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Recently, mobile technology has become closely linked with our daily activities. Smartphones are used for multiple personal tasks
involving private information, such as communication, healthcare, and banking. 'erefore, there is a high demand for user-
friendly authentication methods that prevent unauthorized access to sensitive information. 'is paper proposes a novel feature
representation tactic for continuous authentication named Multiple Channels Biological Graph (MCBG). Unlike conventional
techniques, MCBG divides the smartphone usage scenarios into more fine-grained cases, including the operation interval features.
To this end, we extract the screen touch and handheld features from multiple built-in sensors without extra user interaction. We
conduct experiments on 180 participants (130 adults and 50 minors) and investigate the sufficiency of different sensor com-
binations required to authenticate identity accurately. Results show that our MCBG-based model achieves 99.38% authentication
accuracy within 1.9 seconds. Furthermore, MCBG also represents the intrinsic differences between grown-ups and minors,
achieving 96% identification accuracy.

1. Introduction

With the rapid development of computing technology,
mobile devices (e.g., smartphones) have become multi-
function and portable. Since the outbreak of COVID-19,
people have spent at least 4.2 hours a day on mobile phones,
an increase of 30% over the previous two years. Smartphones
assist people with privacy-related activities, ranging from
entertainment and shopping to banking. 'erefore, any
unauthorized access will cause privacy disclosure risk to
smartphone users [1].

Existing authentication mechanisms exploit collecting
sensitive data to determine the legitimacy of users at the in-
teractive entry point. For instance, an recorded audio clip [2, 3],
facial images taken from a camera [4–9], or fingerprints [10] are
most widely used in practice. However, current point-of-entry
features lack continuous authentication capability. 'e

effectiveness of using these features depends on external en-
vironmental factors. Besides, they are inherently vulnerable to
shoulder surfing attack or smudge attack [11]. Studies [12, 13]
expose the vulnerability of fingerprint recognition systems to
attacks that have been highlighted in the biometrics literature.

On the academic side, studies are still mostly concen-
trated on sensor-based features. Studies [14, 15] demonstrate
that different users have different physiological character-
istics (e.g., hand size and finger length), which leads to
unique features for each handheld device. Based on this
finding, studies [16, 17] utilize multimodal physiological
sensors (e.g., accelerometer and gyroscope sensors) to mine
distinct patterns of users for continuous authentication.
Besides, behavior-based continuous authentication using
user gesture features has gained increasing attention in the
security community [14, 18, 19]. However, the smartphone
computational overhead restricts the authentication
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efficiency. Besides, these generalized authenticationmethods
fail to cope with the increasing usage scenarios [11]. For
instance, the same user shows completely different operating
habits in walking and stationary states, resulting in unac-
ceptable false positives for the user experience.

'e above discussions about the existing studies dem-
onstrate two real-world challenges. First, unlike conven-
tional point-of-entry techniques, continuous authentication
modules are restricted to smartphones’ performance limi-
tations. Second, it is challenging to propose a general au-
thentication mechanism in different usage scenarios because
different sensor data patterns in different contexts represent
different biometrics.

To address these challenges, we propose a continuous
authentication method with behavioral biometrics features
extracted from the built-in sensors. Our proposed method
has the following advantages:

(1) 'is paper proposes a novel feature representation
tactic that can offer an interpretable authenticate
result

(2) Our work mines the intrinsic differences between
grown-ups and minors, which can protect minors
from mishandling or accessing restricted
information

(3) Instead of proposing an authentication method for
all usage scenarios, our proposed method can be
adapted to more fine-grained scenarios

(4) Our proposed implicit technique keeps continuous
authenticating in the background to remedy the
point-of-entry mechanisms

(5) 'e proposed method only collects the training
features from the built-in sensor to complete the
authenticate task without requiring any extra sen-
sitive permissions

To our best knowledge, we are the first to present repre-
sentation-learning-based authentication based on three feature
extraction opportunities: clicking, sliding, and the interval
between operations. To reduce the load caused by feature
engineering, we present a novel representation of handhold
features named Multiple Channels Biological Graph (MCBG).
To this end, we subdivide a touch movement into three stages:
press down, finger movements, and finger up. We capture the
sensor data for each contiguous finger screen operation. In the
experimental stage, we analyze the impact of the used number
of sensors on the authentication effect. We use convolutional
neural networks (CNN) to classifyMCBGs and trainmodels in
different motion states. Furthermore, the experimental results
show that MCBG is effective for identifying minors. Note that
we aim to provide a new feature representation idea instead of
proposing an image recognition algorithm. We hope that the
proposed method can be regarded as a general feature rep-
resentation, even when there is a breakthrough in image
recognition or the performance of smartphones in the future.
In summary, our contributions to this work are as follows:

(1) We propose MCBG and design a novel continuous
identity authentication method based on

representation learning. MCBG is used as input of
our designed lightweight model by exploiting the
capabilities of convolutional neural networks
(CNN).

