. To reduce the transaction
fees caused by the frequent operation of blockchain in the
verification process, the concept of noninteractive is in-
troduced. By presetting payment rules in smart contracts,
fair transactions between the parties involved are guaran-
teed. .e contracts will be executed automatically once the
conditions are met.

Data Availability

.e data used to support the findings of this study are in-
cluded in the article.

Conflicts of Interest

.e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

.is work was supported by the National Key R&D Program
of China (nos. 2020YFB1708600 and 2020YFB1805403) and
Foundation of Guizhou Provincial Key Laboratory of Public
Big Data (nos. 2017BDKFJJ015, 2018BDKFJJ008,
2018BDKFJJ020, and 2018BDKFJJ021).

References

[1] Seagate Rethink Data, Put More of Your Business Data to
Work—From Edge to Cloud, Seagate Rethink Data, Chennai,
India, 2020.

[2] G. Ateniese, R. Burns, R. Curtmola et al., “Provable Data
Possession at Untrusted Stores,” in Proceedings of the 14th
ACM conference on Computer and communications security,
ACM, NY, USA, October 2007.

[3] A. Juels and J. B. Kaliski, “Pors: Proofs of Retrievability for
Large Files,” in Proceedings of the 14th ACM conference on
Computer and communications security, ACM, NY, USA,
October 2007.

[4] H. Shacham and B. Waters, “Compact proofs of retriev-
ability,” in Proceedings of the International Conference on the
Ieory and Application of Cryptology and Information Se-
curity, pp. 90–107, Melbourne, VIC, Australia, December
2008.

[5] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling
public verifiability and data dynamics for storage security in
cloud computing,” Computer Security-ESORICS 2009,
vol. 5789, pp. 355–370, 2009.

[6] C. Wang, “Privacy-preserving public auditing for data storage
security in cloud computing,” in Proceedings of the IEEE
INFOCOM, San Diego, CA, USA, March 2010.

[7] R. Curtmola, “Multiple-Replica Provable Data Possession,” in
Proceedings of the 2008 the 28th International Conference on
Distributed Computing Systems, IEEE, Beijing, China, June
2008.

[8] Z. Hao and N. Yu, “A Multiple-Replica Remote Data Pos-
session Checking Protocol with Public Verifiability,” in
Proceedings of the 2010 Second International Symposium on
Data, Privacy, and E-Commerce, IEEE, Buffalo, NY, USA,
September 2010.

[9] J. Wei, “Efficient dynamic replicated data possession checking
in distributed cloud storage systems,” International Journal of
Distributed Sensor Networks, vol. 2016, Article ID 1894713,
2016.

[10] Z. Ya-xing, “Multiuser and multiple-replica provable data
possession scheme based on multi-branch authentication
tree,” Journal on Communications, vol. 36, no. 11, pp. 80–91,
2015.

[11] S. Peng, F. Zhou, J. Li, Q. Wang, and Z. Xu, “Efficient, dy-
namic and identity-based remote data integrity checking for
multiple replicas,” Journal of Network and Computer Appli-
cations, vol. 134, pp. 72–88, 2019.

[12] H. Yu, Z. Yang, M. Waqas et al., “Efficient dynamic multi-
replica auditing for the cloud with geographic location,”
Future Generation Computer Systems, vol. 125, pp. 285–298,
2021.

[13] Y. Chen, J. Sun, Y. Yang, T. Li, X. Niu, and H. Zhou, “PSSPR: a
source location privacy protection scheme based on sector
phantom routing in WSNs,” International Journal of Intel-
ligent Systems, vol. 37, no. 2, pp. 1204–1221, 2022.

[14] T. Li, L. Chunmei, J. Yanling, and Y. Yixian, “Is semi-selfish
mining available without being detected?” International
Journal of Intelligent Systems, pp. 1–22, 2021.

[15] T. Li, Z. Wang, G. Yang, Y. Cui, Y. Chen, and X. Yu, “Semi-
selfish mining based on hidden Markov decision process,”
International Journal of Intelligent Systems, vol. 36, no. 7,
pp. 3596–3612, 2021.

