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Speech synthesis technology has made great progress in recent years and is widely used in the Internet of things, but it also brings
the risk of being abused by criminals.)erefore, a series of researches on audio forensics models have arisen to reduce or eliminate
these negative effects. In this paper, we propose a black-box adversarial attack method that only relies on output scores of audio
forensics models. To improve the transferability of adversarial attacks, we utilize the ensemble-model method. A defense method
is also designed against our proposed attack method under the view of the huge threat of adversarial examples to audio forensics
models. Our experimental results on 4 forensics models trained on the LA part of the ASVspoof 2019 dataset show that our attacks
can get a 99% attack success rate on score-only black-box models, which is competitive to the best of white-box attacks, and 60%
attack success rate on decision-only black-box models. Finally, our defense method reduces the attack success rate to 16% and
guarantees 98% detection accuracy of forensics models.

1. Introduction

Speech synthesis technologies have advanced significantly in
recent years [1, 2]. Speech synthesis generally refers to the
process of converting text into speech. At present, the
mainstream speech synthesis system generally consists of
two parts: spectrogram prediction network and vocoder.)e
spectrogram prediction network converts the text into the
mel spectrograms. Shen et al. [3], for example, use a Seq2Seq
network with an attention mechanism to map text to mel
spectrograms, Ren et al. [4] and Lancucki et al. [5] use the
transformer structure [6] for this purpose. )e vocoder is
used to convert the mel spectrograms into speech. Van et al.
[7] use several dilated convolution layers to achieve this
function. Prenger et al. [8] use a generative model that
generates audio by sampling from a distribution [9]. Of
course, there are some end-to-end models, such as Fast-
Speech2s [10]. )ese technologies have been widely utilized
in the Internet of things [11, 12] like a smart speaker,
personal voice assistant, etc.

However, these technologies also have been abused.)ey
appear in telecom fraud, creating rumors and spoofing

automatic speaker verification (ASV) systems. To detect
these fake audios, the researchers designed several methods.
Lai et al. [13] accumulate discriminative features in fre-
quency and time domains selectively, Lai et al. [14] adap-
tively recalibrate channel-wise feature responses by explicitly
modeling interdependencies between channels, Jung et al.
[15] use the convolutional layer to extract frame-level em-
bedding and the GRU layer to aggregate extracted frame-
level features into a single utterance-level feature. Related
competitions [16] were also organized to promote research
in this field.

Previous researches show that the image classification
neural networks [17–19] are vulnerable to attacks from
adversarial examples, and audio models are no exception
[20–27]. Generally, adversarial attacks are divided into two
categories: white-box attacks and black-box attacks. A white-
box attack means that the attacker can access the complete
structure, parameters, and input and output of the model,
the black-box attack means that the attacker can only obtain
external input and output information but cannot access the
internal structure and parameters of the model [28, 29].
Current researches on adversarial attacks on audio forensics
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models mainly focus on white-box attacks [30]. Although
there are studies on using the transferability of adversarial
examples to achieve black-box attacks, it still relies on white-
box models to generate adversarial examples [31]. In this
paper, we will only rely on the output distribution to conduct
black-box adversarial attacks.

)emain contributions of this article can be summarized
as follows:

(i) To the best of our knowledge, we are the first to
propose a black-box adversarial attack method only
relying on the output distribution of audio forensics
models and we use the ensemble-model method to
increase the transferability of adversarial examples
to implement decision-only black-box attacks.

(ii) We propose a defense method based on low-sen-
sitivity features in view of the huge threat of black-
box adversarial examples.

(iii) Our proposed black-box method can get the attack
success rate equivalent to the best of white-box
attacks and our defense method significantly re-
duces the threat.

)e rest of the paper is organized as follows: Section 2
introduces several audio forensics models, which are the
victimmodels in this paper; Section 3 describes the proposed
adversarial attacks and defense methods; Section 4 intro-
duces the experimental setup and results; and Section 5 gives
theconclusion and future work.