(2) We collect usage real-world dataset of 180 partici-
pants, including sensor records in various scenarios.
Furthermore, we release our dataset and feature set
to the security community to validate our work and
motivate further study.

(3) We evaluate the performance of the proposed
method in several experiments. 'e recognition
accuracy of the sliding authentication scenario
achieves 95.43%, the recognition accuracy of the
password authentication scenario achieves 93.92%,
the comprehensive authentication accuracy in daily
usage achieves 99.38%, and the accuracy of minor
identification achieves 96%. Results show that our
lightweight model is computationally demanding
and energy-consuming.

'e remainder of this paper is organized as follows.
Section 2 discusses the relevant studies. Section 3 designs the
design details of MCBG. Section 4 discusses the framework
of this work. Section 5 evaluates the performance of the
proposed approach. Section 6 summarizes the achievements
and future work. Note that we release the full dataset and
extracted feature set to researchers for reproducibility
purposes.

2. Related Literature

Many endeavors have been done on mobile device user
identification. 'e existing mobile user identification tech-
nology mainly includes identifying the user and their bio-
logical attributes, such as age, gender, and gait. We discuss
the related works from two aspects according to our
emphasis.

2.1. Entry Point User Authentication. 'e user entry-point-
based authentication mainly includes password mechanism
and physiological recognition. In the early 1990s, Kwon and
da Vitoria Lobo [7] used facial images to predict the real age.
'ey collected 47 high-resolution images and divided them
into three groups: infants, youngsters, and elders. 'eir
method is based on facial geometry and wrinkles analysis.
'e experimental result reaches 100% accuracy. However,
their detection effect is highly dependent on the pixel value.
Buyuk and Arslan [9] used multilingual speech data to train
the feedforward DNN model. However, the classification
effect is affected by the surrounding environment noise.
Furthermore, fingerprint-based methods have been getting
increasing attention recently. Gnanasivam and Muttan [8]
collected 3,570 fingerprint images, divided these images into
5 age groups, and then used discrete wavelet transform and
singular value decomposition to extract feature vectors from
fingerprint images. Finally, the k-nearest neighbor algorithm
(KNN) is used to classify the feature vector. Experimental
results show that the accuracy of age prediction is 76.84%.
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However, the credentials used for accessing smartphones are
vulnerable to social engineering attacks.

In general, current point-of-entry features cannot con-
tinuously authenticate the operator’s identity. 'e authen-
tication effectiveness of using these features depends on
multiple external environmental factors. Studies [12, 13]
summarized the vulnerability of fingerprint recognition
systems to attacks that have been highlighted in the bio-
metrics literature.

2.2.ContinuousUserAuthentication. Behavioral recognition
techniques extract specific features from observed behav-
ioral patterns of human activities such as handwriting,
gestures, and keystroke dynamics. Some behavioral features
also change with age or health condition.

Keystroke dynamics technology [20] analyzes a person’s
typing behavior and extracts keystroke characteristics, such
as the press duration and the interval between two key-
strokes, as a basis for distinguishing a person or a group.
Syed Idrus et al. [21] used keystroke dynamics for age
classification. 'ey collected user’s keystroke data in the
input process and extracted four kinds of features. Exper-
imental results show that when the user enters a specific
word, the classification accuracy rate for age reaches 78%.
Uzun et al. [22] distinguished underage users through
physical keyboards using keystroke dynamics. However, Epp
et al. [23] revealed in their research that different emotions
of the same person will produce different keystroke behavior
patterns. Al Maadeed and Hassaine [24] proposed a rea-
soning system using handwriting analysis for gender, age,
and nationality. 'ey combined the random forest classifier
and the spectral regression (SR-KDA) classifier by collecting
Arabic and English handwritten samples of 1,017 volunteers.
'e experimental result showed that the accuracy rate of the
age range prediction achieves 60.62%. Although smart-
phones currently support handwriting screens, the scene of
handwriting rarely appears in the daily use of smartphones.

Compared with handwriting, gestures such as sliding,
dragging, and tapping are more common in the scenes of
daily use of smartphones. Vatavu et al. [25] collected click
data from 119 volunteers. 'ey used the offset value between
the user’s real click position and the target position as
features to classify the testers. Davarci et al. [26] further
added 16 features extracted from the motion sensor through
signal processing technology and adopted the k-nearest
neighbor algorithm in the classification step. Experimental
results show that the accuracy of this method can reach
92.5% based on collecting 30 consecutive clicks of data.
However, the critical limitation of these methods is that the
smartphone computational overhead restricts the authen-
tication efficiency. As a remedy, we propose a continuous
authentication system with behavioral biometrics features
on smartphones. We disassemble a finger touch process into
three stages to reduce system load and improve detection
efficiency: press down, finger movements, and finger up. We
capture the sensor data of each contiguous finger screen
operation. To improve the detection accuracy, we present
MCBG, a novel representation of the user’s operating

features. With MCBG, we identify the user’s identity in-
formation during password entering and sliding to unlock.
Experimental results show that our method outperforms
other related solutions in efficiency and accuracy.

