
Research Article
Certificateless Reliable and Privacy-Preserving Auditing of Group
Shared Data for FOG-CPSs

Manohar Sai Burra and Soumyadev Maity

Department of Information Technology, Indian Institute of Information Technology, Allahabad, Uttar Pradesh 211015, India

Correspondence should be addressed to Manohar Sai Burra; rsi2018504@iiita.ac.in

Received 7 October 2021; Accepted 27 December 2021; Published 4 February 2022

Academic Editor: Ruhul Amin

Copyright © 2022 Manohar Sai Burra and Soumyadev Maity.)is is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

FOG-enabled cyber-physical systems (FOG-CPSs) open new security challenges as the local edge devices are easier to compromise
than a traditional cloud server. Remote data integrity checking (RDIC) plays an important role in safeguarding against data
corruption from a storage server. Certificateless cryptography (CLPKC)-based RDIC schemes do not suffer from the drawbacks of
the public key infrastructure (PKI)-based RDIC protocols. Most of the CLPKC-based RDIC schemes proposed in the literature deal
with personal data. However, in a FOG-CPS, it is also important to audit a data file shared by a group of edge devices. Most of the
existing group shared data auditing schemes lack mechanisms to defend against a semi-trusted data auditor applicable for a FOG-
CPS scenario. In order to address these issues, in this paper, we propose a novel CLPKC-based group shared data auditing protocol
tailored to the specific security requirements of a FOG-CPS. Besides, we perform a detailed cryptanalysis of two existing CLPKC-
based privacy-preserving group shared data auditing schemes.)e formal security analysis of our proposed protocol establishes
metadata and data integrity proof unforgeability and claimed zero-knowledge privacy and reliability properties through rigorous
proofs in the random oracle model setting. Performance evaluations establish the efficiency of our proposed protocol.

1. Introduction

After the introduction of FOG computing by Cisco [1],
considering the capability of FOG to provide computing at
the edge of the network while preserving the advantages of
cloud computing such as ubiquity, decentralized manage-
ment, and so on, FOG-assisted CPS (FOG-CPS) [2–8] is
emerging as a new research domain to address the data
management issues of CPS.)e ability of FOG-CPS to
provide services at the physical proximity of the network is
very much useful in ensuring the low-latency and reliability
requirements of the real-time jobs in a CPS. However, it opens
new security challenges since the local edge devices are much
easier to compromise by an attacker than a traditional cloud
server, and hence it cannot be fully trusted. Resource limi-
tations of the edge devices offer additional challenge in de-
signing security protocols for a FOG-CPS.

Ensuring the availability of correct data at the right time
is of utmost importance for a safety-critical CPS. Data

auditing plays an important role in safeguarding against
intentional or unintentional deletion or modification of data
from a cloud data storage. Since the stored data are enor-
mous, retrieving the complete file to check data integrity is
impractical in communication and computation costs [9]. A
large number of remote data integrity checking (RDIC)
protocols have been proposed in the literature [10–40] which
enable a cloud user to verify the integrity of data files stored
at the cloud server remotely. An RDIC protocol involves two
phases, namely, (a) preprocessing phase: in which, a cloud
user, using its security credentials, generates some metadata
from the data blocks of its data file and then outsources the
metadata along with the data file to the cloud service pro-
vider (CSP), and (b) verification phase: in which, a trusted
data auditor sends a challenge message to the CSP, who
computes a proof of possession on the challenged data file
using the stored metadata and data.)e auditor verifies the
proof generated by the CSP to determine the integrity of the
stored data file [41]. Majority of the RDIC protocols

Hindawi
Security and Communication Networks
Volume 2022, Article ID 6705948, 32 pages
https://doi.org/10.1155/2022/6705948

mailto:rsi2018504@iiita.ac.in
https://orcid.org/0000-0003-0329-5433
https://orcid.org/0000-0003-1462-7608
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6705948

proposed in the literature [11, 12, 26–31, 33, 34, 38, 40] deal
with personal data where a data file is solely owned by a
single cloud user. However, in a FOG-CPS scenario, group
of edge devices, either located in a specific geographical area
or are dedicated for some specific task, forms a cluster, and
data collected or generated by all edge devices in a cluster are
kept in a single data file so that it can be efficiently accessed
by all the others in the cluster. Auditing of such shared data
file imposes additional challenges since the metadata for
different blocks of the same data file may now be generated
by different users (edge devices) using their own security
credentials, and hence, while auditing, the CSP needs to
aggregate all such heterogeneous pieces of information.

A good number of RDIC protocols have also been
proposed by the researchers for auditing group shared data
[10, 13–25, 32, 35–37, 39]. Some of these schemes, such as
[10, 42], are dependent on the traditional public key in-
frastructure (PKI)-based system where a trusted certification
authority (CA) is responsible for managing and distributing
public key certificates of all the users and the certificate
revocation lists (CRLs). Although PKI-based security pro-
tocols serve excellent in traditional networks such as the
Internet, they are inefficient in a ubiquitous network like
FOG-CPS. For a resource-constrained edge device, it is
impractical to store and verify public key certificates asso-
ciated with the large number of edge devices in a FOG-CPS.
Moreover, obtaining up-to-date certificates and CRLs from
the CA might be problematic for the edge devices since the
devices might be deployed in an area having intermittent
Internet connectivity. To address the problems associated
with PKI, a number of shared data auditing protocols
[13–15] have been proposed based on identity-based cryp-
tography (IBC). In IBC [43], the public key of an user is
derived from the publicly known identity of the user, and
hence it does not suffer from the complexities of certificate
management problems of a PKI-based system. However, in
all IBC-based shared data auditing protocols [13–15] and in
the protocols proposed in [44], where the private key of an
user is generated by a trusted private key generator (PKG),
the security of the whole system gets collapsed when the
PKG gets compromised.)is problem of IBC is known as
the key escrow problem, in literature [45].)e certificateless
cryptography (CLPKC) [45] was introduced to eliminate
both the key escrow problem of IBC and the certificate
management problem of PKI at the same time. In CLPKC,
like IBC, the authenticity of the public key of an user is
implicit; however, the full private key of an user is known
only to that user. Recently, a number of CLPKC-based
shared data auditing protocols have been proposed in the
literature [16–24, 39] for traditional cloud storage systems.
However, these protocols cannot be directly adopted for a
FOG-CPS because of its discriminating characteristics as
discussed below.

In FOG-CPS, the data storage and computing facilities
are brought close to the CPS network for efficient bandwidth
utilization and faster communication [46, 47]. Hence,
implementing a data auditing protocol for a FOG-CPS al-
lows the best utilization of FOG computing benefits when
the data auditor is part of the edge network.)is motivates

us to design a protocol where we can opt an edge device from
the CPS network to perform the data auditing task to im-
prove FOG-CPS network latency and performance. How-
ever, since an edge device is susceptible to compromise
either by physical tampering or through security attacks, we
cannot fully trust the data auditor in this scenario. Here, we
identify the two main security vulnerabilities that may arise
from such a semi-trusted data auditor. First, ensuring
confidentiality of the data is as important as ensuring its
availability for a safety-critical CPS. Hence, a data auditing
protocol designed for such scenario must ensure that no
information regarding the content of the data file is leaked to
the semi-trusted data auditor during its interactions with the
storage server.)e second concern is regarding the reli-
ability of the auditing service provided by a semi-trusted
data auditor.)e reliability of the auditing service may be
hampered due to two possible reasons, namely, (a) selfish
nature of the auditor device and (b) collusion between CSP
and the auditor.)e data auditor is supposed to perform
auditing duties on the request of the users (other edge
devices) and periodically, as per the frequency specified in a
service-level agreement (SLA). But, the edge device acting as
auditor may behave selfishly to save its computational re-
sources by either skipping or delaying the auditing tasks.
Moreover, if the auditor is compromised by the storage
server, that is, if there exists a collusion between the data
auditor and the CSP, the auditor may disclose all the
challenge vectors in advance to the CSP, using which, the
storage server can precalculate data possession proofs and
then delete/modify the data blocks of the data file.)e threat
of auditor-CSP collusion was first identified by Armknecht
et al. for non-shared data auditing protocol [48], without
data privacy against auditor, proposed for a traditional cloud
storage system. In a traditional RDIC protocol, it might not
be considered a serious threat as the possibility of collusion
between the CSP and data auditor may be negligible.
However, in a FOG-CPS scenario, where an edge device is
supposed to work as the auditor and the storage server is also
part of the edge network, the chances of an auditor being
compromised by the storage server cannot be neglected.

)e CLPKC-based group shared data auditing protocols
proposed in [16–22] trust the data auditor on the data
confidentiality and hence do not provide any data privacy
mechanisms against the auditor. In these protocols, the
auditor can extract the data blocks from the information
received from the cloud as part of the data auditing process.
Recently, a few privacy-preserving CLPKC-based shared
data auditing protocols have been proposed by the re-
searchers [23, 24, 39] for traditional cloud storage systems.
But, none of these schemes can ensure the reliability criteria
of the auditing service against a semi-trusted data auditor in
a FOG-CPS, as defined above.

Moreover, the schemes in [23, 24] employ a weaker
notion of data privacy which only ensures that a compro-
mised auditor will not be able to extract any information
regarding the challenged data blocks from the data pos-
session proofs received from the CSP. However, the data
possession proofs sent by the CSP leaks information re-
garding the metadata corresponding to the challenged

2 Security and Communication Networks

blocks, since the CSP does not employ any masking
technique to hide the part of a data possession proof
computed from the metadata. A compromised data auditor
can use this leaked information to perform an offline
guessing attack to find a valid message block corresponding
to the leaked metadata.

Furthermore, our cryptanalysis shows that the metadata
generation mechanisms used in [23, 39] cannot fully protect
the integrity and authenticity of metadata, corresponding to a
data block, generated by an user. In these schemes, an attacker
having access to a valid data block along with its corre-
sponding metadata can easily replace the data block with a
forged block. Uploading the data and the metadata blocks
using a confidential channel between the user and the CSP can
prevent access to the metadata blocks against unauthorized
entities. However, we cannot prevent the CSP itself to get
access to the data and metadata blocks as those are essential
for the calculation of correct data possession proofs by the
CSP. A compromised CSP can always launch the above-
mentioned attack by replacing the public key of the user,
which is also known as type-I attack in CLPKC literature [45].
To mitigate this problem, an user may explicitly authenticate
its public key using some mechanisms such as digital sig-
nature. However, this would contradict with the main pur-
pose of CLKPC, which is to authenticate public keys implicitly
without use of any explicit signature or certificates.

In this paper, our contribution is twofold. First, we have
performed a detailed cryptanalysis of the CLPKC-based
privacy-preserving shared data auditing schemes proposed
in [23, 39] to pinpoint the exact vulnerabilities in the
metadata generation mechanisms used in these protocols.
Second, to address the limitations of the existing research as
discussed above, we have proposed a novel group shared
data auditing protocol tailored to the specific security re-
quirements of a FOG-CPS.)e proposed data auditing
protocol takes advantage of the localized storage and
computing facilities available at the edge of the FOG-CPS
network by delegating an edge device geographically close to
the storage resources to perform the data auditing task. Our
protocol ensures zero-knowledge data privacy [49] against a
semi-trusted data auditor where the auditor can learn no
information regarding either a data block or a metadata
block corresponding to a data file while auditing for the
integrity of the file.)e proposed protocol is also reliable
against a semi-trusted data auditor. It enables a user to verify
the data auditing reports generated by the auditor and detect
any procrastination of auditing tasks done by the auditor. In
order to defend against possible collusion of auditor and the
CSP in advance on the challenge vectors, we ensure that the
challenge vectors are generated from a time-varying and
verifiable universal source of randomness. We have designed
our protocol using the CLPKC mechanism, and hence it is
free from both the certificate management problem asso-
ciated with traditional PKI as well as the key escrow problem
associated with IBC. We have performed a detailed security
analysis of our proposed protocol. We have proved that the
metadata generated by our protocol are unforgeable even by
a CSP. To be specific, the metadata generation mechanism
used in our protocol is secure against both type-I and type-II

attacks in the random oracle model setting, as per the se-
curity notions defined in certificateless cryptography [45].
We have also established proofs in support of the claimed
zero-knowledge privacy (ZKP) and the reliability properties
of our proposed protocol.)e comparative performance
evaluations establish the efficiency of our proposed protocol.

)e rest of the paper is organized as follows. We review
the literature in Section 2, which covers generic remote data
integrity checking protocols, and the research related to
FOG-CPSs. In Section 3, we provide the necessary pre-
liminary concepts and security model required for the
proposed work. In Section 4, we show the detailed crypt-
analysis of the schemes in [23, 39]. In Section 5, we provide
detailed information about the entities involved, data
structures and files used, and the assumptions underlying
our proposed scheme. In Section 6, we describe in detail the
proposed basic CLS-RDIC scheme. In Section 7, we describe
in detail the proposed CRPPA scheme. Section 8 presents a
detailed security analysis of both the proposed basic CLS-
RDIC and CRPPA schemes. In Section 9, we provide
qualitative and experimental computation cost comparisons
of our proposed CRPPA scheme with some other existing
schemes. Section 10 concludes the paper.

Table 1 shows the list of acronyms and their abbrevia-
tions used throughout the entire paper.

2. Related Work

In this section, we first provide a brief summary of the
research done in the field of FOG-CPSs, their importance,
and the need for security in FOG-CPSs. After this, we survey
the existing remote data integrity checking (RDIC) protocols
proposed for cloud storage services and discuss their ap-
plicability for FOG-CPSs.

2.1. FOG-CPSs.)ere is a massive increase in the number of
cyber-physical system (CPS) devices connecting to the In-
ternet to access cloud computing services. With the current
growth rate, the available bandwidth of the cloud computing
system will not be able to cater to the growing demand, and
this situation increases the latency of the cloud computing
network [47]. To overcome the bandwidth and latency issues
in a traditional cloud computing environment, Cisco pro-
posed a new cloud computing paradigm called FOG com-
puting [1]. In FOG computing, FOG nodes are deployed in
less centralized geographically close locations to end-user
devices (CPS devices) to provide storage and computing
facilities, improving bandwidth and latency issues. Since the
FOG-CPS devices are less centralized, they are prone to
physical tampering and security attacks.)erefore, there is a
strong security requirement regarding the confidentiality,
integrity, and availability of data for the FOG-CPS [2, 50, 51].

Several works have been proposed to provide security for
the critical data of CPS devices in FOG-CPSs.)e authors in
[3] employed a modified version of the attributed-based
encryption technique to provide secure communication
between the FOG-CPS devices even when the certificate
authority is comprised.)e scheme in [4] employs a

Security and Communication Networks 3

lightweight signature mechanism to generate group signa-
tures, which helps to handle batch authentication of edge
nodes efficiently.)e authors in [5] provided a framework
for the user and data privacy in the FOG-enabled smart city
network.)e schemes in [6, 7] provide mechanisms for
privacy-preserving secure data aggregation mechanisms for
FOG-CPSs. In [8], FOG nodes store cache data to improve
the edge network latency; the scheme employs a modified
version of a Merkle hash tree data structure to enable end
users to audit the integrity of their cached data. Chen et al.
[52] proposed a lightweight pairing-free CLPKC-based
matchmaking encryption mechanism for secure commu-
nication in the Internet of things (IoT) to prevent leakage of
information and identity forgery. Further, the data sharing
mechanisms in scheme [52] are efficient, and the authors
have provided formal security proofs of the protocols based
on the standard hard assumptions.)e scheme in [53]
provides mechanisms to establish a group shared key for
secure data sharing and storage in CSP and can be adopted
to FOG-CPS networks.)e authors in [54] designed a
CLPKC-based searchable encryption technique for an
honest-but-curious platform to provide secure data sharing
in an industrial IoT environment against keyword guessing
attacks.)e scheme in [54] is secure against a malicious key
generation center, provides user data security and access
control on search, and supports on-demand user revocation.

Further, many FOG-CPS schemes have been proposed to
take advantage of blockchain technology, but the devices in
the FOG-CPS are resource-limited, and they cannot directly
adopt the traditional blockchain.)erefore, the works in
[55–58] developed scalable public blockchain techniques for
FOG-CPSs.)e authors in [57] proposed a group chain
concept which utilizes a two-chain structure to build the
blockchain for regulating the behaviour of groups and
preventing malicious nodes from performing joint attacks.
)e authors in [58] constructed a Ethereum blockchain for
the resource-constrained device to provide security of the
data generated from the CPS devices.)ey even designed a
secure networked clock for blockchain data synchronization
for the non-real-time CPS devices.

2.2. Remote Data Integrity Checking (RDIC) Protocols.
Blum et al. [59] introduced the first RDIC scheme in which
the data owner maintains a small amount of metadata
corresponding to the actual outsourced data, and using these
metadata, the data owner checks if the actual data stored
remotely are intact or corrupted. Ateniese et al.’s RDIC
scheme [9] generates probabilistic provable data possession
(PDP) proofs where the data verifier checks the data in-
tegrity of a file by only verifying the validity of a few random
data blocks of the file. In the probabilistic PDP schemes, the
cloud user splits the data file into several smaller blocks, and
each block is denoted with an index. For each of the data
blocks, the cloud user computes metadata using its security
credentials.)e cloud user then uploads both the data file
and metadata to the cloud server and deletes the original
data file from its storage. Suppose the cloud user wants to
verify the integrity of the remote data file.)e user initiates a
challenge-response protocol to the CSP, in which the user
sends a challenge set that contains some random indices
corresponding to the data blocks of the data file.)e CSP
computes a PDP proof corresponding to the challenge set
and sends the PDP proof as a response to the cloud user.)e
cloud user verifies the PDP proof and determines whether
the integrity of the remote data file is intact or corrupted.
Juels et al. [60] proposed a symmetric-key-cryptography-
based RDIC scheme called the proof of retrievability (POR)
that utilizes efficient error-coding techniques.)e main
drawback of the scheme is that it supports only private
verification.)e authors in [32] provided a PORmechanism
based on BLS signature [61] that supports public verification
but implicitly suffers from data privacy issues against the
public verifier.

)e majority of public key cryptography-based RDIC
protocols [11, 12, 26–30, 33, 34, 37, 40] developed until now
employ PKI or IBC [43].)e PKI-based RDIC schemes
[11, 30, 37] require the user to verify the certificate of the
other user for authentication each time before initiating a
communication.)e PKI has a very high computational and
communication overhead, and introducing the PKI into an
RDIC scheme certainly overloads the users in terms of re-
quired computation power. On the other hand, the ID-based
RDIC schemes [12, 26–29, 33, 34, 40] are efficient in terms of
computation and communication overhead than PKI.

Table 1: List of acronyms.
Acronym Abbreviation
CPS Cyber-physical system
RDIC Remote data integrity checking
CSP Cloud service provider
PKI Public key infrastructure
PKC Public key cryptography
CA Certification authority
CRL Certificate revocation list
IBC Identity-based cryptography
PKG Private key generator
CLPKC Certificateless public key cryptography
SLA Service-level agreement
PDP Provable data possession
KGC Key generation center
TPA)ird-party auditor
CLS Certificateless signature
CDH Computational Diffie–Hellman
DDH Decisional Diffie–Hellman
DL Discrete log
PPT Probabilistic polynomial time
DPT Deterministic polynomial time
ROM Random oracle model
CLS-
RDIC

Certificateless signature-based remote data integrity
checking

CRPPA Certificateless reliable privacy-preserving auditing
Adv1 Adversary 1
Adv2 Adversary 2
Adv3 Adversary 3
Adv4 Adversary 4
Adv5 Adversary 5
Adv6 Adversary 6
PBC Pairing-based cryptography

4 Security and Communication Networks

Zhao et al. [33] introduced the first ID-based RDIC
scheme that ensures public verification of remote data in-
tegrity and provides privacy against a third-party auditor
(TPA). Wang et al. [34] developed the first IBC-based RDIC
for the multi-cloud storage model. Yu et al. [12] proposed a
secure symmetric key agreement between the three parties of
a public RDIC protocol, namely, the cloud user, the public
verifier (auditor), and the CSP, to provide data privacy
against the public verifier efficiently. Still, their tag-gener-
ation mechanism is susceptible to the attacks shown in
Section 4 and hence is not secure. Zhang et al. [25] improved
the scheme in [48], but it lacks data privacy.)e IBC-RDIC
schemes have an inherent key escrow problem where the
private key of a user is generated using the master secret key
of the PKG.)e compromise of the master secret key of the
PKG will result in a compromise of the security credentials
of all the users.)us, the encrypted communication under a
user’s public key gets exposed. Certificateless public key
cryptography (CLPKC) [45] eliminates the burden of cer-
tificate management of PKI and the key escrow problem of
IBC. Many RDIC schemes
[16, 18, 19, 22, 23, 35, 36, 39, 62–66] have been proposed
based on CLPKC. He et al.’s [64] certificateless public
auditing scheme for cloud-assisted WBANs is not a privacy-
preserving scheme. Kang et al. [65] improved He et al.’s [64]
scheme to provide privacy-preserving property, but it lacks
public verifiability. Sasikala et al. [35] proposed a certifi-
cateless RDIC scheme for the cloud using lattices, but it was
proved to be insecure in [36].