2. Audio Forensics Models

Current speech synthesis technologies have developed to a
high level. Once they are used by criminals in the fields of
telecommunications fraud, network rumors, etc., and it will
bring great harm to society. )erefore, people have designed
a variety of audio forensics models, which aim to reveal the
difference between real voice and fake voice from various
angles. )e following will introduce several current main-
stream audio forensics models, whose detection accuracy is
among the best in the audio forensics competition ASVspoof
2019. )erefore, they will serve as the victim models in this
paper.

2.1. Attentive Filtering Network Model (AFnet) [13].
Attentive filtering (AF) accumulates discriminative features
in frequency and time domains selectively. AF augments
every input feature map S with an attention heatmap AS. )e
augmented feature map S⋆ is then treated as the new input
for the dilated residual network (DRN). For S⋆, S⋆ ∈ R(F×T),
AF is described as

S
⋆

� AS°S + S, (1)

where F and T are the frequency and time dimensions, ° is
the element-wise multiplication operator, + is the element-
wise addition operator, and S is the residual S. To learn the
attention heatmap, As contains similar bottom-up and top-
down processing as [32, 33], and is described as

As � ϕ(U(S)), (2)

where ϕ is a nonlinear transform such as sigmoid or softmax,
U is a U-net-like structure, composed of a series of
downsampling and upsampling operations, and S is the
input.

2.2. Squeeze-Excitation ResNet Model (SEnet) [14]. )e
squeeze-and-excitation (SE) block [34] is a computational
unit that can be constructed for any given transformation
Ftr: X⟶ U, X ∈ RH′×W′×C′ , U ∈ RH×W×C. )e features U
are first passed through a squeeze operation Fsq and get a
statistic z ∈ RC, where the cth element of z is calculated by

zc � Fsq uc( ) �
1

H × W
∑

H

i�1
∑

W

j�1
uc(i, j). (3)

)is is followed by an excitation operation Fex.

s � Fex(z, W) � σ(g(z, W)) � σ W2δ W1z( )( ), (4)

where δ refers to the ReLU function, W1 ∈ RC/r×C and
W2 ∈ RC×C/r. )e final output of the block is obtained by
rescaling the transformation output U with the activations

x̃c � Fscale uc, Sc( ) � sc.uc, (5)

where X̃ � [x̃1, x̃2, . . . , x̃C] and Fscale(uc, sc) refers to
channel-wise multiplication between the feature map
uc ∈ RH×W.

It will be easy to apply the SE block, which adaptively
recalibrates channel-wise feature responses by explicitly
modeling interdependencies between channels to ResNet
and get the squeeze-excitation ResNet (SEnet).

2.3. CNN-GRU Model [15]. )e DNNs used in this model
include convolutional neural network (CNN), gated circula-
tion unit (GRU), and fully connected layer (CNN-GRU). In
this architecture, the convolutional layer is first used to process
input features to extract frame-level embedding. )e con-
volutional layer includes residual blocks with identitymapping
[35] to facilitate the training of deep architectures. Specifically,
the first convolution layer of this model deals with the local
adjacent time and frequency domains and gradually aggregates
them through the repeated pooling operations to extract
frame-level embedding. )en, the GRU layer is used to ag-
gregate the extracted frame-level features into a single utter-
ance-level feature. Fully connected layers are used to convert
utterance-level features. An output layer with two nodes in-
dicates whether the input utterance is a spoof or bona fide.

3. Audio Adversarial Examples Generation

3.1. 8reat Model. In this paper, the adversarial attack is to
craft adversarial voice x

�
� x + δ by finding a perturbation δ

such that (1) x is an original voice classified as the spoof by
the audio forensics model, (2) δ is as human-imperceptible
as possible, and (3) the audio forensics model classifies the
voice x

�
� x + δ as the bonafide. To be as human-
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imperceptible as possible, our attack following the FAKE-
BOB [22] adopts L∞ norm tomeasure the similarity between
the original and adversarial voices and ensures that the L∞

distance ‖x
�
, x‖∞: � maxi |x

�
(i) − x(i)|{ } is less than the

given maximal amplitude threshold ϵ of the perturbation,
where i denotes the sample point of the audio waveform. So,
we can formalize the problem of finding an adversarial voice

x
�
for a voice x as the following constrained minimization

problem:

argminδf(x + δ), such that‖x
�
, x‖∞ <ϵ, (6)

where f is a loss function. To ensure the success rate of the
attack, we minimize the loss function rather than mini-
mizing the perturbation δ. When f is minimized, x + δ is
recognized as the bonafide.