3. Design and Implementation of MCBG

Continuous authentication technologies aim to examine the
underlying difference between the device owner and guests
regarding their gesture behaviors when operating smart-
phones. To this end, we utilize sensor-based features in
smartphone usage. Most of the touch traces of a user tend to
follow a similar pattern, which is different from other users
[11, 18].

To reduce the load caused by feature engineering, we
propose MCBG as a novel feature representation tactic,
which includes a key-in feature graph, interval feature graph,
and sliding feature graph according to actual application
scenarios. We divide a complete screen touch process into
three steps: down, move, and up. During a complete screen
touch, we collect the information gathered by the built-in
sensors and store it in a time-stamped file. 'e variable
definitions that existed in this section are shown in Table 1.

3.1. Key-In Feature Graph. 'e key-in feature graph (KFG)
applies to all short-term screen click actions such as typing.
In this case, the user's finger trajectory is scattered on the
screen. so features such as slide speed and slide distance are
not considered. In the actual use of smartphones, there is a
deviation between the target position and the actual position
of a finger touch, implying multiple user physical charac-
teristics (such as gender, age, and health status). For ex-
ample, when an adult user clicks a button, the distribution of
click traces is more concentrated than a minor intuitively.
'erefore, the coordinates of a user’s multiple clicks on the
same target are distributed around the click target (tx, ty)

and are farther away from other targets.
'erefore, we determine the click targets and their

corresponding actual positions by the CFDP algorithm [27].
We then confirm the target position (tx, ty) and calculate
their offset. Figure 1 shows a partial cluster result of an
underage participant.

We randomly selected ten users’ click records (the dataset is
discussed in Section 5) by clicking on the “a” and “p” on the
virtual keyboard, of which the distribution is shown in Figure 2.
We connect each user’s points to display their touch habits for
clarity. According to our observation, the number of records
generated by typing or sliding operations does not exceed 300.
To improve the data storage efficiency, we set the size of the
feature graph to 300∗ 40 pixels. In the pixels of each row of the
feature graph, we use 40 bits to store each record, where the first
bit represents record type, and the last 39 bits are sensor records
represented by binary. We then approximate the data to 8
decimal places.

In this way, we create a 300∗ 40 all-zero matrix in the
generating process of a key-in feature graph with the data in
Table 2 and finally save the matrix as a grayscale image. Note
that energy represents the sum of squares of the sensor on
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three axes. In this way, we constructed a key-in feature
graph. Figure 3 shows the result of five random users clicking
the button “p.” 'e white part corresponds to binary 0, and
the black part is 1. 'e picture from top to bottom is down,
move, and up data, calculated data, and sensor data. It can be
seen intuitively from the figure that the operating habits of
different users are entirely different.

3.2. Interval FeatureGraph. 'e interval feature graph (IFG)
is used to record the handheld features of the user during
continuous input or other operations. When the user

continuously operates the screen, the time features of two
consecutive touches can be represented by Figure 4.

For the analysis of two adjacent touches, we selected time
and space-related features to construct an interval feature
graph, which is shown in Table 3. Because the feature values
in Table 3 are generally small, to save the calculation cost, we
write these features into a 31∗ 24 matrix in turn, where the
first bit of each row of pixels represents record type, and the
remaining 23 bits are used to store data.

'erefore, the time threshold is set to 1,300 milliseconds,
and only operations within the time range will be generated
interval graphs. Figure 5 shows the interval between

Table 1: Variable definition of MCBG.

Variable Definition
xi, yi 'e ith actual touch’s position
txi, tyi 'e ith target touch’s position
ti 'e ith touch’s timestamp
pi 'e ith touch’s pressure
sizei 'e ith touch’s contact area
touchmajori 'e ith touch’s long axis of the touch area
touchminori 'e ith touch’s short axis of the touch area
acc, gyr, ori Returned by the acceleration, gyroscope, and orientation sensor, including 3 floating numbers of 3 axes
down, move, up Respectively denote pressing, moving, and lifting actions in the process of touching screens
si 'e ith touch record
􏽢s Average of s
n Total number of s
stds Standard deviation of s
Skewness (􏽐

n
1 (st − 􏽢s)s/n∗ stds)

Figure 1: Cluster result of click positions.'e white dots represent the actual clicks, and the purple dots denote the click targets determined
by the algorithm.
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Figure 2: Button position distribution of 10 user data. Take the lower-left corner of the screen as the coordinates (0, 0). (a) Position
distribution of “a” and (b) position distribution of “p.”
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Table 2: Features used in key-in feature graph.