A number of existing RDIC schemes in the literature
[11, 12, 26–30, 33, 34, 40] deal with personal data where a
data file is solely owned by a single cloud user. However, in a
FOG-CPS scenario, group of edge devices, either located in a
specific geographical area or are dedicated for some specific
task, forms a cluster, and data collected or generated by all
edge devices in a cluster are kept in a single data file so that it
can be efficiently accessed by all the others in the cluster.
Auditing of such shared data file imposes additional chal-
lenges since the metadata for different blocks of the same
data file may now be generated by different users (edge
devices) using their own security credentials, and hence,
while auditing, the CSP needs to aggregate all such het-
erogeneous pieces of information. A number of schemes that
support group shared data include [10, 13–25, 32, 35–37, 39].

We now focus on the CLPKC-based group shared data
schemes considering the advantages of CLPKC over IBC and
PKI.)e CLPKC-based group shared data auditing proto-
cols proposed in [16–22, 62, 63] are not data privacy-pre-
serving. Further, Li et al.’s [62] metadata generation
mechanism suffers from metadata forgeability. Jaya et al.’s
[63] scheme on certificateless multi-replica RDIC considers
the fully trusted KGC and TPA. In reality, the TPA or KGC
should not gain any sensitive or confidential information
about the cloud user. A few recently proposed privacy-
preserving CLPKC-based group shared data auditing pro-
tocols [23, 24, 39] employ traditional cloud storage systems,
and these schemes cannot ensure the reliability criteria of the
auditing service against a semi-trusted data auditor.)e
schemes in [23, 24] employ a weaker notion of data privacy

where the data possession proofs sent by the CSP leak in-
formation regarding the metadata corresponding to the
challenged blocks. Further, the schemes [23, 39] are sus-
ceptible to metadata forgery attacks discussed in Section 4.

In summary, the adoption of FOG computing across
various CPS domain areas to address the data management
issues is exponentially growing, and ensuring the availability
of correct data at the right time is of utmost importance for a
safety-critical CPS.)us, the need arises for remote data
integrity checking (RDIC) mechanism for FOG-CPSs.
However, many RDIC schemes proposed in the literature
employ ID-based cryptography (IBC) with an inherent key
escrow problem [12, 26–29, 33, 34, 40] or depend on public
key infrastructure (PKI) for key management, which is
expensive [11, 30, 37]. Certificateless cryptography
(CLPKC)-based RDIC schemes overcome the drawbacks of
IBC and PKI mechanisms. However, several CLPKC-based
RDIC schemes have been proposed in the literature to deal
only with personal data. But, in a FOG-CPS scenario, a
group of edge devices performs some specific task and forms
a cluster. Data generated by all edge devices in a cluster are
kept in a single data file so that all others can efficiently
access it in the cluster. Hence, RDIC schemes
[11, 12, 26–30, 33, 34, 40] designed for personal data auditing
cannot be adopted for FOG-CPS scenarios. Although there
are few existing CLPKC-based group shared data auditing
schemes, none of these schemes [16–22, 62, 63] provide
mechanisms to ensure confidentiality of user data and re-
liability of data auditing task against a semi-trusted data
auditor at the same time, which are essential for a FOG-CPS.
)erefore, we have proposed a CLPKC-based group shared
data auditing protocol that ensures zero-knowledge data
privacy against a semi-trusted data auditor where the auditor
can learn no information regarding either a data block or a
metadata block corresponding to a data file while auditing
for the integrity of the file. At the same time, the proposed
protocol also ensures the reliability of the auditing task by a
semi-trusted data auditor where the auditor cannot collude
with the CSP in advance on the random challenge vectors
used as a part of RDIC and cannot delay or skip the auditing
tasks. To the best of our knowledge, integrating both the
confidentiality and the reliability objectives, as defined
above, have not been addressed by any of the existing
CLPKC-based group shared data auditing protocols.

3. Preliminaries

In this section, we discuss the preliminary concepts which
have been used as the building blocks to design the proposed
protocol. At first, we introduce the negligible function, the
general forking lemma [67], and the concepts of bilinear
map and computational Diffie–Hellman (CDH) problem.
We then provide the outline of a certificateless signature
(CLS) scheme which is a part of certificateless cryptography
(CPLKC) [45] used in our protocol for metadata generation
purpose. In the last two subsections, we first provide an
overview of a CLS-based RDIC scheme and then describe the
standard adversary model used by the researchers to analyze
the security of these schemes.

Security and Communication Networks 5

3.1. Negligible Function (ξ). A function ξ(x): N⟶ R is
called negligible, if ∀c ∈ N, ∃Qc ∈ N such that ∀x>Qc,
|ξ(x)|< 1/xc.

In cryptography, a scheme is said to be “provably se-
cure,” if the probability of security failure is a negligible
function of the input x which is the security parameter
(cryptographic key length) of the security scheme.

3.2. General Forking Lemma [67]. Let x be a set of global
parameters and H be the co-domain of a random oracle
function RO, with |H|≥ 2. Let A be a randomized algorithm
which takes x and a set h1, . . . , hv􏼈 􏼉 as inputs where each hi

value (∀i � 1, . . . , v) is randomly drawn from the set H for
some v≥ 1.)e algorithm outputs a pair (I, θ) where
I ∈ 0, . . . , v{ } and θ is called side output.

Acceptance. We say that the algorithm A has accepted the
inputs if it uses one of the values in h1, . . . , hv􏼈 􏼉 to generate
its side output θ. If it accepts, then I is the index of the inputs
1, 2, . . . , v{ }. If it does not use any of the values in h1, . . . , hv􏼈 􏼉

to generate θ, then I � 0.

Acceptance Probability.)e acceptance probability for the
above-mentioned randomized algorithm A is defined as
Pr[acc] � Pr[I≠].

Forking.)e forking protocol on algorithm A, denoted as
ForkA(x), is as shown below:

(1) $ ← Random Tape;
(2) h1, . . . , hv􏼈 􏼉←

R
H;

(3) (I, θ)←A(x, h1, . . . , hv; $);
(4) If (I � 0) then return 0;
(5) hI
′, . . . , hv

′􏼈 􏼉←
R

H;
(6) (I′, θ′)←A(x, h1, . . . , hI− 1, hI

′, . . . , hv
′; $);

(7) If ((I≠ I′) or (hI � hI
′)) then return 0;

(8) else return 1;

)e above protocol ForkA(x) actually consists of two
rounds. In the first round, we input the value of x, a
randomly chosen set of h1, . . . , hv􏼈 􏼉 values, and a random
tape $.)e protocol aborts and returns 0 if algorithm A

does not accept (I � 0) the inputs in the first round. In the
second round, we provide the same x and $ values to al-
gorithm A; however, the input set h1, . . . , hv􏼈 􏼉 is updated
keeping h1 to hI− 1 the same.)e second round aborts and
returns 0 if either the acceptance indices I and I′ of the two
rounds are different or if the randomly generated elements
hI and hI

′ are same. Otherwise, the protocol ForkA(x)

returns 1. It can be noted that the main objective of the
forking protocol is to generate two different side output
values θ and θ′ using two different random oracle values hI

and hI
′.

Forking Probability.)e forking probability for the above
protocol ForkA(x) is defined as Pr[frk] � Pr[ForkA(x) �

1] where x is a randomly generated global parameter x.

Bellare et al. [67] proved that Pr[frk] ≥Pr[acc]·
((Pr[acc]/q) − (1/|H|)).

3.3. BilinearMap. Consider two cyclic multiplicative groups
G1, G2, for |G1| � |G2| � q, where q is a large prime integer. A
bilinear map [61] is a function of the form
􏽢e: G1 × G1⟶ G2, that satisfies the following properties.

Bilinearity. ∀m, n ∈ Fq
∗,∀X, Y ∈ G1, e(Xm, Yn) �

e(X, Y)mn.

Non-Degeneracy. e(X, Y)≠ 1 for all values of X and Y, where
1 is the identity element of G2.

Computability.)ere exists a polynomial-time algorithm to
compute 􏽢e.

)e bilinear map can be implemented using a Weil
pairing [43] or a Tate pairing [68].

3.4. Computational Diffie–Hellman (CDH) Problem. Let G1
be a cyclic multiplicative group of order q, and let g be the
generator of the group.)e CDH problem [69] in G1 is as
follows: given 〈q, G1, g, h1, h2〉 for some h1, h2 ∈ G1, where
h1 � gα and α ∈ Zq

∗, compute h2
α.

)e decision version of the above problem, also known
as the decisional Diffie–Hellman (DDH) problem, is defined
as follows: given 〈q, G1, g, h1, h2, h3〉 for some h1, h2, and
h3 ∈ G1, where h1 � gα, h2 � gβ, and h3 � gc, for
α, β, c ∈ Zq

∗, decide whether gαβ � gc.)e DDH problem is
easy to decide inG1 if there exists a bilinear map in groupG1.
However, till date, there exists no efficient algorithm to
compute h2

α in polynomial time, and thus CDH is believed
to be a hard problem in group G1.

3.5. Certificateless Signature Scheme. A certificateless sig-
nature (CLS) scheme is part of the CLPKC mechanism [45],
which is used to generate and verify digital signatures
without the use of any public key certificates. In order to
defend against the key escrow problem, CLPKC uses the
concept of partial keys where part of the private key of an
user is generated by a trusted key generation center (KGC)
and the rest of the part is generated and known to the user
only. A CLS mechanism consists of the following seven
algorithms:

(i) Setup: it is a probabilistic polynomial-time (PPT)
algorithm that takes a security parameter k as input
and outputs public parameter-list params and a
secret master key (α) for the key generation center
(KGC).)e KGC executes the algorithm and an-
nounces the public parameters params to all the
participating entities.

(ii) Partial-Private-Key-Extract: the KGC runs this
algorithm at the request of the user to generate a
partial-private key for it.)e user sends its
identity IDu to KGC as part of the request.)e
input to this deterministic polynomial-time
(DPT) algorithm is the identity IDu, public

6 Security and Communication Networks

parameters params, and master secret key α, and
it outputs the partial-private-key Du.)e KGC
transfers the partial-private-key Du to the cor-
responding user through a secure side channel.

(iii) Set-Secret-Value: this algorithm is executed by a
user u.)e input to this PPT algorithm is params
and IDu and it outputs a secret value βu which is
kept secret to the user u only.

(iv) Private-Key-Gen: a user u runs this PPT algorithm
to generate its private key as 〈Du, βu〉.

(v) Set-Public-Key: user u runs this DPT algorithm
with its identity IDu, full private key 〈Du, βu〉, and
the public parameters params as the inputs to
generate its public key Pu. User u announces its
public key publicly without the need for any
certificate.

(vi) Sign: this PPT algorithm is executed by a user u to
generate a signature on a given message m ∈ 0, 1{ }∗.
)e algorithm takes m, IDu, the full private key
〈Du, βu〉, and the public parameters params as the
inputs and produces Sigm as the signature.

(vii) Verify: the input to this DPT algorithm is m, Sigm,
params, IDu, and Pu and outputs accept if the
signature is valid, or reject otherwise.)e algorithm
can be executed by any entity having the required
inputs in its hand.

A CLS scheme can be considered as secure only if there is
no existential forgery possible for signatures, either by (a)
any compromised user who can try to achieve this by
replacing the public key of another user or (b) even by a
compromised but passive attacker KGC. Type-I and type-II
attackers are defined in Section 3.7 which describes these two
attack scenarios in detail.

3.6.Overviewof aCLS-RDICScheme. ACLS signature-based
remote data integrity checking (CLS-RDIC) scheme consists
of four types of entities (roles), namely, (i) cloud user (data
owner), (ii) the cloud service provider (CSP), (iii) a trusted
third-party auditor (TPA), and (iv) the KGC. It consists of
eight algorithms: the CLS mechanism, as described in
Section 3.5, contributes the first four algorithms, namely,
setup, partial-private-key-extract, private-key-gen, and set-
public-key.)e rest of the algorithms of CLS-RDIC are
briefed below:

(i) Tag-Gen: a cloud user runs this algorithm with a
data block m, corresponding authenticating infor-
mation w � (file-id ‖block − index‖ public info. of
user), params , and IDu as inputs to generate a tag
(σ), where m ∈M, for M is the message space. For
every data block uploaded in the data file IDF, the
value w is updated in a public log file. Set of all tags
corresponding to all the blocks of the data file
constitutes the metadata, stored by the CSP along
with the original data file.

(ii) Challenge: the TPA runs this algorithm with c

(number of data blocks challenged), IDF (id of the

data file), params, and inputs from a pseudorandom
source to generate a challenge vector called chal.)e
chal contains information regarding the specific
blocks challenged, along with some random values,
for which the CSP needs to generate a data integrity
proof.

(iii) Proof-Gen: the CSP runs this DPT algorithm when
it receives a challenge request chal from the TPA.
)e inputs to this algorithm are chal, params,
σi􏼈 􏼉, and mi􏼈 􏼉 (all tags and data blocks corre-
sponding to the challenge), and it outputs data
integrity proof P for the challenged blocks.

(iv) Proof-Ver: the TPA runs this DPT algorithm with
the inputs P, chal, IDF, and params and outputs
accept if the proof P is valid, or reject otherwise.

)e security requirements for a CLS-RDIC scheme are
discussed in detail in the following subsection.

3.7. Security Model for a CLS-RDIC Scheme. A CLS-based
RDIC scheme is considered to be secure only when (a) the
underlying CLS mechanism is secure, i.e., when the gen-
erated tags are unforgeable by any internal or external at-
tacker, and (b) the CSP is unable to cheat the TPA, i.e., when
CSP can pass the auditing test only if it stores all the data
blocks of a file correctly. According to the CLPKC literature
[45], the tag unforgeability is again considered against two
different types of attackers, namely, (i) type-I attacker: any
internal/external attacker except the KGC, and (ii) type-II
attacker: a compromised KGC. A compromised CSP that
aims to cheat the TPA is termed as type-III attacker. We use
the random oracle model (ROM)-based analysis [70] to
validate the security of a CLS-RDIC scheme against the three
types of attackers defined above. In the random oracle
model-based analysis, the hypothetical attacker’s power and
the proposed protocol’s ultimate security objectives are
modeled as a game between the attacker and a challenger.
)e games corresponding to the above three types of ad-
versaries are defined in the following three subsections.

3.7.1. Type-I Adversary (Adv1). In type-I attack, the ad-
versary may be an external attacker or an internal attacker
such as a compromised user/users or even the CSP.)e
objective of the attacker is to generate a valid tag for a forged
data block for a data file corresponding to a victim user. It is
quite obvious to assume that the adversary has access to all
the public parameters used in the protocol including the
valid public keys of all genuine users. Since the adversary
may be a compromised user/users, it may have valid partial-
private-keys and personal secret-values corresponding to a
set of legitimate users. Additionally, an adversary may have
access to valid tags corresponding to a set of data blocks,
generated by the victim user using its valid security cre-
dentials.)e adversary may obtain this information either
by eavesdropping to the communication between the victim
user and CSP during metadata upload phase or when the
adversary is the CSP itself. However, we assume that, in any
case, the personal secret value of the victim user is not

Security and Communication Networks 7

known to the adversary. Since there is no use of public key
certificates in a CLS-RDIC scheme, attacker may try to
replace the public key of the victim user by advertising a false
public key claiming it as the public key of the victim user.

Game-1, defined below, between a challenger (C) and an
adversary Adv1, models the hypothetical type-I attacker
discussed above.)e game consists of the following phases.

Setup.)e challenger C runs the setup algorithm of the CLS-
RDIC scheme to generate the master secret key msk and
public parameters params. C forwards only the params to
Adv1 and keeps with itself msk.

Queries. In this phase, Adv1 can adaptively make the fol-
lowing queries to the challenger C.

(i) Hash Query: Adv1 can query for hash values of any
binary string, related to any hash function used for
tag generation in the CLS-RDIC scheme, to the
challenger C. C is required to send back the correct
output.

(ii) Partial-Private-Key Query: Adv1 can submit any
identity IDu to C. C runs the Partial-Private-Key-
Extract algorithm of the CLS-RDIC scheme to
provide the corresponding partial private key to
Adv1.

(iii) Secret-Value Query: Adv1 can submit any identity
IDu to C. Challenger C runs the Set-Secret-Value
algorithm of the CLS-RDIC scheme to provide the
corresponding secret value to Adv1.

(iv) Public-Key Query: Adv1 can submit any identity
IDu to C. Challenger C runs the Set-Public-Key
algorithm of the CLS-RDIC scheme to provide the
corresponding public key to Adv1.

(v) Public-Key-Replacement Query: Adv1 can submit
any identity IDu and a public key Pu

′ of its choice to
C. Challenger C updates the public key corre-
sponding to IDu as Pu

′.
(vi) Tag-Gen Query: Adv1 can submit any tuple

(m, w, IDu) of its choice to C. Challenger C runs the
Tag-Gen algorithm of the CLS-RDIC scheme to
generate the corresponding tag σ and sends the tag
to Adv1.

Forge-Tag. Finally, Adv1 outputs a tuple (σ′, m′, w′, IDu
′),

where σ′ is a forged tag on the forged data block m′ with
authenticating information w′ for user IDu

′.
Adv1 wins game-1 only if (i) σ′ is valid tag corre-

sponding to the forged data block m′ and the authenticating
information w′ for the targeted user IDu

′, (ii) Adv1 has not
queried for the secret value corresponding to the identity
IDu′ , (iii) Adv1 does not query for the partial-private-key
and replace public key simultaneously for the identity IDu

′,
and (iv) Adv1 has not queried the tag for the (m′, w′, IDu

′)
tuple at any stage.

3.7.2. Type-II Adversary (Adv2). In type-II attack, we con-
sider a compromised KGC as a passive attacker in the sense
that it may try to forge a data block for a victim user but
without any attempt to replace the public key of the victim
user. Like type-I attacker, we assume that the adversary has
access to all the public parameters used in the protocol in-
cluding the valid public keys of all genuine users. Addi-
tionally, since the attacker is the KGC itself, it has access to the
master secret keymsk of the KGC. Like type-I attack scenario,
adversary may have access to valid tags corresponding to a set
of data blocks, generated by the victim user using its valid
security credentials. Similar to type-I attacker, we assume that
the personal secret value of the victim user is not known to the
adversary. However, unlike a type-I attacker, the adversary
does not try to replace the public key of the victim user.

Game-2, defined below, between a challenger (C) and an
adversary Adv2, models the hypothetical type-II attacker
discussed above.)e game consists of the following phases.

Setup. Challenger C runs the setup algorithm of the CLS-
RDIC scheme to obtain the master secret key msk and public
parameters params. C forwards both msk and params to
Adv2.

Queries. In this phase, Adv2 can make the following queries
adaptively to challenger C.

(i) Hash Query: this query is the same as the hash query
in game-1.

(ii) Secret-Value Query: same as the Secret-Value query
defined in game-1.

(iii) Public-Key Query: same as the Public-Key query
defined in game-1.

(iv) Tag-Gen Query: same as the Tag-Gen query defined
in game-1.

It can be noted here that we do not include the Partial-
Private-Key Query for Adv2 since it can calculate the partial-
private-key of any user using msk it has in its possession.

Forge-Tag. Finally, Adv2 outputs a tuple (σ′, m′, w′, IDu
′),

where σ′ is the forged tag on the forged data block m′ with
authentication information w′ for user IDu

′.
Adv2 wins game-2 only if (i) σ′ is valid tag corre-

sponding to the forged data block m′ and the authenticating
information w′ for the targeted user IDu

′, (ii) Adv2 has not
queried for the secret value corresponding to the IDu

′, and
(iii) Adv2 has not queried for the tag for the (m′, w′, IDu

′)
tuple at any stage.

It can be noted that we consider only passive attack for a
compromised KGC as providing security against active
attacks launched by a compromised certificate authority
(CA) in a traditional public key infrastructure (PKI)-based
protocol is also equally difficult. So, a malicious-but-passive
KGC, in this attacker model, may try to forge a tag for a user
but without trying to replace the user’s public key.)us,

8 Security and Communication Networks

security against type-II attacker establishes the same level of
confidence on a KGC-based CLPKC system as that of a
traditional CA-based PKI system.

3.7.3. Type-III Adversary (Adv3). In type-III attack, we
consider a compromised CSP as the possible attacker.
However, unlike type-I attack, where the objective of the
attacker is to generate tag for a forged data block, in type-III
attack, the attacker’s objective is to generate a valid data
possession proof for a given random challenge without
storing all the data blocks of the corresponding data file
properly. Like type-I and type-II attacks, we assume that the
adversary in this case also has access to all the public pa-
rameters used in the protocol including the valid public keys
of all genuine users. Since type-III attacker is a compromised
CSP, we need to assume that the adversary has got access to
all the valid tags corresponding to all the data blocks of the
challenged data file. It has also access to all the data blocks of
the file only except one of the challenged blocks which, we
assume, has been deleted or modified by the attacker.

Game-3, defined below, between a challenger (C) and an
adversary Adv3, models the hypothetical type-III attacker
discussed above.)e game consists of the following phases.

Setup.)e challenger C runs the setup algorithm of the CLS-
RDIC scheme to obtain the master secret key msk and public
parameters params. In addition, C generates a random data
file with n number of data blocks and file-id IDF.)e
challenger forwards only the params to Adv3 and keeps with
itself msk and the data file.

Queries. In this phase, Adv3 can make the following queries
adaptively to the challenger C.

(i) Hash Query: this query is same as the hash query in
game-1.

(ii) Data-Block Query: Adv3 can query for any block
index i of the data file IDF. Challenger C retrieves
corresponding data block from the data file and
forwards it to Adv3.

(iii) Public-Key Query: same as the Public-Key query
defined in game-1.