[16] Y. Chen, S. Dong, T. Li, Y. Wang, and H. Zhou, “Dynamic
multi-key FHE in asymmetric key setting from LWE,” IEEE
Transactions on Information Forensics and Security, vol. 16,
pp. 5239–5249, 2021.

[17] T. Li, “Rational Protocols and Attacks in Blockchain System,”
Security and communication networks, vol. 2020, Article ID
8839047, 2020.

[18] J. Xue, C. Xu, and L. Bai, “DStore: a distributed system for
outsourced data storage and retrieval,” Future Generation
Computer Systems, vol. 99, pp. 106–114, 2019.

[19] J. Xue, “Identity-based Public Auditing for Cloud Storage
Systems against Malicious Auditors via Blockchain,” Science
China-Information Sciences, vol. 62, Article ID 0321043,
2019.

[20] X. Yang, X. Pei, M. Wang, T. Li, and C. Wang, “Multireplica
and multi-cloud data public audit scheme based on block-
chain,” IEEE ACCESS, vol. 8, pp. 144809–144822, 2020.

[21] P. Huang, K. Fan, H. Yang, K. Zhang, H. Li, and Y. Yang, “A
collaborative auditing blockchain for trustworthy data in-
tegrity in cloud storage system,” IEEE ACCESS, vol. 8,
pp. 94780–94794, 2020.

Security and Communication Networks 13

[22] Y. Xu, “Blockchain empowered arbitrable data auditing
scheme for network storage as a service,” IEEE TRANSAC-
TIONS ON SERVICES COMPUTING, vol. 13, no. 2,
pp. 289–300, 2020.

[23] D. Chen, H. Yuan, S. Hu, Q. Wang, and C. Wang, “BOSSA: a
decentralized system for proofs of data retrievability and
replication,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 4, pp. 786–798, 2021.

[24] K. Fan, Z. Bao, M. Liu, A. V. Vasilakos, and W. Shi, “Dredas:
decentralized, reliable and efficient remote outsourced data
auditing scheme with blockchain smart contract for industrial
IoT,” Future Generation Computer Systems, vol. 110,
pp. 665–674, 2020.

[25] H. Wang, H. Qin, M. Zhao, X. Wei, H. Shen, and W. Susilo,
“Blockchain-based fair payment smart contract for public
cloud storage auditing,” Information Sciences, vol. 519,
pp. 348–362, 2020.

[26] Y. Li, Y. Yu, R. Chen, X. Du, andM. Guizani, “IntegrityChain:
provable data possession for decentralized storage,” IEEE
Journal on Selected Areas in Communications, vol. 38, no. 6,
pp. 1205–1217, 2020.

[27] R. Chen, Y. Li, Y. Yu, H. Li, X. Chen, and W. Susilo,
“Blockchain-based dynamic provable data possession for
smart cities,” IEEE Internet of Iings Journal, vol. 7, no. 5,
pp. 4143–4154, 2020.

[28] B. L. H. S. Dan Boneh, “Short Signatures from the Weil
Pairing,” in Proceedings of the International Conference on the
Ieory and Application of Cryptology and Information
Security, Gold Coast, QLD, Australia, December 2001.

[29] “Bitcoin: A peer-to-peer electronic cash system,” 2009,
https://bitcoin.org/en/bitcoin-paper.

[30] N. Szabo, “Formalizing and securing relationships on public
networks,” First Monday, vol. 2, no. 9, 1997.

[31] P. McCorry, S. F. Shahandashti, and F. Hao, “A smart contract
for boardroom voting with maximum voter privacy,” Fi-
nancial Cryptography and Data Security, Springer Interna-
tional Publishing, vol. 10322, pp. 357–375, Cham, 2017.

[32] V. Gatteschi, F. Lamberti, C. Demartini, C. Pranteda, and
V. Santamaŕıa, “Blockchain and smart contracts for insur-
ance: is the technology mature enough?” Future Internet,
vol. 10, no. 2, p. 20, 2018.

14 Security and Communication Networks

https://bitcoin.org/en/bitcoin-paper