Type Variable Label

Raw data
p, size, touchmajor, touchminor Down, move, up

x, y
acci, gyri, orii acc, gyr, ori

Calculated data

xi+1 − xi, yi+1 − yi, ti+1 − ti Down, move, up
Skewness (ti+1 − ti)

max (pi), max (touchmajori)

max (sizei), max(touchminori)

min (pi), min (touchmajori)

min (sizei), min (touchminori)

Skewness (pi), Skewness (touchmajori)

Skewness (sizei), Skewness (touchminori)

txi+1 − txi, tyi+1 − tyi

acci+1 − acci, gyri+1 − gyri, orii+1 − orii acc, gyr, ori
Skewness (acci, gyri, orii)
energy (acci, gyri, orii)

Figure 3: 'e KFG of five users clicking “p” (partial).

ist touch (i+1)st touch

t0 t1 t2 t3

t

(a)

1

23

4

5 8

6 7

(x1,y1)

(x2,y2)

(b)

Figure 4: Schematic graph of two adjacent touch events. (a) Time relationship between two adjacent touch events; (b) spatial relationship
between two adjacent touch events.
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inputting “i” and “p” when five random users continue to
input passwords.

3.3. Sliding Feature Graph. 'e goal of the sliding feature
graph (SFG) is designed to characterize the user’s single sliding
feature. 'e main scene is the nine-square grid sliding to
unlock the smartphones. After the user slides the unlock
pattern once, no matter whether the screen is successfully
unlocked or not, the following operation will be irrelevant to
this operation. 'erefore, there is no need to generate an IFG
corresponding to the sliding gesture.

SFG can be regarded as an extended version of KFG.
'erefore, the SFG adopts the features and structure of the
key-in graph. 'e difference is that the size of the sliding
feature graph is set to 1700∗ 40 for all gesture data. Figure 6
shows an SFG generated when a user slides to unlock the
screen according to the pattern “S.”

Besides, we add the LDP size feature at the end of the
sliding feature graph. As shown in Figure 7, LDP refers to the
point on the sliding track with the shortest straight line
distance from the starting points and endpoints. LDP size
refers to the touch area of LDP.

4. Design and Implementation of
Continuous Authentication

In this section, we present the implementation of our
framework. 'is system has a C/S architecture consisting of
two main parts: the Android client (installed on Android
devices) that extracts the MCBG and the PC server that
conducts data processing to train deep-learning-based
models. 'e server completes the main computational task
to minimize the impact on system performance.

Our framework is divided into four modules: data
extraction module, information processing module,
MCBG generation module, and identity authentication
module. Note that the data extraction module is imple-
mented in the Android client, whereas the remaining

modules belong to the PC server. Figure 8 shows the
workflow of the proposed method.

4.1. Data CollectionModule. 'e data that generates MCBG
is captured by the built-in sensors provided by the Android
system. 'e Android system provides real-time dump in-
formation of device events to corresponding sensor services
or applications by event pool. Most Android devices have
built-in sensors that can provide highly accurate raw data.
'ese sensors are used to locate or measure the users’
movements on a three-dimensional coordinate axis or to
sense changes in the external environment. Eventually, each
event information is broadcast in data packets to applica-
tions or services with reading permissions.

'e Android platform currently supports three types of
sensors: dynamic, environmental, and position sensors.
Besides, user gesture features are directly obtained from the
hardware event pool through the getevent-lt command
provided by the Android system [28]. According to our
statistics, an average of 45 data packets are generated for
each operation in users’ daily use. We obtain the touch
coordinates, contact area, timestamp, and other data. Since
most Android devices do not directly provide hardware
support for screen pressure, we use the method provided in
kernel [29] to obtain touch pressure. Android fits the area
where the finger touches the screen into an ellipse. We get
ABS_MT_TOUCH_MAJOR and ABS_MT_TOUCH_MI-
NOR by getevent command, which, respectively, represent
the long axis of the contact surface and the long axis of the
fingertip. As the pressing force increases, the fingers deform,
and ABS_MT_WIDTH_MAJOR increases. 'erefore, for-
mula (1) can be used to estimate the magnitude of the
pressing force p.

Table 3: Features used in interval feature graph.

Type Variable Label

Raw data x1, y1, x2, y2 Down, move, up
d1, d2, d3

Calculated data

(d2/d1), (d3/d2), (d3/d1)

arctan (d3/d1)

(

�������������������

(x2 − x1)
2 + (y2 − y1)

2
􏽱

/t2 − t0)

(acc2 − acc1), (gyr2 − gyr1), (ori2 − ori1) acc, gyr, ori

Figure 5: Interval feature graphs constructed during continuously input passwords by five random users (partial).