(iv) Tag-Gen Query: Adv3 can submit any block index i

of the data file IDF to C. Challenger C runs the Tag-
Gen algorithm of the CLS-RDIC scheme to generate
the corresponding tag σi and sends it back to Adv3.

Challenge. C runs the Challenge algorithm of the CLS-RDIC
scheme to generate a challenge vector chal for data file IDF

and forwards chal to Adv3.

Forge-Proof. Adv3 outputs a data possession proof P cor-
responding to the given challenge chal.

Adv3 wins the game-3 only if (i) P is valid data pos-
session proof corresponding to the given challenge chal and
(ii) at least one of the challenged blocks does not appear in
any Data-Block query from Adv3.

4. Cryptanalysis of Existing Schemes

In this section, we perform a detailed cryptanalysis of the
CLPKC-based privacy-preserving shared data auditing
protocols proposed in [23, 39]. Specifically, we analyze the
tag unforgeability of these schemes against type-I and type-
II attackers as defined in Sections 3.7.1 and 3.7.2. Since the
tag-generation mechanisms used in these two protocols are
very similar, we mainly discuss the vulnerabilities for one of
these schemes [23] and highlight the similarities of the
other scheme [39] with [23]. In the following, we first
provide a brief description of the tag-generation mecha-
nism used in the protocol [23] and then perform its
cryptanalysis.

4.1. Brief Description of Jaya et al.’s Scheme [23].)e algo-
rithms involved in the tag generation of the protocol
proposed by Jaya et al. [23] are described as follows.)e
notations used in describing these algorithms are little bit
different from the notations used in [23]. We use the
notations same as the notations that we use in our pro-
posed protocol description, so that they can be compared
easily.

Setup.)e KGC runs the setup algorithm and performs the
following steps:

(1) Selects q, g, G1, G2, e as described in our Prelimi-
naries section.

(2) Chooses a master secret key α ∈ Z∗q at random
and sets the KGC’s public key Ppub � gα.)e KGC
also chooses another random value co ∈ Z∗q and
sends it confidentially to the group manager (GM).

(3) Selects three secure hash functions
H1: 0, 1{ }∗ ⟶ G1, H2: 0, 1{ }∗ ⟶ G1, and h(.):

G1⟶ Z∗q .

)e KGC publishes the public parameters
params � 〈G1, G2, q, 􏽢e, g, Ppub, H1, H2, h(.)〉.

Join. Any user entity Uj, for 1≤ j≤d, which is part of
network and wants to join a group, requests the GM.)e
GM after reviewing the request generates a group key δUj

for
the user where δUj

� gco · H1(IDUj
)co and sends δUj

to the
corresponding user through a secure channel.

PartialPvtKeyGen. Once the user receives the group key
from the GM, the user requests the KGC for the partial
private key and sends (IDUj

, δUj
) as part of the request.)e

KGC validates both (IDUj
, δUj

) as per the verification
equation below:

e δUj
, g􏼒 􏼓 � e g · H1 IDUj

􏼒 􏼓, g
co􏼒 􏼓. (1)

If invalid, KGC aborts, else generates QUj
� H1(IDUj

)

and DUj
� Qα

Uj
where IDUj

is the unique public identity and
DUj

is the partial private key of the user Uj. KGC forwards
DUj

to the corresponding user Uj via a secure channel.

Security and Communication Networks 9

SetSecretValue. User Uj chooses the values βUj
∈ Z∗q and

g1 ∈ G1 at random and stores with itself βUj
as a secret.)e

user computes ζ � g
βUj

1 and makes it public.

PvtKeyGen. User Uj sets its private key SUj
� DUj

, βUj
􏼚 􏼛.

SetPublicKey. User Uj computes its public key as
PKUj

� g
βUj .

SignGen. User Uj generates tag for a block mi of the file
M � 〈m1, m2, . . . , mn〉 with file identity Fid, where n is the
number of blocks, mi ∈ Zq

∗.

(1))e group user Uj computes the tag σi as
σi � (DUj

· g1)
mi H2(wi)

βUj , where wi � Fid‖n‖i.
(2))e group user Uj uploads its message block along

with authenticating information and the generated
tag (mi, wi, σi)􏼈 􏼉 to the cloud.

A correctly generated tag σi satisfies the following
equation, which can be verified by the cloud after receiving
the tag.

e σi, g(􏼁 � e H1 IDUj
􏼒 􏼓

mi

, Ppub􏼒 􏼓

· e g
mi

1 , g(􏼁 · e H2 wi(􏼁, PKUj
􏼒 􏼓.

(2)

4.2. Analysis of Jaya et al.’s Scheme

4.2.1. Type-I Attack Analysis. Suppose a type-I attacker
targets userUj as the victim user. According to the definition
provided in Section 3.7.1, we can assume that type-I attacker
has access to (1) all the public parameters used in the
protocol, (2) the public key PKUj

of the victim user, and (3) a
valid tuple (mi, wi, σi) for the i′th block of the data file of
user Uj, for some i. Having these kinds of information, the
attacker can execute the following steps to generate a forged
tag σi
′ for a forged data block mi

′, keeping the authenticating
information same as wi and replacing the original public key
PKUj

of the victim user by a forged public key PKUj
′.

(1) Generates a forged data block mi
′ of its choice.

(2) Calculates k � (mi
′/mi), where mi is the data block to

be replaced. Note that mi
′ � kmi.

(3) Generates a forged public key PKUj
′ for user Uj as

PKUj
′ � (PKUj

)k. It replaces the original public key
PKUj

of the victim user by the forged public
key PKUj

′.
(4) Computes the forged tag as σi

′ � σk
i .

(5))e attacker outputs the tuple (mi
′, wi, σi
′).

Note that the attacker does not need access to the partial-
private key DUj

or the personal secret key βUj
of the target

user Uj.

Lemma 1. Ge forged tag σi
′ generated using the above

mechanism is a valid tag on the forged data block mi
′ with

authenticating information wi under the public values
(IDUj

, PKUj
′) of the victim user Uj.

Proof. In order to prove the lemma, it is sufficient to show
that the tuple (mi

′, wi, σi
′) satisfies the correctness equation as

shown in equation (2) under the replaced public key PKUj
′ of

user IDUj
.)e correctness proof is given below:

e σi
′, g(􏼁 � e σk

i , g􏼐 􏼑

� e DUj
· g1􏼒 􏼓

mi

· H2 wi(􏼁
kβUj􏼒 􏼓, g􏼒 􏼓

� e D
kmi

Uj
· g

kmi

1􏼒 􏼓H2 wi(􏼁
kβUj􏼒 􏼓, g)

� e D
kmi

Uj
, g􏼒 􏼓 · e g

kmi

1 , g􏼐 􏼑 · e H2 wi(􏼁
kβUj􏼒 􏼓, g􏼒 􏼓

� e H1 IDUj
􏼒 􏼓

αkmi

, g􏼠 􏼡

· e g
mi
′

1 , g􏼒 􏼓.e H2 wi(􏼁(􏼁, g
kβUj􏼒 􏼓

� e H1 IDUj
􏼒 􏼓

kmi

, g
α

􏼠 􏼡 · e g
m

i′
1 , g􏼐 􏼑

· e H2 wi(􏼁, PKUj
􏼒 􏼓

k

􏼠 􏼡

� e H1 IDUj
􏼒 􏼓

mi′, Ppub􏼒 􏼓 · e g
mi
′

1 , g􏼒 􏼓

· e H2 wi(􏼁, PKUj
′􏼒 􏼓.

(3)

□

4.2.2. Type-II Attack Analysis. Like type-I attack, a type-II
attacker also has the access to all public parameters, in-
cluding the public key PKUj

of the victim user Uj, and a
valid tuple (mi, wi, σi) for some i. In addition, it has the
master secret key α in its possession.)e attacker can
execute the following steps to generate a forged tag σi

′ for a
forged data block mi

′, keeping the authenticating infor-
mation same as wi.

(1) Generates a forged data block mi
′ of its choice.

(2) Calculates DUj
� H1(IDUj

)α.
(3) Calculates X � (DUj

· g1)
mi

(4) Calculates Y � (σi/X).
(5) Computes the forged tag as σi

′ � (DUj
· g1)

mi′.Y.
(6))e attacker outputs the tuple (mi

′, wi, σi
′).

Note that in the above attack, the attacker does not need
access to the personal secret key βUj

of the victim user Uj.
Also, it does not replace the original public key PKUj

of the
user.

Lemma 2. Ge forged tag σi
′ generated using the above

mechanism is a valid tag on the forged data block mi
′ with

authenticating information wi under the public values
(IDUj

, PKUj
) of the victim user Uj.

10 Security and Communication Networks

Proof. Let us prove the lemma by showing the validity of the
forged tuple (mi

′, wi, σi
′) under the public key PKUj

of user
Uj, as per equation (2).)e correctness proof is given below:

Y �
σi

X
􏼒 􏼓

�
DUj

· g1􏼒 􏼓
mi

H2 wi(􏼁
βUj􏼒 􏼓

DUj
· g1􏼒 􏼓

mi

� H2 wi(􏼁
βUj ,

(4)

and hence

e σi
′, g(􏼁 � e DUj

· g1􏼒 􏼓
m

i′
· Y􏼒 􏼓, g􏼒 􏼓

� e D
mi
′

Uj
, g􏼒 􏼓 · e g

mi
′

1 , g􏼒 􏼓 · e(Y, g)

� e H1 IDUj
􏼒 􏼓

αmi
′

, g􏼠 􏼡 · e g
mi
′

1 , g􏼒 􏼓 · e H2 wi(􏼁
βUj , g􏼒 􏼓

� e H1 IDUj
􏼒 􏼓

mi
′

, g
α

􏼠 􏼡 · e g
mi
′

1 , g􏼒 􏼓 · e H2 wi(􏼁, g
βUj􏼒 􏼓

� e H1 IDUj
􏼒 􏼓

mi
′

, Ppub􏼠 􏼡 · e g
mi
′

1 , g􏼒 􏼓 · e H2 wi(􏼁, PKUj
􏼒 􏼓.

(5)
□

4.2.3. Remarks on the Analysis.)e above analysis shows
that if an attacker (type I or type II) obtains a valid data block
and tag pair (mi, σi) corresponding to some block i of a data
file Fid belonging to a victim user Uj, then it can replace the
block by generating a valid tag σi

′ for a forged block mi
′ while

keeping the authenticating information same as
wi � Fid‖n‖i. More importantly, we can also observe that the
forged block mi

′ can be generated as per the choice of the
attacker. Hence, the tag-generation mechanism used in [23]
is susceptible to selective forgery attack under both type-I and
type-II attackers. It can be noted that a selective forgery
attack is more powerful than an existential forgery attack
and can become detrimental in a cyber-physical system
(CPS) environment where the truthfulness of data is directly
associated with safety and security of property and life.

An obvious solution to prevent the above attack could be
to prevent an unauthorized entity in obtaining access to a
data block and its tag pair. It can be noted that in an RDIC
protocol, the metadata (tags) generated by an user are re-
quired only by the CSP. Hence, we can keep both data and
tag blocks of a file confidential between the user and the CSP
only.)is simple solution can certainly strengthen the se-
curity by completely eliminating type-II attack (compro-
mised KGC) and eliminating type-I attack by any internal/
external entity except the CSP. A compromised CSP can still
launch type-I attack since it has access to the valid tag blocks
generated by an user and we cannot hide those from the CSP
since those are mandatory in calculating data-possession
proof during data auditing. Our observation reveals the fact

that type-I tag forgery attack is possible against Jaya et al.’s
scheme [23] since the tag generation algorithm (SignGen)
does not link the authenticating information wi of a block
with the public key of the user.)is enables a type-I attacker
to easily replace the public key and forge a tag for a chosen
message as we have shown in our analysis. In our protocol,
we utilize the above conclusions to design a novel tag-
generationmechanismwhich is provably secure against both
type-I and type-II attacks.

4.3. Brief Overview on the Tag-Generation Mechanism of the
Scheme in [39]. In the following, we briefly describe the tag
generation algorithmused in [39]. Again, we keep the notations
consistent to the notations used in our proposed protocol.

Tag-Gen. Using this algorithm, a group user Uj for 1≤ j≤d

generates tag for a block mi of the file M � 〈m1, m2, . . . , mn〉

with file identity Fid where n is the number of blocks,
mi ∈ Zq

∗. User Uj computes the tag σi as

σi � DUj
􏼒 􏼓

mi

H2 wi(􏼁
βUj , (6)

where wi � i‖Fid.)e partial private key is calculated as
DUj

� H1(IDUj
+ η)α where 〈α, η ∈ Z∗q 〉 are secretly kept

with the group manager, which acts as the KGC in this
protocol. User Uj sends the message block and tag pair
(mi, σi)􏼈 􏼉 to the cloud and updates a public log file with the
values index i, the user public identity H1(IDUj

+ η), and the
user public key PUj

� g
βUj where βUj

is secret to the user Uj.
It can be noted that the tag generation algorithm dis-

cussed above is quite similar to that used in [23] in the sense
that in this algorithm, the authenticating information for a
block does not contain the information regarding the public
key of the user. In addition, the protocol in [39] also does not
include any mechanism to hide the valid tags generated by
an user from the group manager, acting as the KGC in this
protocol. Hence, type-I and type-II attacks can be launched
in the same ways as we have shown in Sections 4.2.1 and
4.2.2.

5. Proposed System Model

In this section, the entities involved, data structures and files
used, and the assumptions underlying our proposed pro-
tocols are stated in detail.

5.1. Entities Involved.)e proposed protocols consist of the
following entities.

Ge CSP. In cloud computing, a CSP is responsible for
providing the computing and storage facilities to its users.
For a FOG-CPS, we assume that the storage is implemented
inside the FOG network at the physical proximity of the CPS
system [71]. In our protocol, we view the storage facility
implemented inside the FOG systems as a local storage
server, and without loss of generality, we refer to it as the
CSP.

Security and Communication Networks 11

Ge Cloud User Group.)e cloud user is an edge device in
our scheme. A group of edge devices forming a cluster
constitutes a user group.)ere exists a group manager who
manages the usual activities of a user group [72].)ese users
contribute data blocks to commonly shared files kept inside
the local CSP. During registration of each cloud user, the
user establishes a shared secret key with the CSP for con-
fidential communication with it.

Ge Data Auditor. Unlike the existing RDIC approaches,
which use an external fully trusted third-party auditor
(TPA), in our protocol, one of the edge devices in a user
group would act as the data auditor. Selection of the auditor
can be done by the group manager or it can be elected by the
group members using some leader election mechanism such
as that in [73]. While selecting/electing the auditor, load
balancing should be a criterion to be considered. Without
loss of generality, throughout the rest of the paper, we as-
sume that there exists a dedicated edge device in a user group
acting as the data auditor. Since an edge device is easier to
compromise, we assume that the auditor is a semi-trusted
entity.

Audit-Verifier. Any edge device belonging to the user group
sharing the data file F can act as an audit-verifier to check
whether the data auditor is performing its assigned duties
correctly or not. We recommend that each edge device
invoke this algorithm occasionally so that the load of ver-
ification is distributed among all edge devices in the group.
Alternatively, the groupmanager can also prepare a schedule
to distribute the verification duty among the group
members.

Ge KGC. It acts as the security server that publishes the
public parameter list and grants security credentials to all of
the participating entities in the protocol.

5.2. Data Structures and Files.)e data structures and files
used and maintained by different entities in our protocol are
listed below.

Data File. A shared data file F with identity IDF, stored with
the CSP and shared among d users (edge devices), can have n

number of data blocks 〈m1, m2, . . . , mn〉 at any instant in
time. Each of these data blocks may be contributed by any
one of the d users of that group.

Metadata File. For each data file F, the CSP maintains a
metadata file/tag file which contains the tags 〈S1, S2, . . . , Sn〉

associated with each data blocks of the data file generated by
the corresponding users.

Indicator Matrix. For each such data file F, the CSP
maintains an indicator matrix I.)e indicator matrix is a
(n × d) 2D matrix whose each row corresponds to a block
index i(1≤ i≤ n) and each column corresponds to an user
u(1≤ u≤d). We use the notation Ii,u to denote I[i][u] which
is defined as follows:

Ii,u �
1, if user u is the generator of block i,

1, otherwise.
􏼨 (7)

Log-File-1.)e data auditor maintains the Log-File-1.
Corresponding to every data audit instance, there is an entry
in this file.)e fields contained in each entry are as shown
below:

〈t, t′, IDF,Result, Signed Proof〉, (8)

where t and t′ indicate the time instances when the audit was
invoked and when the corresponding record was inserted
into the public blockchain (explained later), respectively, for
the file identified by IDF. Result is an 1 bit field indicating
whether the CSP passed the specific audit instance or not. A
copy of the proof of data possession digitally signed and sent
by the CSP, in response to the audit instance, is kept in the
last field of the entry. All the cloud users have read access to
Log-File-1.

Log-File-2.)e CSPmaintains Log-File-2 which contains the
indicator matrix I for every data file.)e auditor and all the
cloud users have read access to Log-File-2.

5.3. Assumptions. We assume the existence of a scalable
public blockchain, suited for FOG-CPS environments, in-
side the network.)ere are several works that have proposed
scalable public blockchain techniques for FOG-CPSs
[55–58] as discussed in Section 2.1. FOG nodes with
moderate storage and computing power store the complete
blockchain information, and some edge devices with low
storage and computing power only maintain a copy of the
header information of the blocks in the blockchain.

A service-level agreement (SLA) is executed between the
group manager, on behalf of a cloud user-group, and the
data auditor which determines the frequency of audits or
their specific time instants.)e auditor is supposed to invoke
data auditing protocol as per the requirements specified in
the SLA.

6. Proposed Basic CLS-RDIC Protocol

In this section, we propose a basic CLS-RDIC group shared
data auditing protocol applicable for the system model we
described in the previous section. Usually, in the existing
CLS-RDIC schemes, the data auditor generates the random
challenge values used during a data auditing instance by
itself. In our protocol, we restrict the auditor to use only
time-varying verifiable source of randomness. For this
purpose, the data auditor is required to retrieve the latest
hash-block from the public blockchain available inside the
network. It can be noted that given a time instant t, the latest
hash-block is identified uniquely in the blockchain.)is
mechanism ensures that the auditor cannot send the chal-
lenge values in advance to the CSP even when they collude.
We have proposed a novel tag generation and tag uploading
mechanism which is provably secure against both type-I and
type-II attacks. Besides, the data auditing mechanism of the

12 Security and Communication Networks

proposed basic CLS-RDIC scheme is also provably secure
against type-III attack. However, we do not consider the data
privacy requirement and the reliability of auditing service
requirement against a compromised data auditor. In other
words, the proposed basic CLS-RDIC protocol assumes the
data auditor as fully trusted like many of the existing
schemes. In the complete version of our protocol, which is
proposed in the next section, we relax this assumption and
provide additional mechanisms to ensure the security re-
quirements against a semi-trusted auditor.

)e proposed basic CLS-RDIC shared data auditing
protocol consists of a total of nine algorithms, namely, Setup,
Partial-Private-Key-Extract, Set-Secret-Value, Private-Key-
Gen, Set-Public-Key, Tag-Gen, Challenge, Proof-Gen, and
Proof-Ver. Detailed descriptions of each of these algorithms
are provided below.

Setup.)is algorithm is executed by the KGC during the
setup phase of the protocol. Steps of the algorithm are as
follows.

(1) On input k, the algorithm generates two cyclic
multiplicative groups G1, G2 of prime order q and an
admissible bilinear map 􏽢e: G1 × G1⟶ G2. KGC
selects a random generator g ∈ G1.

(2) KGC chooses a random α ∈ Z∗q as the master-secret-
key (msk) and sets Ppub � gα.

(3) KGC selects three secure hash functions
H1: 0, 1{ }∗ ⟶ G1, H2: 0, 1{ }∗ ⟶ G1, for partial-
private-key and tag generation purposes, respec-
tively, and H3: G2⟶ Z∗q for masking of data
possession proof.)e security analysis for the pro-
posed scheme views H1 and H2 as random oracles.

(4) KGC selects another global hash function defined as
Ω: 0, 1{ }∗ ⟶ 0, 1{ }2l.)e function produces a 2l-bit
binary string from a given hash-block of a block-
chain.)e bit string is further segregated into two
l-bit strings, used as the seeds in two pseudorandom
functions defined below.

(5) Two pseudorandom generation functions are chosen
by the KGC as per the following definitions:
f: 0, 1{ }l × Zn+1 − 0{ }􏼈 􏼉⟶ Z∗q π: 0, 1{ }l × Zn+1−􏼈

0{ }}⟶ Zn+1 − 0{ }􏼈 􏼉.
)e first input in both of the above two functions is
an l-bit string which is used as a seed to initialize the
random number generators. Both of these functions
are used for generating the random challenge
vectors.

(6))e KGC publishes the public parameters
params � 〈G1, G2, q, 􏽢e, g, Ppub, H1, H2,Ω, f, π〉.

Partial-Private-Key-Extract. On receiving a request from
user with identity IDu, KGC calculates Qu � H1(IDu) and
Du � Qu

α and forwards the partial-private-key Du to the
corresponding user through a secure channel.

Set-Secret-Value. User with identity IDu randomly chooses
βu ∈ Z∗q and keeps it as a personal secret value.

Private-Key-Gen. User with identity IDu sets the private key
for itself as 〈Du, βu〉.