According to the attacker’s mastery of the model, the
adversarial attack can be divided into a white-box attack and a
black-box attack. )e white-box attack generally means that
the attacker can fully understand all the information of the
victim model, including the external input and output in-
formation of the model and the internal structure and pa-
rameters. Attackers can efficiently perform gradient descent
by differentiating the loss function to launch an iteration-
based adversarial attack. Previous researches on adversarial
examples against audio forensics models mostly focus on
white-box attacks [30] or using the adversarial examples
generated from white-box models to conduct transferable
adversarial attacks [31]. However, in the real environment,
users of the audio forensics model generally do not disclose
the internal structure and parameters of the model, which
significantly limits the application scenarios and the threat of
white-box attack. It also leads some people to mistakenly
believe that protecting the internal information of the model
can prevent them from adversarial attacks.

)erefore, in this paper, we will focus on black-box
adversarial attacks. Black-box adversarial attacks mean
that the attackers can only access the input and external
output of the model. )e attacker cannot directly use the
internal information to obtain the gradient of the loss
function and launch the adversarial attack. Compared to
the white-box model, black-box adversarial attacks can be
further subdivided into score-only black-box adversarial
attacks and decision-only black-box adversarial attacks.
)e score-only black-box adversarial attack refers to that
the attacker can access the confidence scores of the model
for each input, while a decision-only black-box attack
means a direct attack that solely relies on the final decision
of the model [36].

In the remainder of this section, we will present methods
for launching adversarial attacks in these two black-box
scenarios and attempt to defend against score-only black-
box adversarial attacks.

3.2. Score-Only Black-Box Attack Algorithm. As shown in
Figure 1, we will introduce the whole attack process in the
remainder of this subsection, especially the loss function and
algorithm to solve the optimization problem.

3.2.1. Loss Function. )e key to carrying out the adversarial
attack is that the score [S(x)]b of the bonafide voice should
be greater than [S(x)]s of the spoof voice. )erefore, the loss
function f is defined as follows:

f(x) � max [S(x)]s − [S(x)]b, − κ{ }, (7)

where the parameter − κ, is to control the intensity of
adversarial examples, so we can increase κ to enhance the
robustness of the adversarial examples.

3.2.2. Optimization Algorithm. We use the basic iterative
method (BIM) [18] with the estimated gradients to craft
adversarial examples. )erefore, the ith iteration voice x

�

i can
be defined as

x
�

i � clipx,ϵ x
�

i− 1 − η · sign gi( ){ }, (8)

where η is the learning rate, gi is the ith iteration gradient.
To compute the estimated gradients, we use the natural

evolution strategy (NES) [37], because the NES-based gra-
dient estimation is proved to require much fewer queries
than finite difference gradient estimation. In detail, we first
create m (must be even) Gaussian noises (u1, . . . , um) on the
ith iteration, and generate m new voices x

�
1

i− 1, . . . , x
�

m

i− 1, where
x
� j

i− 1 � x
�

i− 1 + σ × uj. )en we compute the loss values
f(x

�
1

i− 1), . . . , f(x
�

m

i− 1). Finally, the gradient ∇xf(x
�

i− 1) can be
computed as

∇xf x
�

i− 1( ) �
1

m × σ
∑

m

j�1
f x

�
j

i− 1( ) × uj. (9)

We also use the momentum [38] to speed up the con-
vergence and increase the transferability of adversarial ex-
amples, therefore the ith iteration gradient gi can be defined
as

gi � μ · gi− 1 +(1 − μ) · ∇xf x
�

i− 1( ), (10)

where the μ is the decay factor.