Figure 6: Sliding feature graph constructed during the process of a
user sliding the screen to unlock (partial).
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p �
ABS MT WIDTH MINOR
ABS MT WIDTH MAJOR

. (1)

Next, we disassemble a finger touch process into three
stages: down, move, and up. Our primary purpose is to
identify the user’s identity information based on the sensor
data during the touch process. 'erefore, we only capture
the data collected from the downstage to the upstage and the
sensor data during the two-finger touch during the con-
tinuous operations. 'is strategy can significantly reduce
system load and improve detection efficiency. Figure 9 shows
the data captured by a user attempt to unlock the screen,
which includes one down record, five move records, one lift
record, and nine sensor change records. Finally, the data
collection module sends the collected information to the
server and waits for the detection result.

4.2. Information Processing Module. 'e collected sensor
data requires a preprocessing stage for inevitable noise
handling and temporal alignment for sequence generation.
'e information processingmodule is designed to relieve the
computational burden of smartphones. 'e data processing
tasks are migrated from the mobile client to the server. 'is
module first receives the original data from the mobile client
and removes the incomplete data, such as sliding gesture
records that do not start with “down” or end with “up.”'en

the module divides the data into training and test dataset
according to task type.

4.3.MCBGGenerationModule. 'emain task of the feature
map generation module is to further convert the stan-
dardized data into binary and write it into the image file.'is
module mainly solves three real-world problems:

(1) 'e user’s identity authentication when entering
passwords or typing text, corresponding to the key-
in feature graph (discussed in Section 3.1)

(2) 'e user’s identity authentication during the con-
tinuous screen operation, corresponding to the in-
terval feature graph (discussed in Section 3.2)

(3) 'e user’s identity authentication in the process of
sliding unlocks, corresponding to the sliding feature
graph (discussed in Section 3.3)

'e generation strategies of the three feature maps are
discussed in detail in Section 3. Finally, these maps are
handled by the identity recognition module.

4.4. IdentityRecognitionModule. Typically, the assigned task
is to identify potential associations between user identity and
their biometrics generated during use. 'e convolutional
neural network is the best candidate algorithm for this task

Data Collection Module

Touch coordinates
Timestamp

Touch pressure
Touch Size

Acceleration sensor data
Direction sensor data
Gyroscope sensor data

Capture
With Label

Upload

Training
Dataset

Detection
Task

MCGB Generation Module

Key-in Feature Graph

Interval Feature Graph

Sliding Feature Graph

Data Collection Module

Training Models

Identity Classifier

Result

Information
Processing

Module

Figure 8: Continuous authentication flowchart.

LDP

Origin

Destination

Figure 7: LDP schematic diagram.
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to capture these potential behavioral patterns from a se-
quence of sensor data [30].

'e data training module continuously receives MCBGs
of different training tasks and stores them in files. After
training, we update the existing classifiers. We use MCBG as
input for the corresponding classifier, get the recognition
result, and feed it to the mobile terminal without additional
computing tasks.

4.5. Time Complexity. 'e method proposed in this paper is
mainly time-consuming in the MCBG extraction stage and
recognition stage. Because the construction of each feature
map is generated row by row, the generation time is only
related to the constant matrix size. 'e matrix sizes of KFG,
IFG, and SFG are 300∗ 40, 31∗ 24, and 1700∗ 40, respec-
tively. 'e training algorithm mainly determines the time
complexity of the recognition phase. We adopt CNN as the
recognition algorithm (discussed in Section 5).

'eoretically, the time complexity of CNN is defined as
O(􏽐

D
l�1 M2

l · K2
l · Cl−1 · Cl), where M is the size of the feature

map, K represents the size of the convolution kernel, and Cin
and Cout represent the number of input/output channels.
Besides, M is determined by four parameters: input size X,
convolution kernel size K, Padding, and Stride. 'erefore,
the overall time complexity of CNN is the accumulation of
the time complexity of all convolutional layers. When the
hyperparameters and the input matrix size are fixed, the
overall complexity is constant. We evaluate the detection
efficiency and resource consumption in Section 5.

5. Evaluation Results

In this section, we first introduce the experimental setup of
evaluation and address four research questions:

RQ 1: How does the sensor selection affect the au-
thentication effects?
RQ 2: Which machine-learning-based algorithm is
appropriate for continuous authentication?
RQ 3: How much resource consumption does the
proposed method impose?
RQ 4: Can MCBG be used to identify the minors?

RQ 5: How does the user’s movement affect MCBG?