Set-Public-Key. User with identity IDu sets its public key as
Pu � gβu .)e user announces its public key to all the
participating entities in the network. It can be noted that
because of the use of CLPKC, there is no need for any
certificate to be attached with the public key.

Tag-Gen.)e steps followed by an user u to generate the
encrypted tag-signature Ti on data block mi of a data file F

are as shown below:

(1) Calculates the authenticating tag information wi �

(IDF‖i‖Pu) for the block mi.
(2) Computes the tag-signature Si for block mi as

Si � D
mi
u H2(wi)

βu .
(3) Encrypts the tag using its shared secret key Ku with

the CSP as Ti � EncrKu
[Si].

(4) User u sends the data block mi along with the
encrypted tag Ti to the CSP.

u⟶ CSP: IDu, Pu, IDF, i, mi, Ti􏼈 􏼉. (9)

)e CSP extracts the tag-signature Si by decrypting Ti

using the shared secret key Ku. It calculates the authenti-
cating tag information wi � (IDF‖i‖Pu) and Qu � H1(IDu)

and verifies the tag-signature by checking the following
equality:

e Si, g(􏼁�
?

e Q
mi

u , Ppub􏼐 􏼑.e H2 wi(􏼁, Pu(􏼁. (10)

Upon successful verification, the CSP updates the in-
dicator matrix I corresponding to the data file F as Ii,u � 1. It
also stores the data block mi as the i′th block in the data file F

and the tag Si as the i′th tag value in the corresponding tag
file.

Challenge. In order to audit the data file F, the auditor
chooses a number c(1≤ c≤ n) as the size of the challenge
vector and sends the challenge request as chal � 〈t, c, IDF〉

to the CSP, where t is the instant in time when the audit gets
performed.

Auditor⟶ CSP: t, c, IDF. (11)

Proof-Gen. Upon receiving the challenge from the auditor,
the CSP first retrieves the hash-block corresponding to the
given instant t from the public blockchain and extracts the
two random values k1, k2 ∈ 0, 1{ }l from the retrieved hash-
block using the global functionΩ.)e CSP computes the set
C � (i, vi)􏼈 􏼉, where i � π(k1, x) and vi � f(k2, x) for
1≤x≤ c. Next, it computes proof of possession for the
challenged blocks as follows.

Security and Communication Networks 13

For each user u ∈ 1, . . . , d{ }, the CSP computes μu and σu

as follows:

μu � 􏽘
i∈C

vimiIi,u,

σu � 􏽙
i∈C

S
viIi,u()

i .
(12)

CSP sets μ � μ1, μ2, . . . μd􏼈 􏼉 and σ � σ1, σ2, . . . σd􏼈 􏼉 and
generates the data possession proof as P � (σ, μ). Finally, the
CSP signs the generated proof P with its private key using
the certificateless signature mechanism and sends the signed
proof to the auditor.

CSP⟶ Auditor: P � (σ, μ), SigCSP(P). (13)

Proof-Ver.)e auditor verifies the received proof in the
following way:

(1))e auditor first verifies the signature SigCSP(P)

against the public key of the CSP using the certifi-
cateless signature verification mechanism. It pro-
ceeds only if the verification is successful.

(2) Next, the auditor retrieves the hash-block corre-
sponding to time t from the public blockchain.)e
retrieved hash-block is used to extract the random
values k1, k2 ∈ 0, 1{ }l using the global function Ω.

(3))e auditor calculates the public value
Qu � H1(IDu);∀u ∈ 1, . . . , d{ } of the users.)en, it
aggregates the values in (σ, μ), respectively, as σπ �

􏽑
d
u�1 σu and μπ � 􏽑

d
u�1 Q

μu
u .

(4))e auditor computes the challenge vectors
C � (i, vi)􏼈 􏼉, where i � π(k1, x) and vi � f(k2, x) for
all 1≤x≤ c.

(5) For each i ∈ C, the auditor retrieves the public key
information for user u such that Ii,u � 1 and cal-
culates the authenticating tag information
wi � IDF‖i‖Pu.

(6) Auditor accepts the proof as valid only if the fol-
lowing equality holds:

e σπ , g(􏼁�
?

e μπ , Ppub􏼐 􏼑. 􏽙
d

u�1
e 􏽙

i∈C
H2 wi(􏼁

viIi,u , Pu
⎛⎝ ⎞⎠. (14)

Once the verification of the received proof P is done, the
data auditor creates a report-message of the form Report �

〈t, IDF,Result, SignedProof〉 where t is the instant of time
used in the challenge message, IDF is the identity of the file
audited, Result � 1 if the verification resulted in a success, 0
otherwise, and the Signed Proof field contains P, SigCSP(P).
)e auditor submits the hash digest of the Report message
along with its identity to the public blockchain.)e block-
chain verifies the authenticity of the sender and includes the
sent digest value along with its sender’s identity in the next
generated hash-block in the blockchain. Finally, the auditor
inserts an entry 〈t, t′, IDF,Result, Signed Proof〉 in Log-File-
1 where the values of t, IDF,Result, and SignedProof are

exactly the same as those in the Report message. Value of t′ is
the time instant when the hash-block containing the digest of
the Report message is inserted in the public blockchain.

Lemma 3. An honest CSP will always pass the data auditing
test as described above.

Proof. In order to prove this lemma, it is sufficient to show
that equation (14) always holds true if all values are entered
correctly.)e correctness proof is given below.

e σu, g(􏼁 � e 􏽙
i∈C

S
viIi,u

i , g⎛⎝ ⎞⎠ � 􏽙
i∈C

e Si, g(􏼁
viIi,u

� 􏽙
i∈C

e Q
mi

u , Ppub􏼐 􏼑
viIi,u

􏽙
i∈C

e H2 wi(􏼁, Pu(􏼁
viIi,u .

(15)

(from equation (10))

� e Q
􏽐
i∈C

miviIi,u

u , Ppub
⎛⎝ ⎞⎠.e 􏽙

i∈C
H2 wi(􏼁

viIi,u , Pu
⎛⎝ ⎞⎠

� e Q
μu

u , Ppub􏼐 􏼑.e 􏽙
i∈C

H2 wi(􏼁
viIi,u , Pu

⎛⎝ ⎞⎠.

(16)

Hence,

e σπ , g(􏼁 � e 􏽙
d

u�1
σu, g⎛⎝ ⎞⎠ � 􏽙

d

u�1
e σu, g(􏼁

� 􏽙
d

u�1
e Q

μu

u , Ppub􏼐 􏼑 􏽙

d

u�1
e 􏽙

i∈C
H2 wi(􏼁

viIi,u , Pu
⎛⎝ ⎞⎠

� e μπ , Ppub􏼐 􏼑. 􏽙
d

u�1
e 􏽙

i∈C
H2 wi(􏼁

viIi,u , Pu
⎛⎝ ⎞⎠.

(17)

Soundness of the proposed basic CLS-RDIC protocol
against type-I, type-II, and type-III attackers has been
proved later in the security analysis section. □

7. The Proposed Complete Protocol

In this section, we propose the complete version of our
protocol which is an extension over the basic CLS-RDIC
protocol we proposed in the previous section.)e security
credential generation and the tag-generation mechanisms of
the complete version are exactly the same as those in the
basic version. In addition, like the basic version, in the
complete version, we restrict the data auditor to use public
blockchain as a time-varying verifiable source of random-
ness for challenge generation purpose. However, unlike the
basic version, in the complete version of our protocol, we
consider the data auditor as a semi-trusted entity, applicable
for a FOG-CPS environment we described earlier. Hence, we
need to protect data confidentiality and ensure the cor-
rectness and the timeliness of the auditing service provided
by such semi-trusted data auditor. In the following, we first
describe the additional attack types that we introduce for

14 Security and Communication Networks

such a semi-trusted data auditor and then provide the
construction of our proposed certificateless reliable privacy-
preserving auditing (CRPPA) protocol for shared data
auditing in FOG-CPSs.

7.1. Security Model for the Complete Scheme. Type-I, type-II,
and type-III attackers are also applicable for the complete
version of the proposed protocol. In addition, we define the
following types of adversaries to capture a semi-trusted data
auditor scenario.

7.1.1. Type-IV Adversary (Adv4). In type-IV attack scenario,
we consider a compromised data auditor as a passive at-
tacker that can try to extract the content of a data file from a
number of challenge-response interactions with the CSP
while auditing the file. A privacy-preserving RDIC scheme
must be able to provide data privacy against a curious au-
ditor.)e RDIC protocol needs to incorporate mechanisms
to mask the values computed from the data blocks and
corresponding tag blocks of the files by the CSP, so that the
auditor learns zero information regarding any data block or
tag block of the file from the responses received from the
CSP.)is should be ensured even when the number of such
interactions is very large.)is security requirement is
analogous to the requirement in a zero-knowledge authen-
tication protocol, such as that in [49, 74], where a claimant
needs to prove the possession of a secret value without
disclosing any information regarding the secret to the
verifier.

7.1.2. Type-V Adversary (Adv5). Security of an RDIC pro-
tocol against a type-III attacker (Section 3.7.3) provides the
assurance that a compromised CSP cannot generate a valid
data possession proof for a given random challenge without
storing all the data blocks of the corresponding data file
properly.)is assurance is valid under the assumption that
the data auditor is honest and it performs its assigned tasks
correctly. In type-V attack, we consider the possible collu-
sion between a compromised data auditor and the CSP.)e
objective of the attack is same as that in type-III attack, i.e., to
hide intentional/unintentional deletion or modifications of
data blocks of a data file from its users.)e compromised
data auditor can achieve this objective in two possible ways.
Simplest way is to generate false audit reports whenever the
CSP fails to provide valid data possession proofs. Alterna-
tively, the compromised auditor can disclose the random
challenge vectors in advance to the CSP, using which, the
CSP can precalculate data possession proofs and then delete
or modify data blocks of a data file. Security of an RDIC
scheme against type-V attacker requires mechanisms to
detect a compromised auditor when it generates incorrect
audit report and to prevent it from disclosing the random
challenges in advance to anybody.

7.1.3. Type-VI Adversary (Adv6). In type-VI attack, the
adversary is a compromised selfish data auditor, where the
objective of the attacker is to save its computational

resources. In this attack, the compromised selfish auditor
may deviate from the SLA by skipping or delaying the
auditing duties. An RDIC protocol, secure against type-VI
attacker, must be able to verify timeliness of the data auditing
tasks performed by a data auditor.

Our proposed scheme has considered six attack sce-
narios where an edge device (user) is a victim. Type-I and
type-II adversaries arise from the security vulnerabilities of
the key distribution mechanism of the CLPKC. In type-I
attack, the compromised user tries to perform a tag forgery
to impersonate a legitimate user, and the attack may be
launched by replacing the public key of the legitimate user.
In type-II attack, the compromised but passive KGC per-
forms a tag forgery to impersonate a legitimate user.
However, the KGC is trusted not to replace the legitimate
user’s public key. In type-III attack, a compromised CSP
generates a forgery on the data possession proof to suppress
a data loss or data corruption event. Security against type-III
is a mandatory requirement of an RDIC scheme. In type-IV
attack, a compromised data auditor performs cryptanalysis
on the challenge-response messages to extract the users’
confidential data or metadata. A public RDIC scheme must
protect user data against type-IV attacks. In a type-V attack,
the data auditor reveals the random challenge vectors in
advance to the CSP to help CSP precompute the integrity
proofs so that CSP can suppress a data loss or data cor-
ruption event in the future. In type-VI attack, the com-
promised data auditor skips or delays an auditing task to
save computational resources. Table 2 summarizes the six
types of attack scenarios, the entities involved in the attack,
the objective of the attack, and the method of attack.

7.2. Construction of the Proposed CRPPA Protocol.)e
proposed certificateless reliable privacy-preserving auditing
(CRPPA) protocol for shared data auditing in FOG-CPSs
consists of a total of ten algorithms.)e Setup, Partial-
Private-Key-Extract, Set-Secret-Value, Private-Key-Gen,
Public-Key-Gen, Tag-Gen, and Challenge algorithms of the
CRPPA protocol are exactly the same as those in our
proposed basic CLS-RDIC scheme. However, in the Proof-
Gen algorithm, we use proper masking techniques to ensure
that no information regarding either the data blocks or the
tags is leaked to the auditor even if it executes millions of
challenge verification instances with the CSP.)e Proof-Ver
algorithm has been modified accordingly. Additionally, we
introduce the Verify-Proof algorithm which can be used by
an audit-verifier to occasionally verify the activities of the
auditor.)e Proof-Gen, Proof-Ver, and the Verify-Proof
algorithms of the proposed CRPPA protocol are explained
below.

Proof-Gen. Upon receiving the challenge from the auditor,
the CSP retrieves the random values k1, k2 using the global
function Ω from the public blockchain as described in the
proposed basic CLS-RDIC scheme.)e CSP computes proof
of possession for the challenged blocks as follows.

)e CSP sets C � (i, vi)􏼈 􏼉, where i � π(k1, x) and
vi � f(k2, x) for 1≤x≤ c.

Security and Communication Networks 15

For each user u ∈ 1, . . . , d{ },

(1))e CSP computes the public value Qu � H1(IDu)

and selects three random values rmu
←R Z∗q ,

rσu
←R Z∗q , ρu←

R
Z∗q , which are used for masking the σ

and μ values.
(2) CSP calculates Ru � e(Qu, Ppub)rmu · e(g1, g)rσu and

cu � H3(Ru).
(3) CSP generates (μu, σu) as follows:

μu � 􏽘
i∈C

vimiIi,u,

σu � 􏽙
i∈C

S
viIi,u()

i .
(18)

(4) Next, CSP calculates μu
′ � (rmu

+ cuμu), Σu � σu ·g
ρu

1 ,
and εu � (rσu

+ cuρu).)e masking of (σ, μ) helps to
provide zero-knowledge data privacy against the
auditor.

(5))e CSP calculates the integrity proof as
P � 〈μ′,Σ, ε, R〉 where μ′ � μ1′, μ2′, . . . , μd

′􏼈 􏼉, Σ �

Σ1,Σ2, . . . ,Σd􏼈 􏼉, ε � ε1, ε2, . . . , εd􏼈 􏼉, R � R1, R2, . . . ,􏼈

Rd}.

Finally, the CSP signs the generated proof P with its
private key using the certificateless signature mechanism
and sends the signed proof to the auditor.

CSP⟶ Auditor: P �〈μ′,Σ, ε, R〉, SigCSP(P). (19)

Proof-Ver.)e auditor first checks if SigCSP(P) is a valid
signature on proof P � 〈μ′,Σ, ε, R〉 using the public key of
the CSP and then executes the following steps to verify the
proof P:

(1))e auditor retrieves the hash-block corresponding
to time t from the public blockchain.)e retrieved
hash-block is used to extract the random values
k1, k2 ∈ 0, 1{ }l using the global function Ω.

(2) For each user u ∈ 1, 2, . . . , d{ }, the auditor calculates
cu � H3(Ru).

(3))e auditor aggregates the values in the received
proof P � 〈μ′,Σ, ε, R〉 as Rπ � 􏽑

d
u�1 Ru,

Σπ � 􏽑
d
u�1 Σ

cu
u , μπ′ � 􏽑

d
u�1 Q

μu
′

u , and επ � 􏽐
d
u�1εu.

(4))e auditor generates the challenge vectors
C � (i, vi)􏼈 􏼉, where i � π(k1, x) and vi � f(k2, x) for
all 1≤ x≤ c.

(5) For each i ∈ C, the auditor gets public key infor-
mation of user u such that Ii,u � 1 and calculates the
authenticating tag information wi � IDF‖i‖Pu.

(6))e auditor accepts the proof only if the following
equation holds correct.

Rπ · e Σπ , g(􏼁�
?

􏽙

d

u�1
e 􏽙

i∈C
H2 wi(􏼁

viIi,ucu , Pu
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

· e μπ′, Ppub􏼐 􏼑 · e g1, g(􏼁
επ .

(20)

Once the verification of the received proof P is done, the
data auditor creates a report-message of the form Report �

〈t, IDF,Result, Signed Proof〉 where t is the instant of time
used in the challenge message, IDF is the identity of the file
audited, Result � 1 if the verification resulted in a success, 0
otherwise, and the Signed Proof field contains P, SigCSP(P).
)e auditor submits the hash digest of the Report message
along with its identity to the public blockchain.)e
blockchain verifies the authenticity of the sender and in-
cludes the sent digest value along with its sender’s identity in
the next generated hash-block in the blockchain. Finally, the
auditor inserts an entry 〈t, t′, IDF,Result, Signed Proof〉 in
Log-File-1 where the values of t, IDF,Result, and
Signed Proof are exactly the same as those in the Report
message. Value of t′ is the time instant when the hash-block
containing the digest of the Report message is inserted in the
public blockchain.

Lemma 4. An honest CSP will always pass the data auditing
test as described in the proposed CRPPA protocol.

Table 2: Types of attack scenarios.

Entities involved in the
attack Objective of the attack Method of the attack Attack type first

introduced

Type-I Compromised users Impersonating a legitimate user Generate forged tag by replacing public key Al-Riyami et al.
[45]

Type-
II

Compromised but
passive KGC Impersonating a legitimate user Generate forged tag without replacing public

key
Al-Riyami et al.

[45]
Type-
III Compromised CSP Suppress data loss/corruption

event
Generate forged data possession proof
(without storing the data file properly) Ateniese et al. [9]

Type-
IV

Compromised data
auditor

Extract confidential data and/or
metadata of the users

Performing cryptanalysis on the challenge-
response messages Wang et al. [75]

Type-
V

Collusion of data auditor
and CSP

Suppress data loss/corruption
event

Disclosing the random challenge vectors in
advance to the CSP

Armknecht et al.
[48]

Type-
VI

Compromised data
auditor

Save computational resources
(selfish behaviour) Skipping or delaying the auditing tasks Zhang et al. [25]

16 Security and Communication Networks

Proof. In order to prove this lemma, it is sufficient to show
that equation (20) always holds true if all values are entered
correctly.)e correctness proof is given below.

Ru · e Σcu

u , g(􏼁 � e Qu, Ppub􏼐 􏼑
rmu

· e g1, g(􏼁
rσu · e σu · g

ρu

1(􏼁
cu , g􏼐 􏼑

� e Qu, Ppub􏼐 􏼑
rmu · e g1, g(􏼁

rσu

· e S
viIi,u

i · g
ρu

1􏼐 􏼑
cu

, g􏼒 􏼓

� e Qu, Ppub􏼐 􏼑
rmu · e g1, g(􏼁

rσu · e Qu, Ppub􏼐 􏼑
cuμu

·

e 􏽙
i∈C

H2 wi(􏼁
viIi,uβucu , g⎛⎝ ⎞⎠e g

cuρu

1 , g(􏼁

� e Q
μu
′

u , Ppub􏼒 􏼓 · e g1, g(􏼁
εu

· e 􏽙
i∈C

H2 wi(􏼁
viIi,ucu , Pu

⎛⎝ ⎞⎠.

(21)

Hence,

Rπ · e Σπ, g(􏼁 � 􏽙
d

u�1
Ru · e 􏽙

d

u�1
Σcu

u , g⎛⎝ ⎞⎠

� 􏽙
d

u�1
Ru · e Σcu

u , g(􏼁(􏼁

� 􏽙
d

u�1
e Q

μu
′

u , Ppub􏼒 􏼓 · e g
εu

1 , g(􏼁

· e 􏽙
i∈C

H2 wi(􏼁
viIi,ucu , Pu

⎛⎝ ⎞⎠)

� e μπ′, Ppub􏼐 􏼑 · e g1, g(􏼁
επ

· 􏽙
d

u�1
e 􏽙

i∈C
H2 wi(􏼁

viIi,ucu , Pu
⎛⎝ ⎞⎠⎛⎝ ⎞⎠.

(22)

Verify-Proof. In order to audit data file F, an audit-verifier
first chooses an audit-interval T � [T1, T2] from the past
and retrieves all the entries from Log-File-1 where the
audit instance t lies in the interval T and the IDF field
matches the id of file F. Next, it verifies whether the audit
instances are as per the SLA or not. If any one of the
extracted entries contains a zero value in its Result field,
the audit-verifier retrieves the Signed Proof corresponding
to that entry and invokes the Proof-Ver algorithm to check
whether the data possession proof sent by CSP was valid or
not. If it is a valid proof, then it reports to the group
manager against the data auditor as misbehaving. If the
proof is invalid, it reports to the group manager against the
CSP as misbehaving. When all entries contain 1 in the
Result fields, the audit-verifier retrieves the signed proofs
from all the entries and performs an aggregate proof
verification in the following way.

We use the notation Signed Proof(t) to denote the
signed proof at audit instance t ∈ T. Hence, Signed Proof
(t) ≡ 〈P(t), SigCSP(Pt)〉 where P(t) � 〈μ′(t),Σ(t), ε(t),

R(t)〉, and

μ′(t) � μ1′(t), μ2′(t), . . . , μd
′(t)􏼈 􏼉,

Σ(t) � Σ1(t),Σ2(t), . . . ,Σd(t)􏼈 􏼉,

ε(t) � ε1(t), ε2(t), . . . , εd(t)􏼈 􏼉,

R(t) � R1(t), R2(t), . . . , Rd(t)􏼈 􏼉.

(23)

(1) For each audit instance t ∈ T, the audit-verifier
performs the following:

(i) Checks the validity of the signature SigCSP(P(t))

using the public key of the CSP. It proceeds only
if the signature is valid.