3.3. Decision-Only Black-Box Attack Algorithm. Although
the NES-based gradient estimation attack has no need to
touch the internal structure and parameters of the model, it
still needs to obtain the distribution of result scores through
a large number of queries. Once themodel limits the number
of queries or returns only positive or negative results without
the score, this attack will be impossible to implement. In this
regard, the transferable adversarial attack method can be
used to achieve a decision-only black box attack. Specifically,
the transferable adversarial attack is generating adversarial
examples through known methods and then using these
examples to attack the decision-only black-box model.

To improve the transferability of adversarial examples,
an obvious idea is to increase the attack intensity κ. How-
ever, if we only increase the κ, the adversarial examples may
overfit and it will decrease the transferability. So, an en-
semble-based method will be used to conduct the decision-
only black-box attack. In [39], authors argue that the
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adversarial examples are more likely to transfer to other
models if they could fool various models simultaneously, as
shown in Figure 2. We follow this strategy and made a
weighted sum of the scores of multiple models. To attack K

score-only black-box models simultaneously, we fuse the
loss function as

f(x) � ∑
K

k�1
wk · f xk( ), (11)

where f(xk) represents the loss of kth score-only black-box
model and wk is the ensemble weight, where ∑

K
k�1 wk � 1.

3.4.Defense. Audio forensics models aim to reduce the harm
of speech synthesis technology; however, several adversarial
attacks have made these efforts in vain. So we need some
methods to defend against this adversarial attack so that the
model can be reinforced.

In previous experiments, we noticed that although the
models have the same structure and are trained on the same
dataset, they show different detection accuracy when trained
by features of different sizes and types. We deem audio
forensics models have different sensitivity to different fea-
tures. Because models trained by high-sensitivity features
show better performance than those trained by low-sensi-
tivity features, we consider the reason is the model can
obtain more information from original audio information
through particular features. )erefore, we think that if we
use the low-sensitivity features, the models will suffer less
impact from the adversarial perturbation, and we will at-
tempt to use these low-sensitivity features to reinforce audio
forensics models.

4. Experiments

4.1. Dataset and Victim Models. Following the setting in
[30], we use the LA part of the ASVspoof 2019 dataset
[16]. We use the 2048 fast Fourier transform (FFT) bins
energy spectrum as input for all models. Only the first 400
frames of each utterance are used to extract acoustic
features.

We use the LA training set to train our audio forensics
models and the LA developing set to evaluate the models.
)e details of the models can be found in Table 1.

4.2. Score-OnlyBlack-BoxAttack. We randomly selected 500
spoof audio examples from the trn set to conduct our
adversarial proposed attacks. All the selected samples are
classified correctly by our victim audio forensics models
before the attacks. We only generate adversarial examples
from spoof examples, because we consider there’s no real
value in converting a bonafide sample to a spoof one. All of
the attacks are conducted under ε � 0.001 in equation (6),
κ � 0 in equation (7), m � 500, σ � 0.001 in equation (9). As
shown in Table 2, our proposed method gets a 99% attack
success rate, which is comparable to the MI-FGSM, the most
powerful white-box attack method.

We can conclude that our proposed score-only black-
box attack method is extremely threatening to mainstream
audio forensics models. Tiny adversarial perturbation can
almost completely invalidate them. )is also shows that if
only the internal structure and parameters are hidden from
the attackers, it is almost impossible to defend against the
attack. It is necessary to find other more effective defense
methods.

original spoof voice x

Basic Iterative
Method (BIM)

Gradient
estimation

(NES)

Victim
Model

Adversarial
example x′

spoof

bona fide

Gaussian noises

new voices

output scores

Victim Model

xi−1

xi

xi−1

∇x f  (xi−1)´
xi

1
−1 , ... , xi

m
−1´ ´

f  (xi
1

−1) , ... , f  (xi
m

−1)´ ´

∇x f  (xi−1)´

u1 , ... , um

Figure 1: Score-only black-box attack process.
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4.3. Decision-Only Black-Box Attack. We use the 100 spoof
audio examples used in the previous subsection to conduct
the decision-only black-box attack. We use 3 of the models
to generate the adversarial examples and use the remaining
one to evaluate the adversarial examples. In order to evaluate
the ensemble-model method and the effect of intensity factor
κ, we also generate adversarial examples through single-
model with κ � 2 and muti-models with κ � 0. All of the
results can be found in Table 3 and Figure 3.