5.1.Experimental SetupandDataset. All experiments are run
on an Intel(R) Xeon(R) CPU X5650 @ 2.67GHz with four
clusters of 128GB memory. Furthermore, the experiment
smartphones are loaded with Kirin 980 processors with 8GB
of memory. 'e battery’s capacity is 3650 mAh. 'e screens’
resolution is 2340∗ 1080 pixels. 'e metrics in this section
are Recall, TNR, and accuracy, representing the accuracy
rate in the positive examples, the accuracy rate in the
negative examples, and the accuracy rate in the entire test set.

'e experimental data is gained from 180 participants
(130 adults and 50 minors). Figure 10 shows the age dis-
tribution of the 50 underage participants. 'e participants
were taken in turn as legitimate users for multiple experi-
ments. In each set of experiments, one participant was
regarded as a legitimate user, and the others were regarded as
illegal holders.

Besides, we decided to collect data ourselves because our
feature extraction method is different from other methods.
'e current public dataset cannot support our construction
of the MCBG graph. 'erefore, we collect usage data from
180 participants, including operating data records for var-
ious scenarios. To simulate the daily scenarios, we arrange
these participants to perform the following three steps on the
given smartphones: (1) use the system’s default virtual
keyboard, and repeatedly type “:e quick brown fox jumps
over the lazy dog,” (2) input 6-digit presupposed passwords
in a designated input box, and (3) unlock the screen with the
“N-,” “Z-,” “X-,” “L-,” “S-,” and “V”-shaped sliding gestures.
'e MCBGs collected in the three operations from the same
participant are labeled as a set of daily operations. To avoid a
large number of repeated operations of image data au-
thenticity in a short time, each participant completed data
collection within seven days. In this way, we obtained the
19,179 KFGs, 17,461 IFGs, and 17,978 SFGs.

5.2. Evaluation of Approach Capability

Experiment 1. (RQ 1): While smartphone sensors enhance
the user experience, they also accelerate the consumption of

03-09 12:48: 10.261 12574 12574 D data : ( x y p tl t2 size t3 t4) down: 791.0 83.0 2.74 94971711 94971711 135.0 143.0 127.0
03-09 12:48: 10.264 12574 12574 D data : acc: 0.7591726 6.1910324 6.4463115
03-09 12:48: 10.264 12574 12574 D data : gyr: 0.23087215 0.26413813 0.030717794
03-09 12:48: 10.267 12574 12574 D data : ori: 227.09 -36.7 3.1999998
03-09 12:48: 10.275 12574 12574 D data : ( x y p tl t2 size t3 t4) move: 791.0 83.0 4.7999997 94971711 94971724 175.0 191.0 159.0
03-09 12:48: 10.286 12574 12574 D data :ori:226.9 -36.94 3.0
03-09 12:48: 10.292 12574 12574 D data : ( x y p tl t2 size t3 t4) move: 791.0 83.0 4.7999997 94971711 94971733 175.0 191.0 159.0
03-09 12:48: 10.306 12574 12574 D data : oni: 226.94 -36.85 2.97
03-09 12:48: 10.309 12574 12574 D data : ( x y p tl t2 size t3 t4) move: 91.0 83.0 4.7999997 94971711 94971733 175.0 191.0 159.0
03-09 12:48: 10.314 12574 12574 D data :acc: 0.9411032 6.071006 8.085573
03-09 12:48: 10.314 12574 12574 D data :gyr: -02893756 -0.15168656 -7.30383E-4
03-09 12:48: 10.325 12574 12574 D data : ( x y p tl t2 size t3 t4) move: 791.0 83.0 4.7999997 94971711 94971773 175.0 191.0 159.0
03-09 12:48: 10.330 12574 12574 D data : ori: 227.04999 -36.48998 3.12
03-09 12:48: 10.346 12574 12574 D data : ori: 227.17 -36.25 3.25
03-09 12:48: 10.347 12574 12574 D data :( x y p tl t2 size t3 t4) move: 791.0 83.0 1.4399999 94971711 94971791 214.5 238.0 191.0
03-09 12:48: 10.349 12574 12574 D data :( x y p tl t2 size t3 t4) up: 791.0 83.0 1.4399999 94971711 94971799 214.5 238.0 191.0

Figure 9: Data collected from an attempt to unlock the screen.
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battery power. 'is experiment investigates the effects of
including different sensory data on authentication
performance.

Following the research of Cao [31], gyroscope sensor,
acceleration sensor, and direction sensor could achieve the
best authentication effect, which also fits the scenario dis-
cussed in our work. In this set of experiments, we separately
evaluate the following eight sensor data selection cases: (1)
no sensor; (2) only acceleration sensor; (3) only direction
sensor; (4) only gyroscope sensor; (5) both acceleration and
direction sensor; (6) both acceleration and gyroscope sensor;
(7) both direction and gyroscope sensor; (8) all the three
sensors. Note that this set of experiments is trained on the
raw dataset after the corresponding rows where the sensor is
not selected are removed. We train a model for each par-
ticipant to distinguish himself from others in all eight cases.
In the test stage, we treat each participant as the device’s
owner in turn and the data generated by others as the illegal
data of the device. In this way, we verify that the model can
correctly distinguish device owners from intruders and
calculate the final FRR and FAR.