(ii) Calculates cu(t) � H3(Ru(t)), for all
u ∈ 1, 2, . . . , d{ }.

(iii) Calculates C(t) � (i, vi)􏼈 􏼉, where i � π(k1(t), x)

and vi � f(k2(t), x), for all 1≤ x≤ c, where
k1(t) and k2(t) are the random strings extracted
using the global function Ω from the hash-
blocks at time instant t of the public blockchain.

(iv))e audit-verifier computes the following ag-
gregates values for the audit instance t:

μπ′(t) � 􏽙
d

u�1
Q

μu
′(t)

u ,

Σπ(t) � 􏽙
d

u�1
Σu(t)

cu(t)
,

επ(t) � 􏽘
d

u�1
εu(t),

Rπ(t) � 􏽙
d

u�1
Ru(t).

(24)

(2) Finally, the audit-verifier computes the following
aggregate values by aggregating the above aggregate
values for all t ∈ T:

μagg′ � 􏽙
∀t∈T

μπ′(t),

Σagg � 􏽙
∀t∈T
Σπ(t),

εagg � 􏽘
∀t∈T

επ(t),

Ragg � 􏽙
∀t∈T

Rπ(t),

Cagg � ∪ ∀t∈T C(t){ }.

(25)

(3) For all i ∈ Cagg, the verifier retrieves the public key Pu

of user u such that Ii,u � 1 and calculates the
authenticating tag information as wi � IDF‖i‖Pu.

Security and Communication Networks 17

(4))e audit verification results in a success only if the
following equality holds:

Ragg · e Σagg, g􏼐 􏼑�
?

􏽙
∀t∈T

􏽙

d

u�1
e 􏽙

i∈C(t)

H2 wi(􏼁
viIi,ucu(t)

, Pu
⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠

· e μA
′

agg, Ppub􏼠 􏼡 · e g1, g(􏼁
εagg .

(26)

□

Lemma 5. If the data auditor performs all the proof verifi-
cations honestly for each audit instance t ∈ T, then the above-
mentioned aggregate audit verification must result in success.

Proof.)e above-mentioned aggregate audit verification is
initiated only when the Result field in each entry corre-
sponding to each audit instance t ∈ T shows 1, in the Log-
File-1.)is can happen only when the Proof-Ver algorithm
resulted in success for each of the instance t ∈ T, since we
assume that the data auditor executed the Proof-Ver algo-
rithm honestly for each of these instances. Hence, each of the
instance t ∈ T must satisfy equation (20), i.e.,

Rπ(t) · e Σπ(t), g(􏼁�
?

􏽙

d

u�1
e 􏽙

i∈C(t)

H2 wi(􏼁
viIi,ucu(t)

, Pu
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

· e μπ′(t), Ppub􏼐 􏼑 · e g1, g(􏼁
επ(t)

.

(27)

Let us take the product of the left-hand side (LHS) of the
above equation for all t ∈ T:

􏽙
∀t∈T

(LHS) � 􏽙
∀t∈T

Rπ(t) · e Σπ(t), g(􏼁(􏼁

� 􏽙
∀t∈T

Rπ(t)(􏼁 · 􏽙
∀t∈T

e Σπ(t), g(􏼁

� 􏽙
∀t∈T

Rπ(t)(􏼁 · e 􏽙
∀t∈T
Σπ(t), g⎛⎝ ⎞⎠

� Ragg · e Σagg, g􏼐 􏼑.

(28)

Similarly, we take the product of the right-hand side
(RHS) of equation (27) for all t ∈ T:-

􏽙
∀t∈T

(RHS)

� 􏽙
∀t∈T

􏽙

d

u�1
e 􏽙

i∈C(t)

H2 wi(􏼁
viIi,ucu(t)

, Pu
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

· 􏽙
∀t∈T

e μπ′(t), Ppub􏼐 􏼑 · 􏽙
∀t∈T

e g1,g(􏼁
επ(t)

� 􏽙
∀t∈T

􏽙

d

u�1
e 􏽙

i∈C(t)

H2 wi(􏼁
viIi,ucu(t)

, Pu
⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠

· e 􏽙
∀t∈T

μπ′(t), Ppub
⎛⎝ ⎞⎠ · e g1, g(􏼁

􏽘
∀t∈T

επ(t)

� 􏽙
∀t∈T

􏽙

d

u�1
e 􏽙

i∈C(t)

H2 wi(􏼁
viIi,ucu(t)

, Pu
⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠

· e μagg′, Ppub􏼐 􏼑 · e g1, g(􏼁
εagg . (29)

Equations (28) and (29) directly establish that equation
(26) must hold true. Hence, the aggregate verification must
result in success.

So, if the above-mentioned aggregate audit verification
does not result in success, the audit-verifier reports against
the data auditor as misbehaving to the group manager.)e
above procedure verifies whether the data auditor performs
its assigned auditing task correctly or not. In order to check
whether all the auditing tasks were performed timely or not,
the audit-verifier proceeds as follows.

For each of the audit instance t ∈ T, the audit-verifier
constructs a Report message the same way as it is mentioned
in the Proof-Ver algorithm, i.e., Report �

〈t, IDF,Result, SignedProof〉.)e verifier then retrieves the
t′ field corresponding to the entry from Log-File-1 and
checks whether the hash digest of the Report message exists
in the hash-block corresponding to time t′ in the public
blockchain or not. If the verification fails for any audit
instance t ∈ T, the audit-verifier reports against the time-
liness of auditing performed by the data auditor to the group
manager.

Soundness of the aggregate verification used in the
Verify-Proof algorithm has been analyzed in the next
section. □

8. Security Analysis

8.1. Soundness Proof for the Proposed Basic CLS-RDIC
Scheme. In this subsection, we prove the security of our
proposed basic CLS-RDIC scheme against type-I, type-II,
and type-III attackers. In Section 8.2, we establish the se-
curity of our proposed CRPPA scheme based on the fact that
the proposed basic scheme is secure against type-I, type-II,
and type-III attackers. In)eorems 1 and 2, we analyze the
security of the tag-generation mechanism of the basic CLS-
RDIC scheme against type-I and type-II attackers as defined
in Sections 3.7.1 and 3.7.2, respectively. In)eorem 3, we
analyze the security of the data auditing challenge-response
protocol of the basic CLS-RDIC scheme against type-III
attacker as defined in Section 3.7.3.

)e following theorem proves that, in the random oracle
model, the tags generated by the proposed basic CLS-RDIC
scheme are unforgeable under an adaptive chosen-message
type-I attacker assuming that the CDH problem in G1 is hard.

18 Security and Communication Networks

Theorem 1. If an adversary Adv1, as defined in game-1, has
a success probability of ξ(k) in generating a forged tag
against our proposed basic CLS-RDIC scheme, then there
exists a challenger C that solves an instance of a CDH
problem in group G1. Suppose Adv1 makes at most q1 H1
hash queries, q2 partial-private-key queries, q3 secret-value
queries, q4 public-key queries, q5 public-key-replace queries,
q6 H2 hash queries, and q7 tag-gen queries, where
q1, q2, q3, q4, q5, q6, q7 all are in polynomial(k); then, the
success probability, ξ′(k), of challenger C in solving the
above problem is lower bounded by

ξ′(k)≥
ξ(k)

e · 1 + q2 + q7(􏼁
, (30)

where e ≈ 2.71828 is the base of the natural logarithm. In
addition, the time complexity classes are O(C) ≈ O(Adv1)+

O(q1 + q2 + q3 + q4 + q5 + q6 + q7).

Proof. Let Adv1 be the adversary as in game-1 who is ca-
pable of forging a tag.)en, we construct a simulatorC using
Adv1 as subroutine to solve the CDH problem in G1. C

simulates game-1 in the following way.

Setup. Given a CDH problem instance 〈q, G1, g, h1, h2〉,
h1 � gα, for some α ∈ Z∗q . C chooses another cyclic multi-
plicative group G2, (|G1| � |G2| � q), and an admissible
bilinear map 􏽢e � G1 × G1⟶ G2. C sets the public pa-
rameters params � 〈G1, G2, q, 􏽢e, g, Ppub � h1, H1, H2〉 and
sends params to Adv1. Note that the master secret key(α) is
unknown to the challenger C.

H1 Hash Query. Adv1 adaptively queries for H1 for any
identity IDu. For every H1 query, C maintains a list
H1-List � (IDu, Qu, ru, Su, Pu, bu)􏼈 􏼉. If the IDu is already
queried before, C simply retrieves the tuple from the H1-List
and returns Qu to Adv1. If IDu is new, C randomly picks
ru ∈ Z∗q and tosses a coin bu ∈ 0, 1{ }, where the probability of
bu � 0 is φ and that of bu � 1 is 1 − φ. If (bu � 0), then C sets
Qu � gru , chooses a random value βu ∈ Z∗q , and sets Su � βu

and Pu � gβu . Else if (bu � 1), then C sets Qu � h2 · gru ,
chooses a random value βu ∈ Zq ∗ , and sets Su � βu and
Pu � gβu . Finally, C inserts the values (IDu, Qu, ru,

Su, Pu, bu) into H1-List. Return Qu to Adv1.

Partial-Private-Key Query. Adv1 adaptively queries for
partial-private-key for any identity IDu. C scans for IDu in
H1-List. If IDu does not exist in H1-List, C queries itself for
H1(IDu). If bu � 0, then retrieve ru from H1-List set Du �

h
ru

1 and return Du to Adv1. Else if bu � 1, then abort.

Secret-Value Query. Adv1 adaptively queries for set-secret-
value for any identity IDu. C scans for IDu in H1-List. If IDu

does not exist in H1-List, C queries itself for H1(IDu). If
(Su � ⊥), C chooses a random value βu ∈ Zq ∗ and sets Su �

βu and Pu � gβu . C updates the values (Su, Pu) into H1-List
and returns Su to Adv1.

Public-Key Query. Adv1 adaptively queries for public-key for
any identity IDu. C scans for IDu in H1-List. If IDu does not

exist in H1-List, C queries itself for H1(IDu). C retrieves Pu

and returns it to Adv1.

Public-Key-Replace Query. Adv1 adaptively queries for a
public-key replacement for any identity IDu with (IDu, Pu

′).
C scans for IDu in H1-List. If IDu does not exist in H1-List,
C queries itself for H1(IDu). C sets Su � ⊥ and Pu � Pu

′ and
updates H1-List.

H2 Hash Query. Adv1 adaptively queries for (wk, Pu).
For every H2 query, C maintains a list H2-List �

(wk, H2
k, rk, Pu)􏼈 􏼉. C scans H2-List for (wk, Pu). If (wk, Pu)

does not exist in H2-List, C randomly chooses rk ∈ Zq ∗ ,
sets H2

k � grk , and updates H2-List. C returns H2
k to Adv1.

Tag-Gen Query. Adv1 adaptively queries with the values
(m, wk, IDu). If IDu does not exist in H1-List, C queries
itself for H1(IDu). C retrieves Pu from H1-List. If (bu � 0),
then, C queries for Du. C scans for (wk, Pu) in H2-List, and if
it exists, then retrieve H2

k; else, C self-queries for H2
k with the

values (wk, Pu). Now C retrieves Su from H1-List for IDu. It
computes tag σ � Dm

u · (H2
k)Su . Else if bu � 1 and

(wk, Pu)exists in H2-List, then abort. Else select randomly
rk ∈ Zq ∗ , compute H2

k � grk · h− m
1 , set Pu � h2, compute

σ � h
rum
1 · h

rk

2 , and finally insert the tuple (wk, H2
k,⊥, Pu) to

H2-List. C returns σ to Adv1

Forge-Tag. Adv1 outputs a tuple (σ′, m′, wk
′, IDu
′, Pu
′), where

σ′ is the forged tag on the message m′ with authenticating
information wk

′ for identity IDu
′ with public key Pu

′.

Analysis. If Adv1 successfully forges the tag, then the tuple
should be valid. If (bu � 0), then C aborts. Else if (bu � 1), C

uses the following verification equation: e(σ′, g) �

e(H1(IDu
′)m′ , Ppub) · e(H2(wk

′, Pu
′), Pu
′). C retrieves the

tuple from H1-List for the forged IDu
′, and C retrieves the

value of Qu � h2 · gru from H1-List and H2(wk
′, Pu
′) � g

rk′
from H2-List. As per the verification equation above, C is
able to calculate solution to CDH problem, i.e., given an
instance of the CDH problem (g, h1 � gα􏼈 􏼉, h2), C calculates
hα
2 as follows.
As per the verification equation:

e σ′, g(􏼁 � e h2 · g
ru(􏼁

m
, Ppub􏼐 􏼑 · e g

rk′, Pu
′􏼐 􏼑,

e σ′, g(􏼁 � e h2(􏼁
α·m′

· g
α

(􏼁
ru ·m′

, g􏼒 􏼓 · e Pu
′(􏼁

rk′, g􏼐 􏼑,

h
α
2 �

σ′

Pu
′(􏼁

rk′ · h1(􏼁
ru ·m′

⎛⎝ ⎞⎠

1/m′

.

(31)

We now calculate the minimum success probability
ξ′(k) with which the challenger C can solve an instance of
the given CDH problem in G1. For this to happen, the
challenger C must not abort during the above simulation.
)ere are three phases in the simulation where the chal-
lenger C can abort, i.e., in partial-private-key query phase,
tag-gen query phase, and analysis phase.)e partial-private-

Security and Communication Networks 19

key query phase and the tag-gen query phase do not abort
when bu � 0, whereas the analysis phase does not abort when
bu � 1. Hence, the probability that the challenger C does not
abort the above simulation is (1 − φ) · φq2+q7 .)e quantity
(1 − φ) · φq2+q7 is maximized when φ � φmax � q2 + q7/
1 + q2 + q7. By substituting the above value of φmax, we get
the lower bound on the probability that the challenger C

does not abort as 1/e · (1 + q2 + q7). Hence, the minimum
success probability with which the challenger C can solve an
instance of the given CDH problem is ξ′(k)≥ ξ(k)/e·

(1 + q2 + q7). It can be noted that since q2 and q7 are
polynomial(k), the quantity 1/(1 + q2 + q7) is non-negligi-
ble.)us, if ξ(k) is non-negligible, then the success prob-
ability ξ′(k) is also non-negligible.

)e running time of C is the sum of upper bounded
running time of adversary algorithm Adv1 (O (Adv1)) and
upper bounded running time of all the algorithms used in
simulating the challenger C, i.e., H1 hash query (t1), partial-
private-key query (t2), secret-value query (t3), public-key
query (t4), public-key-replace query (t5), H2 hash query
(t6), and tag-gen query (t7) executed q1, q2, q3, q4, q5, q6, and
q7 times, respectively.)erefore, O(C) � O(Adv1) +

O(q1 · t1 + q2 · t2+ q3 · t3 + q4 · t4 + q5 · t5 + q6 · t6 + q7 · t7).
Now since all the algorithms used in the simulation of
challenger C are polynomial-time computable, O(C) �

O(Adv1) + O(q1 + q2 + q3 + q4 + q5 + q6 + q7). It can be
noted that q1, q2, q3, q4, q5, q6, and q7 all are in
polynomial(k).)erefore, O(C) ≈ O(Adv1). It can be
observed that if Adv1 is a polynomial-time algorithm, then
the simulated CDH problem solver C is also a polynomial-
time algorithm.

)e following theorem proves that, in the random oracle
model, the tags generated by the proposed basic CLS-RDIC
scheme are unforgeable under an adaptive chosen-message
type-II attacker assuming that the CDH problem in G1 is
hard. □

Theorem 2. If an adversary Adv2, as defined in game-2, has
a success probability of ξ(k) in generating a forged tag against
our proposed basic CLS-RDIC scheme, then there exists a
challenger C that solves an instance of a CDH problem in
group G1. Suppose Adv2 makes at most q1 H1 hash queries, q2
secret-value queries, q3 public-key queries, and q4 H2 hash
queries, where q1, q2, q3, and q4 all are in polynomial(k);
then, the success probability, ξ′(k), of challenger C in solving
the above problem is lower bounded by

ξ′(k)≥
ξ(k)

e · 1 + q2(􏼁
, (32)

where e ≈ 2.71828 is the base of the natural logarithm. In
addition, the time complexity classes are O(C) ≈ O(Adv2)

+ O(q1 + q2 + q3 + q4).

Proof. Let Adv2 be the adversary as in game-2 who is ca-
pable of forging a tag.)en, we construct an adversary C

using Adv2 as subroutine to solve the CDH problem in G1. C
simulates game-2 in the following way.

Setup. Given an instance of CDH problem
(g, G1, h1 � gα􏼈 􏼉, h2). C randomly picks s ∈ Z∗q , chooses
another cyclic multiplicative group G2, (|G1| � |G2| � q),
and an admissible bilinear map 􏽢e: G1 × G1⟶ G2, and sets
the public parameters params � 〈G1, G2, q, 􏽢e, g, (Ppub � gs),

H1, H2〉. C sends params and s to Adv2, and s is the master
secret key.

H1 Hash Query. Adv2 adaptively queries for H1 for any
identity IDu. For every H1 query, C maintains a list
H1-List � (IDu, Qu, ru, Su, Pu)􏼈 􏼉. If the IDu is already que-
ried before, C simply retrieves the tuple from the H1-List
and returns Qu to Adv2. If IDu is new, C randomly picks
ru, βu ∈ Z∗q , setsQu � gru , and tosses a coin bu ∈ 0, 1{ }, where
the probability of bu � 0 is φ and that of bu � 1 is 1 − φ . If
(bu � 0), then C sets Pu � gβu and Su � βu. Else if (bu � 1),
then C sets Pu � (h1)

βu and Su � ⊥. Finally, C inserts the
values (IDu, Qu, ru, Su, Pu) into H1-List. C returns Qu to
Adv2.

Secret-Value Query. Adv2 adaptively queries for set-secret-
value for any identity IDu. C scans for IDu in H1-List. If IDu

does not exist, C queries itself for H1(IDu). If (bu � 1),
abort; else, C retrieves Su and returns it to Adv2.

Public-Key Query. Adv2 adaptively queries for public-key for
any identity IDu. C scans for IDu in H1-List. If IDu does not
exist, C queries itself for H1(IDu). C retrieves Pu and returns
it to Adv2.

H2 Hash Query. Adv2 adaptively queries for (wk, Pu).
For every H2 query, C maintains a list
H2-List � (wk, H2

k, rk, Pu)􏼈 􏼉. C scans H2-List for (wk, Pu). If
(wk, Pu) does not exist, C randomly chooses rk ∈ Zq ∗ , sets
H2

k � (h2)
rk , and updates H2-List. C retrieves H2

k and
returns it to Adv2.

Forge-Tag. Adv2 outputs a tuple (σ′, m′, wk
′, IDu
′, Pu
′), where

σ′ is the forged tag on the message m′ with authenticating
information wk

′ for identity IDu
′ with public key Pu

′.

Analysis. If Adv2 successfully forges the tag, then the tuple
should be valid. If (bu � 0), then C aborts. Else if (bu � 1), C

uses the following verification equation: e(σm′ , g) �

e(H1(IDu
′)m′ , Ppub) · e(H2(wk

′, Pu
′), Pu
′). C retrieves the

tuple from H1-List for the forged IDu
′, and C retrieves the

value of Qu � gru from H1-List and H2(wk
′, Pu
′) � (h2)

rk′
from H2-List.

As per the verification equation:

e σ′, g(􏼁 � e g
ru′·m′ , Ppub􏼒 􏼓 · e h

rk
′
2 , g

α·βu􏼒 􏼓,

e σ′, g(􏼁 � e g
ru′·m′·s, g􏼒 􏼓 · e h

rk
′·α·βu

2 , g􏼒 􏼓,

h
α
2 �

σ′

g
ru′·m′ ·s

⎛⎝ ⎞⎠

1/rk
′·βu

.

(33)

We now calculate the minimum success probability
ξ′(k) with which the challenger C can solve an instance of

20 Security and Communication Networks

the given CDH problem in G1. For this to happen, the
challenger C must not abort during the above simulation.
)ere are two phases in the simulation where the challenger
C can abort, i.e., in secret-value query phase and analysis
phase.)e secret-value query phase does not abort when
bu � 0, whereas the analysis phase does not abort when
bu � 1. Hence, the probability that the challenger C does not
abort the above simulation is (1 − φ) · φq2 .)e quantity (1 −

φ) · φq2 is maximized when φ � φmax � q2/1 + q2. By
substituting the above value of φmax, we get the lower bound
on the probability that the challenger C does not abort as
1/e · (1 + q2). Hence, the minimum success probability with
which the challenger C can solve an instance of the given
CDH problem is ξ′(k)≥ ξ(k)/e · (1 + q2). It can be noted
that since q2 is polynomial(k), the quantity 1/(1 + q2) is
non-negligible.)us, if ξ(k) is non-negligible, then the
success probability ξ′(k) is also non-negligible.

)e running time of C is the sum of upper bounded
running time of adversary algorithm Adv2 (O (Adv2)) and
upper bounded running time of all the algorithms used in
simulating the challenger C, i.e., H1 hash query (t1), secret-
value query (t2), public-key query (t3), and H2 hash query
(t4) executed q1, q2, q3, and q4, times respectively.)erefore,
O(C) � O(Adv2) + O(q1 · t1 + q2 · t2 + q3 · t3 + q4 · t4).
Now since all the algorithms used in the simulation of
challenger C are polynomial-time computable,
O(C) � O(Adv2) + O(q1 + q2 + q3 + q4). It can noted that
q1, q2, q3, and q4 all are in polynomial(k).)erefore,
O(C) ≈ O(Adv2). It can be observed that if Adv2 is a
polynomial-time algorithm, then the simulated CDH
problem solver C is also a polynomial-time algorithm.