We find that if we only increase the intensity factor κ or
use the ensemble-model method, the improvement of the
transferability of the adversarial examples is limited. So we
need to combine these methods to get the best attack effect.

4.4. Defense. In the previous part of the paper, We have
discussed how to enhance the defense capabilities of the
model against our proposed adversarial attack. Here, we will

test the method using low-sensitivity features. After con-
ducting a series of experiments, we found that the models,
which are trained by the log-power spectrum of 512 FFT
bins, get a balance between the accuracy of detecting spoof
samples and the defense capabilities against adversarial
attacks.

We used the LA training set to train the audio forensics
models and the LA developing set to evaluate the models.
)e detection accuracy of the original models and the
reinforced models are shown in Table 4.

We randomly select 100 spoof audio examples from the
trn set to conduct the adversarial attack and evaluate the
defense capabilities of the reinforced models, we also con-
duct the attack on original models. )e results of the ex-
amples can be seen in Table 5 and Figure 4.

By comparing the two types of models, we find that the
average detection accuracy of original models on original
examples is slightly higher than that of the reinforced

score-only black-
box model B

score-only black-
box model D

score-only black-
box model A

score-only black-
box model C

decision-only
black-box model A 

decision-only black-
box model B

ensemble models
adversarial
examples

Figure 2: Ensemble-model.

Table 1: Detection accuracy of victim models (%).

Victim models Trn Dev
ResNet 99.99 99.90
SEnet 99.82 99.85
AFnet 99.74 99.57
CNN-GRU 99.99 99.96

Table 2: Adversarial attack success rate on score-only black-box models (%).

Victim models Proposed method
ResNet 99.6
SEnet 99.9
AFnet 98.9
CNN-GRU 97.9

Security and Communication Networks 5



Table 3: Adversarial attack success rate on decision-only black-box models (%).

Victim models ResNet, κ � 2 SEnet, κ � 2 AFnet, κ � 2 CNN-GRU, κ � 2 Muti-models, κ � 0 Muti-models, κ � 2
ResNet ∗ 46 54 46 54 60
SEnet 40 ∗ 38 42 53 62
AFnet 56 45 ∗ 45 65 78
CNN-GRU 47 44 45 ∗ 48 50
)e bold values are the best results from our proposed method.

0

10
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30

40

50
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)

60

70

80

ResNet Senet Afnet CNN-GRU

single-model, κ=2
multi-models, κ=0
multi-models, κ=2

Figure 3: Adversarial attack success rate on decision-only black-box models.

Table 4: Detection accuracy of original models and reinforced models on original examples (%).

Victim models Original models Reinforced models
ResNet 99.90 94.12
SEnet 99.85 99.57
AFnet 99.57 99.38
CNN-GRU 99.96 99.27
Average 99.82 98.09

Table 5: Score-only black-box attack success rate on original models and reinforced models.

Victim models Original models Reinforced models
ResNet 99 1
SEnet 100 28
AFnet 98 0
CNN-GRU 97 36
Average 98.5 16.25
)e bold values are the best results from our proposed method.
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models. However, the reinforced models we proposed sig-
nificantly reduce the success rate of adversarial attacks.

5. Conclusion

In this paper, the black-box attack method we proposed
achieves an attack success rate equivalent to the best of
white-box attacks, which shows that hiding the internal
structure and parameters of the model from the attacker
cannot effectively protect the model. )e success rate of the
decision-only black-box attack also shows that the method
of limiting the number of queries has scant protection ca-
pabilities for the model. )erefore, it is necessary to do more
research on exploring more effective methods of model
reinforcement.

Although the method proposed in this paper has reached
a similar success rate to that of the white-box attack,
however, there is still a large gap between the black-box
method and the white-box method in terms of the gener-
ation efficiency of adversarial examples. )erefore, further
research is needed on improving the generation efficiency of
black-box adversarial examples.
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)e data used to support the findings of this study are in-
cluded within the article.
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