Because CNN can directly use graphical data as input, it
does not require manual image preprocessing, additional
feature extraction, and other complex operations. Image
processing has reached almost human level with its unique
fine-grained feature extraction method. 'erefore, this ex-
periment uses CNN for verification by default. Note that, in
Experiment 2, we further confirmed the performance of
CNN on our dataset. Figure 11 shows the comparison of the
eight cases. Results show surprisingly low FAR and FRR
when using data of three sensors, with a slight increase in
cases 3, 5, and 7.

Experiment 2. (RQ 2): In this set of experiments, we
compare the performance of several machine learning al-
gorithms on our collected dataset. To evaluate the feature
representation of MCBG, we experiment with each kind of
MCBG as an independent graph without considering the
correlation. Besides, we reprocess the features discussed in
Section 3 into vectors as input to adapt the representation of
other machine learning algorithms. We use the grid search
method [32] to select the optimal value of each parameter for
each model. During the test stage, to evaluate the perfor-
mance of eachMCBG type, we test the collected KFGs, IFGs,
and SFGs separately after participants operate the default

three sets of operations. Finally, each model gets an optimal
value combination of parameters, and the comparison re-
sults of different algorithms are presented in Table 4.

'e experimental results show that our proposed MCBG
is better than traditional feature representation because the
graphic features combined with the local connectivity
mechanism of CNN can mine potential relevance among
multiple actions. CNN can effectively extract features in
images. It is more suitable for processing image classification
problems than other machine learning algorithms. 'ere-
fore, we select CNN as the default classifier. Since the KFGs
are generated by password typing operations, the experi-
mental result shows that the accuracy rate in the password
typing scenario achieves 93.92%. Similarly, the accuracy rate
in the sliding unlock scene achieves 95.43%.

We finally test the comprehensive effect of MCBG in
daily authentication scenarios. We add KFG, IFG, and SFG
to the test set simultaneously and collect data generated
during user operations in the background continuously. We
perform model classification every 0.5 seconds. 'e final
authentication accuracy reaches 99.38%. Table 5 shows the
comparison between related research and our method.

Experiment 3. (RQ 3): Considering the user experience in
real scenarios, the feature extraction program is deployed on
the smartphone client, and the feature information is sent to
the server to complete the training process. 'e feature
extraction service works as a background service to reduce
battery consumption and only begins when the CPU oc-
cupancy rate is below 80%. After training, the classification
models are stored on the remote server. 'e features are sent
to the server to update these models every 2 hours. Note that
the above rules are just compromised strategies with mobile
limited device resources. In theory, a higher model update
frequency can result in higher model accuracy.

To evaluate the resource consumption of our proposed
mechanism, we experimented with comparing the resource
consumption by three smartphones with the same initial
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Figure 11: Comparison of eight cases.
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configurations, which are, respectively, labeled as MCBG
client, regular client, and idle client. 'en, the program
proposed in this paper is deployed on the MCBG client. To
ensure that the usage of MCBG client and regular client is
consistent, we test each device to slide and unlock the screen
1, 000 times and record the average memory and CPU rate
each time and the total additional traffic and the total battery
consumption ratio. 'e resource consumption comparison
results are shown in Table 6.

Due to space limitations, Figure 12 only shows the delay
of each tap and swipe gesture when the three sensors are

collected. 'e average data acquisition delay time is 40–70
milliseconds, close to the results of the other seven cases.'e
average authentication time of our method is 1.9 seconds.
'e experimental results prove that the method proposed in
this paper brings a minute amount of additional flow, power,
and delay consumption.

Experiment 4. (RQ 4): 'is set of experiments aims to
evaluate the effectiveness of the proposed method for
detecting minors. We collected 4,800 KFGs, 3,500 IFGs, and
4,980 SFGs of underage participants in the data collection

Table 5: Comparison with related research using the description reported in their papers.

Study Dataset Sensor Algorithm Accuracy (%) Scene
Ehatisham [33] 10 acc, gyr, mag SVM 97.95 Gait
Amini [34] 47 acc, gyr LSTM 96.70 20 s window
Chao [31] 102 acc, gyr, ori, mag HMM 94 200 touch actions
Anusas [35] 25 acc, touch RF 97.90 Input
Abuhamad [11] 84 acc, gyr, mag LSTM 98.00 Daily use
Jain [36] 104 touch, acc Hausdorff distance 97.95 Gesture
Our work 180 acc, gyr, ori, touch CNN 99.38 Daily usage

Table 4: Comparison of authentication accuracy of machine learning algorithms with single MCBG.