)e following theorem proves that, in the random oracle
model, the data audit proofs generated by the proposed basic
CLS-RDIC scheme are unforgeable by a type-III attacker
assuming that the CDH and DL problem in G1 are hard. □

Theorem 3. If an adversary Adv3, as defined in game-3, has
a success probability of ξ(k) in generating a forged data
audit proof against our proposed basic CLS-RDIC scheme,
then there exists a challenger C that solves an instance of a
CDH or DL problem in group G1. Suppose Adv3 makes at
most q1 H1 hash queries, q2 data-block queries, q3 public-key
queries, and q4 tag-gen and H2 queries, where q1, q2, q3, q4
all are in polynomial(k); then, the success probability, ξ′(k),
of challenger C in solving the above problem is lower
bounded by

ξ′(k)≥ ξ(k) · 1 −
1
q

􏼠 􏼡, (34)

where q is the order of the group G1. In addition, the time
complexity classes are
O(C) ≈ O(Adv3) + O(q1 + q2 + q3 + q4).

Proof. Let Adv3 be the adversary as in game-3 who is ca-
pable of generating a valid data possession proof for the
challenged blocks.)en, we construct a PPT simulator C

using Adv3 as subroutine to solve either the DH or the CDH
problem in G1. C simulates game-3 in the following way.

Setup. Given an instance of CDH problem (g, G1, (h1 �

ga), (h2 � gb)) and an instance of the DL problem
(g, G1, (h2 � gb)). C chooses another cyclic multiplicative
group G2, where (|G1| � |G2| � q), and an admissible bi-
linear map 􏽢e: G1 × G1⟶ G2, sets the public parameters
params � 〈G1, G2, q, 􏽢e, g, Ppub � h1〉, and sends params to
Adv3, and a and b are unknown to C.

H1 Hash Query. Adv3 adaptively queries for H1 for any
identity IDu. For every H1 query, C maintains a list
H1-List � (IDu, Qu, ru, βu, Pu)􏼈 􏼉. If IDu is already queried
before, C simply retrieves the tuple from the H1-List and
returns Qu to Adv3. If IDu is new, C randomly picks
ru, βu ∈ Z∗q and sets Qu � gru h

βu

2 and Pu � h
βu

2 . Finally, it
inserts the values (IDu, Qu, ru, βu, Pu) into H1-List. C

returns Qu to Adv3.

Data-Block Query.)e file F � 〈m1, . . . , mn〉 with file
identifier IDF is available with C, for n is the number of
blocks in the file. C maintains an indicator matrix I. Adv3
can adaptively query for block index i.)en, C retrieves
corresponding data block from the date file IDF and for-
wards to Adv3.

Public-Key Query. Adv3 adaptively queries for the public key
of any identity IDu. C scans for IDu in H1-List, and if IDu

does not exist, C queries itself for H1(IDu). C retrieves Pu

and returns it to Adv3.
Tag-Gen Query and H2 Query. C maintains a list

H2′-List � 〈i, bi, H2(IDF‖i‖Pu), σi〉 and computes tag for
each index in IDF corresponding to user u shown in in-
dicator matrix I as follows.

C randomly picks bi ∈ Z∗q , for i ∈ 1, . . . , n. For each
index i, C computes H2(IDF‖i‖Pu) � gbi h

− mi

1 and
σi � h

rumi

1 · h
biβu

2 , where βu and ru are retrieved from H1-List
corresponding to Pu.

)e validity of the tag simulation can be verified as
follows.

As per the tag-gen algorithm, σi � D
mi
u H2(IDF‖i‖Pu)bβu .

As per simulation, σi � Q
ami
u (gbi h

− mi

1)bβu .
By replacing value of Qu, σi � (gru · h

βu

2)ami ·

gbbiβu · h
− bmiβu

1 .
By replacing values of h1, h2, σi � garumi · gabmiβu ·

gbbiβu · g− abmiβu .
σi � (ga)rumi · (gb)biβu � h

rumi

1 · h
biβu

2 .
C adds the following tuple to its list

H2′-List � 〈i, bi, H2(IDF‖i‖Pu), σi〉. C sends 〈σ1, ..., σn〉,
corresponding file F � 〈m1, . . . , mn〉 and indicator matrix
Ii,u to Adv3.

Challenge. C chooses a number c (1≤ c≤ n) as the size of the
challenge vector and two random values k1, k2 ∈ 0, 1{ }l using
the global function Ω, which act as the seeds for the two
pseudo-random functions π and f, respectively. C sends the
challenge request as chal � 〈c, C � (i, vi)􏼈 􏼉, IDF〉 to the
Adv3, where i � π(k1, x), vi � f(k2, x) for 1≤ x≤ c.

Security and Communication Networks 21

Forge-Proof. Eventually Adv3 outputs proof of possession
P′ � (μ′, σ′) where μ′ � μ1′, μ2′, . . . , μd

′􏼈 􏼉 and σ′ � σ1′, σ2′, . . . ,􏼈

σd
′}.

Analysis. C calculates actual proof P � (μ, σ) where
μ � μ1, μ2, . . . , μd􏼈 􏼉 and σ � σ1, σ2, . . . , σd􏼈 􏼉.

Further C computes the following values:

(1) σπ � 􏽑
d
u�1 σu and σπ′ � 􏽑

d
u�1 σu
′.

(2) μπ � 􏽑
d
u�1 Q

μu
u and μπ′ � 􏽑

d
u�1 Q

μu
′

u .
(3) For each, i ∈ C do the following:

(a) Get u such that Ii,u � 1.
(b) Calculate wi � IDF‖i‖Pu.

Both the proofs P and P′ should be valid as per the
following equality:

e σπ , g(􏼁 � e μπ , Ppub􏼐 􏼑. 􏽙

d

u�1
e 􏽙

i∈C
H2 wi(􏼁

viIi,u , Pu
⎛⎝ ⎞⎠, (35)

e σπ′, g(􏼁 � e μπ′, Ppub􏼐 􏼑. 􏽙
d

u�1
e 􏽙

i∈C
H2 wi(􏼁

viIi,u , Pu
⎛⎝ ⎞⎠. (36)

If μπ � μπ′, then Adv3 stores the challenged message
blocks correctly which contradicts our assumption. So, there
are two cases. □

Case 1. σπ � σπ′.
Equating (35) and (36),

e 􏽙
d

u�1
Qu(􏼁

μu , Ppub
⎛⎝ ⎞⎠ � e 􏽙

d

u�1
Qu(􏼁

μu
′
, Ppub

⎛⎝ ⎞⎠ e 􏽙
d

u�1
Qu(􏼁

μu , g
a⎛⎝ ⎞⎠

� e 􏽙
d

u�1
Qu(􏼁

μu
′
, g

a⎛⎝ ⎞⎠e 􏽙
d

u�1
Qu(􏼁

μu ·a
, g⎛⎝ ⎞⎠

� e 􏽙
d

u�1
Qu(􏼁

μu
′·a

, g⎛⎝ ⎞⎠,

􏽙

d

u�1
Q

μu ·a
u � 􏽙

d

u�1
Q

μu
′·a

u 􏽙

d

u�1
Q

a
u(􏼁
Δμu � 1, for Δμu � μu − μu

′,

g
a

(􏼁

􏽘

d

u�1
ruΔμu

· h
a
2(􏼁

􏽘

d

u�1
βuΔμu

� 1 h
a
2(􏼁

􏽘

d

u�1
βuΔμu

� h1(􏼁

􏽘

d

u�1
ruΔμu⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
h

a
2

� h1(􏼁

−
􏽐

d
u�1ruΔμu

􏽐
d
u�1βuΔμu

h
b
1 � h1(􏼁

−
􏽐

d
u�1ruΔμu

􏽐
d
u�1βuΔμu .

(37)

)en, C can compute solution to discrete log of h2 as

b � −
􏽐

d
u�1ruΔμu

􏽐
d
u�1βuΔμu

. (38)

It can be observed that the solution to an instance of DL
problem is found, unless the denominator 􏽐

d
u�1βuΔμu is

zero. However, at least one ofΔμu is non-zero, and the values
βu􏼈 􏼉 are randomly chosen by the challenger C from Zq ∗ .
Hence, the probability that denominator is zero is 1/q. We
now calculate the minimum success probability ξ′(k) with
which the challenger C can solve an instance of the given DL
problem in G1. For this to happen, the denominator in the
exponent must be non-zero and its probability is (1 − 1/q).

22 Security and Communication Networks

Hence, the minimum success probability ξ′(k) with which
the challenger C can solve an instance of the given DL
problem in G1 is ξ′(k)≥ ξ(k) · (1 − 1/q). It can be noted that
since q is exponential(k), the quantity (1 − 1/q) is non-

negligible.)us, if ξ(k) is non-negligible, then the success
probability ξ′(k) is also non-negligible.

Case 2. σπ ≠ σπ′.
Dividing (26) by (20):

σπ′
σπ

� 􏽙
d

u�1
Qu(􏼁
Δμuaσπ′σ

− 1
π

� 􏽙
d

u�1
Qu(􏼁
Δμua

g
a

(􏼁
􏽘

d

u�1
ruΔμu · h

a
2(􏼁

􏽘
d

u�1
βuΔμu � σπ′σ

− 1
π

h
a
2(􏼁

􏽘
d

u�1
βuΔμu � σπ′σ

− 1
π h

− 􏽘
d

u�1
ruΔμu

1
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

h
a
2 � σπ′σ

− 1
π h

− 􏽘
d

u�1
ruΔμu

1
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/􏽘
d

u�1
βuΔμu

.

(39)

C knows σπ , σπ′,Δμu, h1, ru, βu􏼈 􏼉, and hence C can
compute ha

2, the solution to the CDH problem.
It can be observed that the solution to an instance of

CDH problem is found, unless the denominator in the
exponent 􏽐

d
u�1βuΔμu is zero. However, we have already

noted that not all of Δμu can be zero, and the values βu􏼈 􏼉 are
randomly chosen by the challenger C from Zq ∗ . Hence, the
probability that denominator is zero is 1/q. We now calculate
the minimum success probability ξ′(k) with which the
challenger C can solve an instance of the given CDH
problem. For this to happen, the denominator in the ex-
ponent must be non-zero and its probability is (1/q). Hence,
the minimum success probability ξ′(k) with which the
challenger C can solve an instance of the given CDH
problem in G1 is ξ′(k)≥ ξ(k) · (1 − 1/q). It can be noted that
since q is exponential(k), the quantity (1 − 1/q) is non-
negligible.)us, if ξ(k) is non-negligible, then the success
probability ξ′(k) is also non-negligible.

)e running time of C is the sum of upper bounded
running time of adversary algorithm Adv3 (O (Adv3)) and
upper bounded running time of all the algorithms used in
simulating the challenger C, i.e., H1 hash query (t1), data-
block query (t2), public-key query (t3), and tag-gen and H2
query (t4) executed q1, q2, q3, and q4 times, respectively.
)erefore,
O(C) � O(Adv3) + O(q1 · t1 + q2 · t2 + q3 · t3 + q4 · t4).
Now since all the algorithms used in the simulation of
challenger C are polynomial-time computable,
O(C) � O(Adv3) + O(q1 + q2 + q3 + q4). It can noted that
q1, q2, q3, and q4 all are in polynomial(k).)erefore,
O(C) ≈ O(Adv3). It can be observed that if Adv3 is a

polynomial-time algorithm, then the simulated DL or CDH
problem solver C is also a polynomial-time algorithm.

8.2. Soundness Proof for the Proposed CRPPA Scheme.
)e proposed CRPPA scheme uses the same tag-generation
mechanism of that of our proposed basic CLS-RDIC scheme.
Hence, the security proofs for tag-unforgeability will be
same as)eorems 1 and 2 against type-I and type-II at-
tackers, respectively. Since the proposed CRPPA scheme
employs zero-knowledge mechanisms to establish privacy-
preserving data possession proof, we provide both the
soundness and the zero-knowledge privacy proofs to es-
tablish the security of the privacy-preserving data auditing
mechanism against type-III and type-IV adversaries, re-
spectively.)eorem 2 bases on)eorem 1 to establish the
soundness of the privacy-preserving mechanism used in the
CRPPA scheme against type-III attacker.)eorem 5 es-
tablishes the zero-knowledge data privacy proof against
type-IV attacker. Finally, the soundness property of the
Verify-Proof algorithm of the proposed CRPPA scheme is
established in)eorem 4.

)e following theorem proves that, in the random oracle
model, the tags generated by the proposed CRPPA scheme
are unforgeable by a type-III attacker assuming the unfor-
geability of the data audit proof of the proposed basic CLS-
RDIC scheme.

Theorem 4. If an adversary Adv3 has a success probability of
ξ(k) in generating a forged data audit proof against our
proposed CRPPA scheme, then there exists a challenger C that

Security and Communication Networks 23

generates a forged data audit proof against the proposed basic
CLS-RDIC scheme. Suppose Adv3 makes at most q1 H3 hash
queries and q2 data-block and tag-gen queries, where q1, q2
both are in polynomial(k), and Pr[frk] denotes the forking
probability as per forking lemma [67]. Gen, the success
probability, ξ′(k), of challenger C in solving the above
problem is lower bounded by

ξ′(k)≥ ξ(k) ·
1
q1

−
1
q

􏼠 􏼡, (40)

where q is the size of the co-domain (Zq ∗) of H3 hash
function. In addition, the time complexity classes are
O(C) ≈ O(Adv3) + O(q1 + q2).

Proof. Let Adv3 be the adversary as in game-3 who is ca-
pable of generating a valid data possession proof against the
proposed CRPPA scheme for a given random challenge chal
without having at least one of the challenged blocks in its
possession.)en, we show that we can construct a PPT
simulator C using Adv3 as subroutine to forge the data
possession proof for the proposed basic CLS-RDIC scheme
for the same challenge chal. It can be noted here that the
simulator C acts as a challenger for type-III adversary against
the CRPPA scheme and acts as type-III adversary against the
proposed basic CLS-RDIC scheme at the same time. We use
the forking theorem introduced by Bellare and Neven in [67]
to establish our proof.

Given the public parameters
params � 〈G1, G2, q, 􏽢e, g, Ppub〉 and instance of the challenge
set chal � 〈c, k1, k2, IDF〉, C segregates the challenge chal
into d subsets, for each subset belongs to a unique user. C

simulates game-3 in the following way.

Setup. C forwards params′ � 〈G1, G2, q, 􏽢e, g, g1, Ppub〉 and a
random tape to Adv3.

H3 Hash Query. Adv3 queries for H3 for any value
R ∈ G2. For each H3 query, C maintains a H3-List � (R, c)􏼈 􏼉.
If R is already queried, C retrieves the tuple from the H3-List
and returns c to Adv3. If R is new, C randomly chooses a
c ∈ Zq ∗ and sends c to Adv3 as response.

Data-Block and Tag-Gen Queries. Since the simulator C is
acting as a type-III adversary against the proposed basic
CLS-RDIC scheme, it is also entertained for Data-Block and
Tag-Gen queries, as defined in game-3.)e Data-Block and
Tag-Gen queries received by C from Adv3 are entertained by
it by utilizing its own privileged in this regard.

Challenge. C forwards the challenge set corresponding to a
user as chalu � 〈cu, k1, k2, IDF〉 to Adv3.

Forge-Proof. Adv3 outputs privacy-preserving integrity
proof P1u � 〈μ1u

′,Σu, ε1u, Ru〉.)e value Ru must have been
queried to the hash oracle where H3(Ru) � c1u. Since the
output of H3 hash oracle is uniformly random in Zq ∗ , the
adversary Adv3 cannot obtain H3(Ru) without querying H3.
However, H3(Ru) is essential in generating a valid proof P1u.
Hence, the value of c1u must have been queried.

C uses the forking technique to rewind the simulation to
the instance where the value Ru is queried to the hash oracle.
C replies c2u as the hash value of Ru. Finally, Adv3 outputs
privacy-preserving integrity proof P2u � 〈μ2u

′,Σu, ε2u, Ru〉.

Analysis. Calculate: μu � μ2u
′ − μ1u
′ /c2u − c1u, ρu � ε2u − ε1u/

c2u − c1u, Σu � g
ρu

1 σu, and σu � Σu/gρu .
Since both proofs P1u and P2u are valid proofs, they must

satisfy auditor verification equation (20):

Ru · e Σc1u

u , g(􏼁 � e Q
μ1u
′

u , Ppub􏼒 􏼓 · e g1, g(􏼁
ε1u ,

e 􏽙
i∈Cu

H2 wi(􏼁
viIi,uc1u , Pu

⎛⎝ ⎞⎠,

Ru · e Σc2u

u , g(􏼁 � e Q
μ2u
′

u , Ppub􏼒 􏼓 · e g1, g(􏼁
ε1u ,

e 􏽙
i∈Cu

H2 wi(􏼁
viIi,uc2u , Pu

⎛⎝ ⎞⎠.

(41)

Dividing (14) by (10), we get

e Σc2u − c1u

u , g(􏼁 � e Q
μ2u
′− μ1u
′

u , Ppub􏼒 􏼓 · e g1, g(􏼁
ε2u− ε1u ,

e 􏽙
i∈Cu

H2 wi(􏼁
viIi,u c2u − c1u(), Pu

⎛⎝ ⎞⎠.

(42)

Taking root of (c2u − c1u) on both sides:

e Σu, g(􏼁 � e Q
μ2u
′− μ1u
′/c2u − c1u

u , Ppub􏼒 􏼓 · e g1, g(􏼁
ε2u − ε1u/c2u − c1u ,

e 􏽙
i∈Cu

H2 wi(􏼁
viIi,u , Pu

⎛⎝ ⎞⎠.

(43)

Substituting the value of Σu, μu, ρu, we get

e σu, g(􏼁 � e Q
μu

u , Ppub􏼐 􏼑.e 􏽙
i∈C

H2 wi(􏼁
viIi,u , Pu

⎛⎝ ⎞⎠, (44)

which is nothing but the auditor verification equation for the
user u, and the values (σu, μu) correspond to the integrity
proof of our proposed basic CLS-RDIC scheme.

Repeating the above simulation for all the users, we
finally output the integrity proof corresponding to the
challenge chal for the proposed basic CLS-RDIC scheme,
which is a set of σu, μu􏼈 􏼉 for all u in chal.

We now calculate the minimum success probability
ξ′(k) with which the challenger C can generate a forged data
audit proof against the basic CLS-RDIC scheme. For this to
happen, the challenger C must not abort during the above
simulation.)e challenger aborts only when forking is
unsuccessful. So, let us calculate the success probability of
forking as discussed in Section 3.2. Here in this simulation,
the random oracle RO is the hash function H3. We respond
to a total of q1 number of RO queries received from the
adversary Adv3. For each of these queries, we return a
random value from the co-domain Zq ∗ .)e output

24 Security and Communication Networks

generated by the adversary algorithm Adv3 is the proof P1u

which contains a component Ru. As stated earlier, Ru must
have been queried to the hash oracle H3. Hence, the ac-
ceptance probability of the adversary algorithm Adv3 is
Pr[acc] � 1.)us, applying the forking lemma as stated in
Section 3.2, the forking success probability
Pr[frk]≥ (1/q1 − 1/|Zq ∗ |) � (1/q1 − 1/q). Hence, the
minimum success probability with which the challenger C

can generate a forged data audit proof against the basic CLS-
RDIC scheme is ξ′(k)≥ ξ(k) · Pr[frk] � ξ(k) · (1/q1 − 1/q).
It can be noted that Pr[frk] is non-negligible, since q1 is in
polynomial(k) and q is in exponential(k).)us, if ξ(k) is
non-negligible, then the success probability ξ′(k) is also
non-negligible.

)e running time of C is the sum of upper bounded
running time of adversary algorithm Adv3 (O (Adv3)) and
upper bounded running time of all the algorithms used in
simulating the challenger C, i.e., H3 hash query (t1) and data-
block and tag-gen queries (t2) executed q1 and q2 times,
respectively.)erefore, O(C) � O(Adv3)+

O(q1 · t1 + q2 · t2). Now since all the algorithms used in the
simulation of challenger C are polynomial-time computable,
O(C) � O(Adv1) + O(q1 + q2). It can be noted that q1 and
q2 both are in polynomial(k).)erefore, O(C) ≈ O(Adv3). It
can be observed that if Adv3 is a polynomial-time algorithm,
then the simulated data audit proof forgerC against basic CLS-
RDIC scheme is also a polynomial-time algorithm. □

Theorem 5. Ge proposed CRPPA protocol is secure against
type-IV attacker, in the random oracle model. Suppose Adv4
makes at most q1H1 hash queries, where q1 is in
polynomial(k). Gen, the success probability that the simu-
lator S can generate a valid data possession proof corre-
sponding to a given challenge is

ξ′(k) ≈ 1 −
1
q
, (45)

where q is the order of the group Zq ∗ . In addition, the time
complexity classes are O(C) ≈ O(q1).

Proof. We prove the above theorem by showing that it is
possible to design a simulator S that can generate a valid data
possession proof corresponding to any given challenge chal
without any knowledge about the data and tag blocks, if it
has control over the random oracle hash function H3 used in
the masking technique of CRPPA. We show the success
probability of such simulation to be non-negligible.