Algorithm KFG (%) IFG (%) SFG (%)
Support vector machine 84.72 66.32 46.99
Logistic regression 85.69 66.09 95.22
Naı̈ve Bayes 85.51 64.22 62.37
C4.5 decision tree 89.51 63.30 86.69
Gradient boosting decision tree 92.70 69.29 93.97
Convolutional neural networks 93.92 92.95 95.43

Table 6: Resource consumption comparison results of different experiment devices.

Device CPU usage (%) Memory (%) Battery consumption (%) Flow consumption (MB)
MCBG client 51 34 24 57
Regular client 45 27 21 13
Idle client 23 12.50 11 14
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Figure 12: Clicking operation delay (a). Paddling operation delay (b).
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step. In this set of experiments, we randomly selected 4,500
KFGs, 3,800 IFGs, and 5,000 SFGs collected from adults for
uniform label distribution. We retrained the CNN model to
classify the adult and minor labels qualitatively. Table 7
shows the comparative experimental results for sliding and
clicking gestures of minor identification.

'e experimental results show that the accuracy of the
click gesture is close to the slide gesture. Furthermore, the
detection accuracy of minors is higher than the authentication
accuracy of Experiment 2, implying that the muscles of
minors are not fully developed, resulting in more easily
distinguishable biometrics. For instance, minors often per-
form redundant operations when operating a smartphone.

Experiment 5. (RQ 5):'e user’s daily use of smartphones is
often in a nonstationary state. 'e bumps of the device lead
to changes in the user’s biological information. In this ex-
periment, participants were kept on a 4 km/h treadmill and
repeated all device operations. In Table 8, we compare the
performance of MCBG under the moving state dataset and
the total dataset (including moving and stationary states).
'e experimental results show that the accuracy decreases
after considering the moving state, which implies that the
sensors produce more irrelevant disturbances during the
moving state, which affects the results.

6. Conclusion and Future Work

Nowadays, smartphones have become crucial for our daily
life tasks and are used as mediums for sharing and storing
sensitive information. However, the traditional mobile de-
vice protection mechanism cannot balance user experience
and continuous authentication. We design and implement a
continuous authentication method based on handheld
biometrics features to bridge this gap. We divide the
smartphone usage scenarios into more fine-grained cases,
including the operation interval features. To this end, we
present MCBG, a novel feature representation of the user’s
operating features. We model a touch action into three stages:
press down, finger movements, and finger up. We capture the
sensor data of each contiguous touch operation to reduce
system load. In the experimental stage, we analyze the impact
of the used sensor number on the authentication effect. Fi-
nally, we use CNN to classify MCBGs and train models in
different motion states. Our feature representation method
can also effectively distinguish whether the user is a minor or

not. Besides, we release all the scripts and samples to the
security community for further study by other researchers.

Our limitations are twofold. Firstly, our dataset needs to
be expanded for more fine-grained analysis regarding data
size and the different kinds of volunteers, such as country
and occupation. Secondly, due to the multifactor influence
on sensors, the classification effect is instability. Noise re-
duction algorithms can be introduced in future research.

Data Availability

'e authors release the full dataset and extracted feature set
to researchers for reproducibility purposes on their website:
https://github.com/Zurich1994/MCBG.
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Portugal, January 2019.

[10] H. Li, L. Shen, Y. Wang, J. Feng, H. Tan, and Z. Li, “Risk
measurement method of collusion privilege escalation attacks
for android apps based on feature weight and behavior de-
termination,” Security and Communication Networks,
vol. 2021, Article ID 8814844, 2021.

[11] M. Abuhamad, T. Abuhmed, D. Mohaisen, and D. Nyang,
“Autosen: deep-learning-based implicit continuous authen-
tication using smartphone sensors,” IEEE Internet of :ings
Journal, vol. 7, no. 6, pp. 5008–5020, 2020.

[12] E. Marasco and A. Ross, “A survey on antispoofing schemes
for fingerprint recognition systems,” ACM Computing Sur-
veys, vol. 47, no. 2, pp. 1–36, 2014.

[13] A. J. Aviv, K. L. Gibson, E. Mossop, M. Blaze, and J. M. Smith,
“Smudge attacks on smartphone touch screens,”Woot, vol. 10,
pp. 1–7, 2010.

[14] M. Frank, R. Biedert, E. Ma, I. Martinovic, and D. Song,
“Touchalytics: on the applicability of touchscreen input as a
behavioral biometric for continuous authentication,” IEEE
Transactions on Information Forensics and Security, vol. 8,
no. 1, pp. 136–148, 2012.
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