Setup.)e simulator S receives a random tape and public
parameters params.

H3 Hash Query. In order to simulate H3 hash function as
a random oracle, S maintains a H3-List � (R, c)􏼈 􏼉. If R is
already queried, S retrieves the tuple from the H3-List and
returns c as the response. If R is new, S randomly chooses a
c ∈ Zq ∗ and returns c as the response.

Challenge. S receives the challenge set corresponding to a
user IDu as chal � 〈c, k1, k2, IDF, IDu〉.

Forge-Proof. After receiving the challenge chal � 〈c, k1,

k2, IDF, IDu〉, S computes the forged proof P using the
following steps:

(1) C � (i, vi)􏼈 􏼉, where i � π(k1, x) and vi � f(k2, x) for
all 1≤ x≤ c where c is the number of challenged
indices.

(2) Qu � H1(IDu).
(3) Choose c, μ′, ε randomly from Z∗q .
(4) Choose Σ randomly from G1.
(5) Compute R � e(Q

μ′
u , Ppub) · e(g1, g)ε · e

(􏽑i∈CH2(wi)
vic, Pu)/e(Σ, g)c.

(6) If R already exists in the H3-List, then abort the
simulation.

(7) Else, set H3(R)←c.

)e simulator S returns proof P � 〈μ′,Σ, ε, R〉. It is easy
to check that P is a valid data integrity proof corresponding
to the given challenge chal.

Success Probability.)e success probability of this simula-
tion ξ′(k) � 1 − (failure probability of simulation)�

ξ′(k) � 1 − P(F), (46)

where P(F) � the probability with which simulator S aborts.
)e simulation aborts only in step 6, when the value of R
computed in step 5 already exists in H3-List.

Let polynomial number (ql) of H3 queries be received by
the simulator S during the simulation.)e probability that
the value R computed in step 5 matches with any one of the
previously queried H3 queries is proportional to ql/q, where
q is the order of the group Zq ∗ .)e value ql/q is an inverse
exponential function of k, and thus ξ′(k) ≈ 1 − 1/q is non-
negligible.

)e running time of C is the upper bounded running
time of the algorithm H3 hash query (t1) executed q1 times,
which is (O(q1 · t1)). Now the algorithm used in the sim-
ulation S is polynomial-time computable, O(C) � O(q1). It
can be noted that q1 is in polynomial(k).)erefore,
O(C) ≈ O(polynomial(k)). Hence, simulator S is polyno-
mial-time algorithm. □

Theorem 6. Ge aggregate verification done in the Verify-
Proof algorithm of the proposed CRPPA protocol is sound. In
other words, if the aggregate audit verification as per the
Verify-Proof algorithm in Section 7.2 results in success, then
each of the t ∈ T instances of the data possession proofs is
correct.

Proof. We prove the above given theorem through proof by
contradiction. We know that ∀t ∈ T,
P(t) � 〈μ′(t),Σ(t)(t), ε(t), R(t)〉, where μ′(t) � μ1′(t),􏼈

μ2′(t), . . . , μd
′(t)}, Σ(t) � Σ1(t),Σ2((t)), . . . ,Σd(t)􏼈 􏼉,

ε(t) � ε1(t), ε2(t), . . . , εd(t)􏼈 􏼉, R(t) � R1(t), R2(t),􏼈

. . . , Rd(t)}. We assume that there is at least one proof, say,
the xth instance (for some x ∈ T) where the proof P(x) is not
valid as per the Proof-Ver algorithm of the CRPPA protocol,

Security and Communication Networks 25

but the aggregate verification for all the t ∈ T instances still
passes the verification test as per the Verify-Proof algorithm.

As per the assumption above, the xth instance does not
pass the verification test of Proof-Verify algorithm. Hence,

􏽙
u

Ru(x) · e 􏽙
u

Σu(x)
cu(x)

, g⎛⎝ ⎞⎠

≠􏽙
u

e Q
μu
′(x)

u , Ppub􏼒 􏼓 · e g
εu(x)
1 , g􏼐 􏼑􏼒

· e 􏽙
i∈Cx

H2 wi(􏼁
viIi,ucu(x)

, Pu
⎛⎝ ⎞⎠.

(47)

But ∀t ∈ T instances of the data possession proofs pass
the verification test as per theVerify-Proof algorithm, which
implies the following:

􏽙
∀t∈T

􏽙
u

Ru(t) · e 􏽙
∀t∈T

􏽙
u

Σu(t)
cu(t)

, g⎛⎝ ⎞⎠

� 􏽙
∀t∈T

􏽙
u

e 􏽙
i∈Ct

H2 wi(􏼁
viIi,ucu(t)

, Pu
⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠

· e 􏽙
∀t∈T

􏽙
u

Q
μu
′(t)

u , Ppub
⎛⎝ ⎞⎠ · e g1, g(􏼁

􏽘
∀t∈T

􏽘
u

εu(t)

.

(48)

)e above also implies that ∀t ∈ T&t ≠x instances of the
data possession proofs also pass the verification test as per
theVerify-Proof algorithm, and hence, we get

􏽙
∀t(≠ x)∈T

􏽙
u

Ru(t) · e 􏽙
∀t(≠x)∈T

􏽙
u

Σu(t)
cu(t)

, g⎛⎝ ⎞⎠

� 􏽙
∀t(≠ x)∈T

􏽙
u

e 􏽙
i∈Ct

H2 wi(􏼁
viIi,ucu(t)

, Pu
⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠

· e 􏽙
∀t(≠ x)∈T

􏽙
u

Q
μu
′(t)

u , Ppub
⎛⎝ ⎞⎠ · e g1, g(􏼁

􏽘
∀t(≠x)∈T

􏽘
u

εu(t)

.

(49)

Dividing (48) by (49), we get

􏽙
u

Ru(x) · e 􏽙
u

Σu(x)
cu(x)

, g⎛⎝ ⎞⎠

� 􏽙
u

e Q
μu
′(x)

u , Ppub􏼒 􏼓 · e g
εu(x)
1 , g􏼐 􏼑􏼒

· e 􏽙
i∈Cx

H2 wi(􏼁
viIi,ucu(x)

, Pu
⎛⎝ ⎞⎠.

(50)

Equation (50) shows that the xth instance passes the
verification test of Verify-Proof algorithm which contradicts
with equation (47) derived from the assumption. Hence, the
theorem is proved.

In the following two subsections, we explain in brief how
the mechanisms adopted in the proposed CRPPA scheme
can prevent and detect type-V and type-VI attacks,
respectively. □

8.2.1. Security against Type-V Attack. Type-V attack can be
launched in two different ways as discussed in Section 7.1.2.
Hence, we need to detect an incorrect data auditing report
generated by the auditor and also restrict the auditor from
disclosing the random values of the challenge vectors in
advance. Using the Verify-Proof algorithm of the proposed
CRPPA scheme, any user, acting as audit-verifier, can verify
correctness of the audit reports. We have established the
completeness and the soundness of this algorithm in Lemma
5 and)eorem 6, respectively. Second, the CRPPA protocol
ensures that all parties, including the data auditor, CSP, and
audit-verifier, generate the challenge vector chal from the
hash-block of a public blockchain corresponding to the audit
time, which is specified in the SLA.)e hash-block values in
the blockchain continuously get updated, and it is not
feasible to guess what would be the value of the block for a
future instance of time. Hence, the auditor cannot disclose to
the CSP in advance the challenge vectors for a future time
instance.

8.2.2. Security against Type-VI Attack. Type-VI attack by the
compromised selfish auditor can only be detected if (i) there
is a timestamp associated for each audit report generated by
the auditor, (ii) the auditor is not able to modify once the
report is timestamped, and (iii) the timestamped report is
publicly available for verification. In our proposed CRPPA
scheme, the hash digests of the audit reports need to be
inserted as a transaction into the public blockchain. A
transaction in the blockchain is immutable, timestamped,
and verified by the blockchain. Hence, a user, acting as audit-
verifier, can always verify the timeliness of the auditing task
performed by the auditor, as explained in the Verify-Proof
algorithm of the CRPPA protocol.

9. Performance Analysis and Comparisons

In this section, we evaluate the performance of the proposed
CRPPA scheme on two factors. First, we compare our
CRPPA scheme with the recent CLS-based group shared
data auditing schemes which find their applications in FOG-
CPS environments. We specifically point to the concerns of
their application to FOG-CPS environments based on the
necessary cryptographic requirements and security against
six types of attacks possible in a FOG-CPS. Second, we
provide the computational cost comparisons with the well-
known schemes in the remote data integrity checking field to
understand the performance of the CRPPA scheme in the
broad area of RDIC.

9.1.AQualitativeComparisonof theProposedCRPPAScheme.
Table 3 shows the comparison of the proposed CRPPA
scheme with the schemes of Jaya et al. [23], Yang et al. [24],
Hongbin et al. [39], Cui et al. [21], Armknecht et al. [48],
Zhang et al. [25], Yu et al. [12], and Li et al. [62] w.r.t the
necessary security property requirements of a FOG-CPS
which include group shared data, the cryptographic tech-
niques employed for generating security credentials of the
FOG-CPS users, the tag-unforgeability of the metadata

26 Security and Communication Networks

generation mechanism to protect from forged signature
(type I and type II) and integrity proof forgery (type III), the
data privacy of sensitive data of the edge user against the
semi-trusted data auditor (type IV), reliability on the cor-
rectness (type V), and timeliness of the auditing tasks by the
semi-trusted data auditor (type VI).

We discuss the specific security limitations of the schemes
in [12, 21, 23–25, 39, 48, 62] against our proposed CRPPA
scheme.)e schemes in [12, 21, 23–25, 39, 62] are susceptible
to tag forgery and integrity proof forgery attacks (type I, type
II, and type III).)e auditor in the schemes in
[12, 21, 23–25, 39, 48, 62] after executing a large number of
challenge-response instants can extract data file blocks or tags,
i.e., these schemes are susceptible to type-IV attack and do not
provide zero-knowledge data privacy against the auditor.
Schemes in [12, 21, 23–25, 39, 48, 62] are susceptible to type-V
attack and do not provide any mechanism to prevent the
collusion of auditor and CSP on the random challenge vectors
in advance used as a part of data auditing. Type-VI attack is
possible in the schemes in [12, 21, 23–25, 39, 48, 62] where the
auditor can delay or skip auditing tasks without even getting
detected.)us, these schemes in [12, 21, 23–25, 39, 48, 62]
lack correctness and timeliness reliability of data auditing
tasks by the auditor. Our proposed CRPPA is secure against
all the six types of attacks and hence provides better security
for FOG-CPS than the schemes in [12, 21, 23–25, 39, 48, 62].

Further, Table 4 presents various difficulty assumptions
employed in the proposed CRPPA scheme and the schemes
in [12, 21, 23–25, 39, 48, 62] to provide security against the
six types of attack scenarios.)e security against type-I and
type-II attacks in [21, 23–25, 39, 48, 62] and our proposed
CRPPA scheme is based on CDH assumption.)e security
against type-III attack in the schemes [23, 39] is based on the
DL assumption, that in scheme [25] is based on CDH as-
sumption, and that in scheme [48] and our CRPPA scheme
is based on the CDH and DL assumptions.)e security
against type-IV attack in scheme [23] is based on CDH
assumption and that in schemes [12, 39] is based on the one-
way property of a hash function. In our proposed CRPPA
scheme and in scheme [24], the security against type-IV
attack is based on DL assumption.)e security against type-
V attack in scheme [48] and our CRPPA scheme is based on
the consensus mechanism of blockchain and that in scheme
[25] is based on proof-of-work mechanism in blockchain.
Finally, our proposed CRPPA scheme and the scheme in
[25] provide security against type-VI based on the immu-
tability property of blockchain.

9.2. Computation Cost. To understand the performance of
the proposed CRPPA scheme in the broad area of RDIC, we
consider three well-known RDIC schemes.)e first is Li
et al.’s CLS-based group shared data auditing scheme [62],
and we refer to this scheme as certificateless-RDIC scheme.
)e second scheme is a ID-based data privacy-preserving
scheme proposed by Yu et al. [12], and we refer to this
scheme as ID-RDIC scheme.)e third is Zhang et al.’s
scheme [25] that employs blockchain technology for veri-
fying data auditing tasks by the auditor, and we refer to this
scheme as blockchain-RDIC.

A detailed comparison of cryptographic operations cost is
performed on the proposed CRPPA scheme w.r.t to schemes
in [12, 25, 62]. Tables 5–7 show the cryptographic operation
cost at the auditor, the CSP, and the user, respectively. We
consider only the operations that have a significant impact on
the performance of the schemes, and these operations are
hash-to-element in G1, exponentiation in G1, multiplication
in G1 and G2, and bilinear pairing operation. Let us denote
their costs as TH, TexpG1

, TmulG1
, TmulG2

, and Tp, respectively.
)e value c in the tables corresponds to the number of

challenged blocks in one challenge instance, the value b

corresponds to the number of blocks for which tags are
generated, and the value t corresponds to the number of
challenge instances.

We have derived the cryptographic operations cost for
each of the schemes in [12, 25, 62] by studying and analyzing
each algorithm corresponding to the tag generation by the
user, the proof generation by the CSP, and the proof veri-
fication by the auditor, and accordingly the significant
cryptographic operation costs for each of the schemes are
provided in Tables 5–7.)e cryptographic operation costs in
Tables 5–7 are for a single user, and the cryptographic
operation costs for group of users can be calculated
accordingly.

9.3. Experimentation Results. In Section 9.1, through a
qualitative comparison of our proposed CRPPA scheme
w.r.t the existing schemes in [12, 21, 23–25, 39, 48, 62], we
have shown that the proposed protocol achieves a unique
combination of security objectives, which has not been
achieved by any of the existing protocols. Table 3 clearly
summarizes the additional security objectives that we gain
with respect to the existing approaches. In Section 8, through
rigorous mathematical analysis, we have established the
claimed security properties of the proposed protocol. In this

Table 3: Comparison of the proposed CRPPA scheme with the schemes in [12, 21, 23–25, 39, 48, 62] against six types of attacks.

Proposed
CRPPA scheme

Jaya et al.
[23]

Yang et al.
[24]

Hongbin
et al. [39]

Cui et al.
[21]

Armknecht
et al. [48]

Zhang
et al. [25]

Yu et al.
[12]

Li et al.
[62]

Cryptography used CLPKC CLPKC CLPKC CLPKC CLPKC PKI CLPKC ID-PKC CLPKC
Group shared data Yes Yes Yes Yes Yes No No No Yes
Type-I secure Yes No Yes No No — Yes No No
Type-II secure Yes No Yes No No — Yes No No
Type-III secure Yes No — No No Yes Yes No No
Type-IV secure Yes No Yes Yes No No No Yes No
Type-V secure Yes No No No No Yes Yes No No
Type-VI secure Yes No No No No No Yes No No

Security and Communication Networks 27

subsection, through experimental evaluations, our objective
is to demonstrate that we achieve these additional security
objectives with almost no or marginal additional cost. We
evaluate the performance of the proposed CRPPA scheme
based on the computation cost of tag generation by the user,
proof generation by the CSP, and proof verification by the
data auditor against the schemes in [12, 25, 62].)e cost for
the tag-generation mechanism for the user can be split into
two types.)e first is an offline tag-generation mechanism
where some of the operations in the tag-generation mech-
anism can be calculated offline, independent of the file’s data
blocks.)e second is the online tag-generation cost de-
pendent on the file’s data blocks.

We have performed the experimental computation cost
analysis with the help of the PBC library [76] on an intel i5-
6200 CPU@2.30GHz and 4GB DDR4 RAM for simulating
the CSP and with the help of Android PBC [77] on a Quad-
core Cortex-A7 mobile processor@1.6GHz and 2GB RAM
for simulating the edge user device and edge data auditor
device.)e benchmark execution time in milliseconds for
each cryptographic operation TH, TexpG1

, TmulG1
, TmulG2

, and
Tp is calculated on both the Linux OS PC device and An-
droid OS mobile device and is shown in Table 8. Using the
benchmark execution times in Table 6 and the number of
cryptographic operations from Tables 5–7, we derive the
computation cost in seconds for online and offline tag
generation by the user for different file sizes, proof gener-
ation by the CSP, and proof verification by the data auditor
based on the number of challenged blocks.

Figure 1 shows the results obtained from the above
experimentation. From this figure, we can observe that the
computation cost, in seconds, of tag generation (offline and
online) is higher than that of proof generation and verifi-
cation.)is is obvious since the tag generation is executed
for a complete data file and by a resource-constrained edge
user device, whereas the proof generation and verification
are executed for only the challenged number of blocks. It can
also be observed that the online tag-generation cost is ap-
proximately 75% lower compared to offline cost. For in-
stance, for a filesize of 1000 blocks, the offline cost is 10
seconds, whereas the online cost is only 2.5 seconds.)e
reason is that the users can precompute some operations
beforehand to reduce the computational load required for
online tag generation. It can be noted that although the tag-
generation cost by an edge user device is higher, it is only a
one-time process for a file, unlike the proof generations and
verifications which are executed periodically.)e proof
generation cost by the cloud is comparatively very low
compared to proof-verification cost by the data auditor since
the cloud has higher computational power. In contrast, the
data auditor is an edge device with low computational re-
sources.)is is the reason for which we have outlined few
mechanisms in Section 5 to choose the data auditor from the
group of edge devices to distribute the computational load
among the edge devices.

Overall, from Figure 1, we can conclude that the
computation costs of our proposed CRPPA scheme are
comparable to the costs of the existing schemes in
[12, 25, 62].)is is because the number of major

Table 4: Comparison of the proposed CRPPA scheme with the schemes in [12, 21, 23–25, 39, 48, 62] on the difficulty assumption employed
against six types of attacks.

Proposed CRPPA
scheme

Jaya
et al.
[23]

Yang
et al.
[24]

Hongbin et al.
[39]

Cui
et al.
[21]

Armknecht et al.
[48] Zhang et al. [25] Yu et al. [12] Li et al.

[62]

Type I CDH CDH CDH CDH CDH — CDH — CDH
Type
II CDH CDH CDH CDH CDH — CDH — CDH

Type
III CDH & DL DL — DL — CDH & DL CDH — DL

Type
IV DL CDH DL

One-way
property of
hash function

— — —
One-way
property of

hash function
—

Type
V

Consensus
mechanism of
blockchain

— — — —
Consensus

mechanism of
blockchain

Proof-of-work
mechanism in
blockchain

— —

Type
VI

Immutability
property of
blockchain

— — — — —
Immutability
property of
blockchain

— —

Note. “—” indicates not applicable.

Table 5: Cryptographic operations cost at the auditor.

Scheme Proof verification cost
CRPPA cTH + (c + 2)TexpG1

+ (c − 1)TmulG1
+ TmulG2

+ 3Tp

Certificateless-RDIC [62] cTH + (c + 1)TexpG1
+ (c − 1)TmulG1

+ TmulG2
+ 3Tp

ID-RDIC [12] cTH + (c)TexpG1
+ (c − 1)TmulG1

+ 1Tp

Blockchain-RDIC [25] cTH + (c + 4)TexpG1
+ (c + 1)TmulG1

+ 2TmulG2
+ 4Tp

28 Security and Communication Networks

Table 6: Cryptographic operations cost at the CSP.

Scheme Proof generation cost
CRPPA cTexpG1

+ cTmulG1Certificateless-RDIC [62] (c)TexpG1
+ (c − 1)TmulG1ID-RDIC [12] (c + 1)TexpG1

+ (c − 1)TmulG1
+ TmulG2

+ 2Tp

Blockchain-RDIC [25] cTexpG1
+ (c − 1)TmulG1

Table 7: Cryptographic operations cost at the user.

Scheme Tag generation cost
CRPPA bTH + 2bTexpG1

+ bTmulG1Certificateless-RDIC [62] bTH + 2bTexpG1
+ bTmulG1ID-RDIC [12] bTH + 2bTexpG1
+ bTmulG1

Blockchain-RDIC [25] (b + 3)TH + (2b + 5)TexpG1
+ 2(b + 1)TmulG1

Table 8: Execution times of various cryptographic operations.

Operation Linux PC device (millisecond) Android mobile device (millisecond)
Bilinear pairing (Tp) 3.25 18.42
Hash-to-element in G1(TH) 0.6 6.78
Multiplication in G1(TmulG1

) 0.05 0.1
Exponentiation in G1(TexpG1

) 0.25 2.87
Multiplication in G2(TmulG2

) 1.45 8.76

1,000 2,000 3,000 4,000 5,000
Number of Blocks (File Size)

1,000 2,000 3,000 4,000 5,000
Number of Blocks (File Size)

100 200 300 400 500
100 200 300 400 500

Number of Challenged Blocks
Number of Challenged Blocks

50

40

30

10

0

20

15

10

5

0

0.15

0.10

0.05

0.00

5

4

3

2

1

0

se
co

nd
s

se
co

nd
s

se
co

nd
s

CRPPA
Certificateless-RDIC

ID-RDIC
Blockchain-RDIC

CRPPA
Certificateless-RDIC

ID-RDIC
Blockchain-RDICCRPPA

Certificateless-RDIC
ID-RDIC
Blockchain-RDIC

CRPPA
Certificateless-RDIC

ID-RDIC
Blockchain-RDIC

Offline Tag Generation Online Tag Generation

Proof Generation by CSP Proof Verification by Data Auditor

Figure 1: Performance comparison of various computation costs of our proposed CRPPA scheme with other related schemes.

Security and Communication Networks 29

cryptographic operations, such as TH, TexpG1
, TmulG1

, TmulG2
,

and Tp, required for implementing each of the offline and
online tag-generation algorithms executed by an edge user
device, the proof-generation algorithm executed by the
CSP, and the proof-verification algorithm executed by the
data auditor in the proposed scheme and in the compared
schemes is almost the same, as listed in Tables 5–7. Hence,
the results confirm that the proposed protocol achieves its
additional security objectives with marginal increase in
the cost. Besides, the aggregate verification cost of veri-
fying n number of audit reports by an audit-verifier in our
proposed CRPPA scheme, as shown in the Verify-Proof
algorithm of Section 7.2, has only (1/3)rd of the com-
putation cost required by an auditor to verify the same n

number of data possession proofs.

10. Conclusions and Future Work

In this paper, first, we have performed a detailed crypt-
analysis of two CLPKC-based privacy-preserving shared
data auditing schemes to pinpoint the exact vulnerabilities in
their metadata generation mechanisms. Second, we have
proposed a novel group shared data auditing protocol tai-
lored to the specific security requirements of a FOG-CPS.
)e proposed data auditing protocol takes advantage of the
localized storage and computing facilities available at the
edge of the FOG-CPS network by delegating an edge device
geographically close to the storage resources to perform the
data auditing task. Our proposed protocol ensures zero-
knowledge data privacy against the data auditor and can
provide the reliability of the data auditing tasks done by a
data auditor. We ensured the reliability of auditing tasks in
two ways: enabling any user to verify the data auditing
reports generated by the auditor and detect any procrasti-
nation of auditing tasks done by the auditor and ensuring
that the challenge vectors are generated from a time-varying
and verifiable universal source of randomness to restrict
auditor and CSP collusion on the challenge vectors in ad-
vance. We have proved that the metadata generated by our
protocol are unforgeable and are secure against both type-I
and type-II attacks in the random oracle model setting. We
have also established proof in support of the claimed zero-
knowledge privacy and the reliability properties of our
proposed protocol.)e comparative performance evalua-
tions establish the efficiency of our proposed protocol. As
future work, we plan to incorporate user revocation, support
data dynamics, and establish a collective auditing mecha-
nism among the edge devices in a distributed way.

Data Availability

)e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

)e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

)e authors acknowledge the support of Ministry of Edu-
cation, Government of India, for partially funding the
research.

References

[1] F. Bonomi, R. Milito, Z. Jiang, and S. Addepalli, “Fog com-
puting and its role in the internet of things,” in Proceedings of
the First Edition of the MCC Workshop on Mobile Cloud
Computing, pp. 13–16, Association for Computing Machin-
ery, NY, USA, 2012.

[2] I. Stojmenovic and S. Wen, “)e fog computing paradigm:
scenarios and security issues,” in Proceedings of the 2014
Federated Conference on Computer Science and Information
Systems, pp. 1–8, IEEE, Warsaw, Poland, September 2014.

[3] Junejo, A. Kanwal, and N. Komninos, “A lightweight Attri-
bute-based security scheme for fog-enabled cyber physical
systems,” Wireless Communications and Mobile Computing,
vol. 2020, Article ID 2145829, 2020.

[4] X. Liu, W. Chen, Y. Xia, and C. Yang, “SEVFC: Secure and
Efficient Outsourcing Computing in Vehicular Fog Com-
puting,” IEEE Transactions on Network and Service Man-
agement, vol. 18, no. 3, 2021.

[5] C. Badii, P. Bellini, A. Difino, and P. Nesi, “Smart city IoT
platform respecting GDPR privacy and security aspects,” IEEE
Access, vol. 8, pp. 23601–23623, 2020.

[6] X. Shen, L. Zhu, C. Xu, K. Sharif, and R. Lu, “A privacy-
preserving data aggregation scheme for dynamic groups in fog
computing,” Information Sciences, vol. 514, pp. 118–130, 2020.

[7] O. Yildirim, Feyza, S. Ozdemir, and Y. Xiao, “Fog computing-
based privacy preserving data aggregation protocols,”
Transactions on Emerging Telecommunications Technologies,
vol. 31, no. 4, Article ID e3900, 2020.

[8] Bo Li, Q. He, F. Chen, H. Jin, X. Yang, and Y. Yang, “Auditing
cache data integrity in the edge computing environment,”
IEEE Transactions on Parallel and Distributed Systems, vol. 32,
no. 5, pp. 1210–1223, 2020.

[9] G. Ateniese, R. Burns, R. Curtmola et al., “Provable data
possession at untrusted stores,” in Proceedings of the 14th
ACM Conference on Computer and Communications Security,
pp. 598–609, ACM, Alexandria, VA, USA, October 2007.

[10] V. Arulkumar, R. Lathamanju, and A. Sandanakaruppan,
“Assurance on data integrity in cloud data centre using PKI
built RDIC method,” Recent Trends in Communication and
Electronics, CRC Press, Boca Raton, Florida, USA, pp. 98–102,
2021.

[11] M. J. Jeyasheela Rakkini and K. Geetha, “Secure decentralized
public key infrastructure with multi-signature in block-
chains,” in Lecture Notes in Networks and Systems Inventive
Communication and Computational Technologies, vol. 145,
pp. 451–461, Springer, Singapore, 2021.

[12] Y. Yu, M. Ho Au, G. Ateniese et al., “Identity-based remote
data integrity checking with perfect data privacy preserving
for cloud storage,” IEEE Transactions on Information Fo-
rensics and Security, vol. 12, no. 4, pp. 767–778, 2016.

[13] Y. Zhang, Yu Jia, H. Rong, C. Wang, and K. Ren, “Enabling
efficient user revocation in identity-based cloud storage
auditing for shared big data,” IEEE Transactions on
Dependable and Secure Computing, vol. 17, no. 3, pp. 608–619,
2018.

[14] J. F. Tian and H. N. Wang, “An efficient and secure data
auditing scheme based on fog-to-cloud computing for

30 Security and Communication Networks

Internet of things scenarios,” International Journal of Dis-
tributed Sensor Networks, vol. 16, no. 5, Article ID
1550147720916623, 2020.

[15] L. Huang, G. Zhang, and A. Fu, “Privacy-preserving public
auditing for non-manager group shared data,” Wireless
Personal Communications, vol. 100, no. 4, pp. 1277–1294,
2018.

[16] Y. Zhang, C. Xu, S. Yu, H. Li, and X. Zhang, “SCLPV: secure
certificateless public verification for cloud-based cyber-
physical-social systems against malicious auditors,” IEEE
Transactions on Computational Social Systems, vol. 2, no. 4,
pp. 159–170, 2015.

[17] S. Li, J. Cui, H. Zhong, and L. Liu, “Public auditing with
privacy protection in a multi-user model of cloud-assisted
body sensor networks,” Sensors, vol. 17, no. 5, p. 1032, 2017.

[18] G. Wu, Y. Mu, W. Susilo, F. Guo, and F. Zhang, “Privacy-
preserving certificateless cloud auditing with multiple users,”
Wireless Personal Communications, vol. 106, no. 3, pp. 1161–
1182, 2019.

[19] K. Zhao, D. Sun, G. Ren, and Y. Zhang, “Public auditing
scheme with identity privacy preserving based on certifi-
cateless ring signature for wireless body area networks,” IEEE
Access, vol. 8, pp. 41975–41984, 2020.

[20] X. Yang, M. Wang, T. Li, R. Liu, and C. Wang, “Privacy-
preserving cloud auditing for multiple users scheme with
authorization and traceability,” IEEE Access, vol. 8,
pp. 130866–130877, 2020.

[21] M. Cui, D. Han, J. Wang, K.-C. Li, and C.-C. Chang, “ARFV:
an efficient shared data auditing scheme supporting revoca-
tion for fog-assisted vehicular ad-hoc networks,” IEEE
Transactions on Vehicular Technology, vol. 69, no. 12,
pp. 15815–15827, 2020.

[22] H. Yan, Y. Liu, Z. Zhang, and Q. Wang, “Efficient privacy-
preserving certificateless public auditing of data in cloud
storage,” Security and Communication Networks, vol. 2021,
Article ID 6639634, 2021.

[23] G. R. Jaya, S. Pasupuleti, and K. Ramesh, “Certificateless
privacy preserving public auditing for dynamic shared data
with group user revocation in cloud storage,” Journal of
Parallel and Distributed Computing, vol. 156, pp. 163–175,
2021.

[24] X. Yang, M. Wang, X. Wang, G. Chen, and C. Wang,
“Stateless cloud auditing scheme for non-manager dynamic
group data with privacy preservation,” IEEE Access, vol. 8,
pp. 212888–212903, 2020.

[25] Y. Zhang, C. Xu, X. Lin, and X. S. Shen, “Blockchain-based
public integrity verification for cloud storage against pro-
crastinating auditors,” IEEE Transactions on Cloud Com-
puting, vol. 9, no. 3, pp. 923–937, 2019.

[26] T. Shang, F. Zhang, X. Chen, J. Liu, and X. Lu, “Identity-based
dynamic data auditing for big data storage,” IEEE Transac-
tions on Big Data, vol. 7, no. 6, 2019.

[27] Y. Li, Y. Yu, G. Min, W. Susilo, J. Ni, and K. K. R. Choo,
“Fuzzy identity-based data integrity auditing for reliable cloud
storage systems,” IEEE Transactions on Dependable and Se-
cure Computing, vol. 16, no. 1, pp. 72–83, 2017.

[28] N. Garg and S. Bawa, “ID-PAPC: identity based public
auditing protocol for cloud computing,” in Proceedings of the
2017 IEEE International WIE Conference on Electrical and
Computer Engineering (WIECON-ECE), pp. 14–17, IEEE,
Dehradun, India, December 2017.

[29] Y. Yang, Y. Sun, Q. Huang, W. Yin, and F. Chen, “RLWE-
Based ID-DIA protocols for cloud storage,” IEEE Access,
vol. 7, pp. 55732–55743, 2019.

[30] H. Wang and J. Li, “Private certificate-based remote data
integrity checking in public clouds,” in International Com-
puting and Combinatorics Conference, pp. 575–586, Springer,
Salmon Tower Building, NY, USA, 2015.

[31] H. Wang, D. He, and S. Tang, “Identity-based proxy-oriented
data uploading and remote data integrity checking in public
cloud,” IEEE Transactions on Information Forensics and Se-
curity, vol. 11, no. 6, pp. 1165–1176, 2016.

[32] H. Shacham and B. Waters, “Compact proofs of retriev-
ability,” Journal of Cryptology, vol. 26, no. 3, pp. 442–483,
2013.

[33] J. Zhao, C. Xu, F. Li, and W. Zhang, “Identity-based public
verification with privacy-preserving for data storage security
in cloud computing,” IEICE-Transactions on Fundamentals of
Electronics, Communications and Computer Sciences,
vol. E96.A, no. 12, pp. 2709–2716, 2013.

[34] H. Wang, “Identity-based distributed provable data posses-
sion in multicloud storage,” IEEE Transactions on Services
Computing, vol. 8, no. 2, pp. 328–340, 2014.

[35] C. Sasikala and C. Shoba Bindu, “Certificateless remote data
integrity checking using lattices in cloud storage,” Neural
Computing and Applications, vol. 31, no. 4, pp. 1–7, 2018.

[36] C. Lan, H. Li, and C. Wang, “Cryptanalysis of “Certificateless
remote data integrity checking using lattices in cloud storage,”
in Proceedings of the 2020 10th International Conference on
Information Science and Technology (ICIST), pp. 134–138,
IEEE, Plymouth, UK, September 2020.

[37] Y. Yu, M. H. Au, Y. Mu et al., “Enhanced privacy of a remote
data integrity-checking protocol for secure cloud storage,”
International Journal of Information Security, vol. 14, no. 4,
pp. 307–318, 2015.

[38] D. He, N. Kumar, S. Zeadally, and H. Wang, “Certificateless
provable data possession scheme for cloud-based smart grid
data management systems,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 3, pp. 1232–1241, 2017.

[39] H. Yang, S. Jiang, W. Shen, and Z. Lei, “Certificateless
provable group shared data possession with comprehensive
privacy preservation for cloud storage,” Future Internet,
vol. 10, no. 6, pp. 49–6, 2018.

[40] S. Peng, F. Zhou, Q. Wang, Z. Xu, and J. Xu, “Identity-based
public multi-replica provable data possession,” IEEE Access,
vol. 5, pp. 26990–27001, 2017.

[41] F. Zafar, A. Khan, S. U. R. Malik et al., “A survey of cloud
computing data integrity schemes: design challenges, tax-
onomy and future trends,” Computers & Security, vol. 65,
pp. 29–49, 2017.

[42] K. He, J. Chen, Y. Quan, S. Ji, D. He, and R. Du, “Dynamic
group-oriented provable data possession in the cloud,” IEEE
Transactions on Dependable and Secure Computing, vol. 18,
no. 3, 2019.

[43] D. Boneh and M. Franklin, “Identity-based encryption from
the Weil pairing,” in Proceedings of the Annual International
Cryptology Conference, pp. 213–229, Springer, Berlin, Hei-
delberg, Germany, August 2001.

[44] A. Fu, S. Yu, Y. Zhang, H. Wang, and C. Huang, “NPP: A new
privacy-aware public auditing scheme for cloud data sharing
with group users,” IEEE Transactions on Big Data, vol. 8, no. 1,
2017.

[45] S. S. Al-Riyami, K. G. Paterson, and K. G. Paterson,
“Certificateless public key cryptography,” in Proceedings of
the International Conference on the Geory and Application
of Cryptology and Information Security, pp. 452–473,
Springer, Berlin, Heidelberg, Germany, November 2003.

Security and Communication Networks 31

[46] M. Aazam, S. Zeadally, and K. A. Harras, “Deploying fog
computing in industrial internet of things and industry 4.0,”
IEEE Transactions on Industrial Informatics, vol. 14, no. 10,
pp. 4674–4682, 2018.

[47] X. Li, J. Wan, H.-N. Dai, M. Imran, M. Xia, and A. Celesti, “A
hybrid computing solution and resource scheduling strategy
for edge computing in smart manufacturing,” IEEE Trans-
actions on Industrial Informatics, vol. 15, no. 7, pp. 4225–4234,
2019.

[48] F. Armknecht, J. M. Bohli, G. Karame, and W. Li, “Out-
sourcing Proofs of Retrievability,” IEEE Transactions on Cloud
Computing, vol. 9, no. 1, pp. 286–301, 2018.

[49] U. Feige, A. Fiat, and A. Shamir, “Zero-knowledge proofs of
identity,” Journal of Cryptology, vol. 1, no. 2, pp. 77–94, 1988.

[50] J. Ni, K. Zhang, X. Lin, and X. Shen, “Securing fog computing
for internet of things applications: challenges and solutions,”
IEEE Communications Surveys & Tutorials, vol. 20, no. 1,
pp. 601–628, 2017.

[51] R. Rezapour, P. Asghari, H. H. S. Javadi, and S. Ghanbari,
“Security in fog computing: a systematic review on issues,
challenges and solutions,” Computer Science Review, vol. 41,
no. 2021, Article ID 100421.

[52] B. Chen, T. Xiang, M. Ma, D. He, and X. Liao, “CL-ME:
efficient certificateless matchmaking encryption for internet
of things,” IEEE Internet of Gings Journal, vol. 18, no. 9, 2021.

[53] J. Shen, T. Zhou, D. He, Y. Zhang, X. Sun, and X. Yang, “Block
design-based key agreement for group data sharing in cloud
computing,” IEEE Transactions on Dependable and Secure
Computing, vol. 16, no. 6, pp. 996–1010, 2017.

[54] A. Karati, C. I. Fan, and E. S. Zhuang, “Reliable data sharing by
certificateless encryption supporting keyword search against
vulnerable KGC in industrial internet of things,” IEEE
Transactions on Industrial Informatics, 2021.

[55] M. H. Ziegler, M. Grossmann, and U. R. Krieger, “Integration
of fog computing and blockchain technology using the plasma
framework,” in Proceedings of the 2019 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC),
pp. 120–123, Seoul, South Korea, May 2019.

[56] O. Bouachir, M. Aloqaily, L. Tseng, and A. Boukerche,
“Blockchain and fog computing for cyberphysical systems: the
case of smart industry,” Computer, vol. 53, no. 9, pp. 36–45,
2020.

[57] K. Lei, M. Du, J. Huang, and T. Jin, “Groupchain: towards a
scalable public blockchain in fog computing of IoT services
computing,” IEEE Transactions on Services Computing,
vol. 13, no. 2, pp. 252–262, 2020.

[58] S. Misra, A. Mukherjee, A. Roy, N. Saurabh,
Y. Rahulamathavan, and M. Rajarajan, “Blockchain at the
edge: performance of resource-constrained IoT networks,”
IEEE Transactions on Parallel and Distributed Systems, vol. 32,
no. 1, pp. 174–183, 2020.

[59] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor,
“Checking the correctness of memories,” Algorithmica,
vol. 12, no. 2, pp. 225–244, 1994.

[60] A. Juels and B. S. Kaliski, “PORs: proofs of retrievability for
large files,” Proceedings of the 14th ACM Conference on
Computer and Communications Security, vol. 2007, pp. 584–
597, 2007.

[61] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from
the weil pairing,” Journal of Cryptology, vol. 17, no. 4,
pp. 297–319, 2004.

[62] J. Li, H. Yan, and Y. Zhang, “Certificateless public integrity
checking of group shared data on cloud storage,” IEEE

Transactions on Services Computing, vol. 14, no. 1, pp. 71–81,
2018.

[63] J. R. Gudeme, S. K. Pasupuleti, and R. Kandukuri, “Certifi-
cateless multi-replica public integrity auditing scheme for
dynamic shared data in cloud storage,” Computers & Security,
vol. 103, Article ID 102176, 2021.

[64] D. He, S. Zeadally, and L. Wu, “Certificateless public auditing
scheme for cloud-assisted wireless body area networks,” IEEE
Systems Journal, vol. 12, no. 1, pp. 64–73, 2015.

[65] B. Kang, J. Wang, and D. Shao, “Certificateless public auditing
with privacy preserving for cloud-assisted wireless body area
networks,” Mobile Information Systems, vol. 2017, Article ID
2925465, 2017.

[66] L. Zhou, A. Fu, G. Yang, H. Wang, and Y. Zhang, “Efficient
certificateless multi-copy integrity auditing scheme sup-
porting data dynamics,” IEEE Transactions on Dependable
and Secure Computing, 2020.

[67] M. Bellare and G. Neven, “Multi-signatures in the plain
public-key model and a general forking lemma,” in Pro-
ceedings of the 13th ACM Conference on Computer and
Communications Security, pp. 390–399, Alexandria, VA, USA,
November 2006.

[68] S. D. Galbraith, K. Harrison, and D. Soldera, “Implementing
the tate pairing,” in Proceedings of the International Algo-
rithmic Number Geory Symposium, pp. 324–337, Sydney,
Australia, July 2002.

[69] A. Joux and K. Nguyen, “Separating decision diffie-hellman
from computational diffie-hellman in cryptographic groups,”
Journal of Cryptology, vol. 16, no. 4, pp. 239–247, 2003.

[70] M. Bellare and P. Rogaway, “Random oracles are practical: a
paradigm for designing efficient protocols,” in Proceedings of
the 1st ACM Conference on Computer and Communications
Security, pp. 62–73, VA, USA, November 1993.

[71] B. Liu, Y. Zhang, G. Zhang, and P. Zheng, “Edge-cloud or-
chestration driven industrial smart product-service systems
solution design based on CPS and IIoT,” Advanced Engi-
neering Informatics, vol. 42, Article ID 100984, 2019.

[72] J. Kang, Y. Rong, X. Huang, and Y. Zhang, “Privacy-preserved
pseudonym scheme for fog computing supported internet of
vehicles,” IEEE Transactions on Intelligent Transportation
Systems, vol. 19, no. 8, pp. 2627–2637, 2017.

[73] A. Bounceur, M. Bezoui, R. Euler, N. Kadjouh, and F. Lalem,
“Brogo: a new low energy consumption algorithm for leader
election in wsns,” in Proceedings of the 10G International
Conference on Developments in Ecosystems Engineering
(DESE), pp. 218–223, IEEE, Paris, France, June 2017.

[74] L. C. Guillou and J. J. Quisquater, “A “paradoxical” indentity-
based signature scheme resulting from zero-knowledge,” in
Proceedings of the Conference on theGeory and Application of
Cryptography, pp. 216–231, Springer, NY, USA, August 1988.

[75] C. Wang, S. M. Chow, Q. Wang, K. Ren, and W. Lou,
“Privacy-preserving public auditing for secure cloud storage,”
IEEE Transactions on Computers, vol. 62, no. 2, pp. 362–375,
2011.

[76] B. Lynn, “Crypto.stanford.edu. n.d. PBC Library - Pairing-
Based Cryptography,” 2013, https://crypto.stanford.edu/pbc/
download.html.

[77] W. Liu, J. Liu, Q. Wu, and Bo Qin, “Android PBC: a pairing
based cryptography toolkit for android platform,” in Pro-
ceedings of the 2014 Communications Security Conference
(CSC 2014), p. 14, Beijing, China, May 2014.

32 Security and Communication Networks

https://crypto.stanford.edu/pbc/download.html
https://crypto.stanford.edu/pbc/download.html

