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With the advantage of using only a limited number of samples, few-shot learning has been developed rapidly in recent years. It is
mostly applied in the object classification or detection of a small number of samples which is typically less than ten. However, there
is not much research related to few-shot detection, especially one-shot detection. In this paper, the multifeature information-
assisted one-shot detection method is proposed to improve the accuracy of one-shot object detection. Specifically, two auxiliary
modules are applied to the detection algorithm: Semantic Feature Module (SFM) and Detail Feature Module (DFM), which,
respectively, extract semantic feature information and detailed feature information of samples in the support set. &en these two
kinds of information are then calculated with the feature image extracted from the query image to obtain the corresponding
auxiliary information that is used to complete one-shot detection. &anks to the two auxiliary modules, which can retain more
semantic and detailed information of samples in the support set, the proposed method can enhance the utilization rate of sample
feature information and improve object detection accuracy by 2.97% compared to the benchmark method.

1. Introduction

Deep neural networks have been widely used in computer
vision, such as posture recognition [1] and plant disease
recognition [2], and object detection is the research hotspot
in this field. Generally speaking, object detection algorithms
can be divided into two categories according to different
training strategies: one-stage object detection and two-stage
object detection. &e popular algorithms are the YOLO
algorithms [3–5] and R-CNN algorithms [6–8], which
dramatically improve the object detection effect and enhance
detection efficiency. However, those algorithms rely on
object annotation information, which cannot be easily ob-
tained. &erefore, researchers gradually focus on few-shot
detection.

Few-shot detection is derived from few-shot learning, a
particular case of meta-learning. At present, the learning
methods can be roughly broken down into four categories:
measurement learning-based learning, meta-learning-based
learning, data enhancement-based learning, and multimodal
approaches-based learning, among which the meta-

learning-based learning method is the most popular. In the
meta-training stage, by compositing several samples from
different classes to take different meta-task, the model can
learn the differences between examples of various categories
and the similarities between samples of the same type. While
in the meta-testing stage, the recognition task can be
completed without retraining or only with a small amount of
rapid training for a new category. However, few-shot
learning is mainly used in few-shot classification rather than
few-shot detection.

Few-shot object detection is used to complete detection
for objects with very few samples in the dataset. &e existing
few-shot detection methods fall into three categories: fine-
tuning, model structure-based learning, and metric-based
learning. &e few-shot detection training strategy generally
contains two stages: meta-training stage and fine-tuning
stage. In the meta-training, N categories were randomly
chosen from the training set, each containing K samples to
form the support set of the model, namely, a meta-task.
Next, a small number of object samples were selected to fine-
tune the model. &e purpose was to train the model to detect
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N classes of objects from N × K data and then generalize the
knowledge to adapt to new classes. &is task is called N-way
K-shot. In few-shot learning, the K value is usually smaller
than ten; when K � 1, it is called one-shot learning.

Existing metric-based few-shot detection mainly divides
the dataset into the support set and the query set. It selects
several image samples from the two sets to form theminimum
training unit task (meta-task) and then trains the model
through specific strategies. &e detection algorithm first
obtains the corresponding features of the images in the two
sets, thenmeasures the distance between the two features, and
judges the object category according to the distance.
According to the label’s location information, the regression
operation is performed to complete the object positioning.
We note that multiple features with different scales will be
generated when the convolutional neural network extracts
features of the support images. However, as the current al-
gorithm only conducts simple distance measurement, the
utilization rate of object feature information is extremely low.

To solve this problem, this paper proposed a novel one-
shot detection method on the basis of metric-based learning.
&e main contributions of this paper are as follows:

(1) &is novel method integrated the Semantic Feature
Module (SFM) and the Detail FeatureModule (DFM),
which generated features about the support images of
two sizes (7 × 7 , 3 × 3). &ese features were then
operated with query images’ feature and generated the
corresponding multifeature auxiliary information
(MFAI) of Semantic Feature Auxiliary Information
and Detailed Feature Auxiliary Information.

(2) Experimental results showed that both the SFM and
the DFM could increase the accuracy of one-shot
detection. A combination of the two modules could
even increase the detection accuracy by 2.97%
compared to the original algorithm.

2. Related Works

In recent years, research on few-shot learning has attracted a
lot of interest, which can effectively solve the classification and
detection task using only a few labeled samples. &e recent
related works of few-shot classification, few-shot object de-
tection, and one-shot object detection are listed in Table 1.

In the general one-shot object detection method, the
weight extracted from the image is mainly used to measure
the object feature distance. However, the semantic feature
information and detailed feature information of the support
set object are not fully utilized. &is paper introduced the
SFM and the Object Detail Module based on one-shot object
detection, inspired by literature [18]. By using more object
features to train the deep neural network, the detection effect
of our model was better.

3. Method

&e semantic information and detailed information need to
be generated separately. In theory, the support images can
obtain feature images of different sizes through different

modules. In our method, the 7 × 7 feature can retain more
object details, while the 3 × 3 feature contains more semantic
information about the object. &e 7 × 7 feature and feature
of the query image were used for dot product operation. &e
3 × 3 feature is convolved with the feature of the query
image. &e corresponding MFAI of Semantic Feature In-
formation and Detail Feature Information was generated
through the above two operations.

3.1. Training Strategy. As mentioned above, in the training
stage, assume that the dataset is D and divided into Dbase and
Dnovel. Dbase represents an object image dataset which
contains a large number of annotated images, of which
category is Cbase; and Dnovel represents a dataset containing a
few of samples with annotations with category as Cnovel.
With Dbase ∩Dnovel � ∅, Cbase ∩Cnovel � ∅, so the ultimate
goal of one-shot detection is to classify and locate the object
of query image in Dnovel. Similar to the literature [16], the
whole training process is divided into two steps. Firstly, the
data in Cbase are used to train the model, so the model can
learn the meta-features; then this trained model can have a
good detection effect on the object of the base class. Lastly,
the Dbase ∪Dnovel dataset is utilized for model training and
fine-tuning to adapt to the new category, then generalizing
the knowledge learned in the first step to the new object
category.

Based on few-shot learning, we innovatively utilized the
semantic information and detailed information of the object
to complete the one-shot detection. Specifically, we used the
smallest training unit T � (Si, xi) 

|T|

i�1 in the training stage.
&e data in T are all from the randomly sampled support set
in Dbase, Si, and the query image, xi. i represents the i − th
task. Si contains N categories, with K samples in each class.
&rough multitask training, we obtained an object model
with a detection base class. Next, the fine-tuned model was
continuously adapted with the Dbase ∪Dnovel dataset, and the
detection model fθ(x|S) was fine-tuned to fit the new
category, in which θ is the parameter that the model needs to
learn.&e final one-shot detection could be completed by fθ
tuned well.

3.2. Multifeature Information-Assisted Detection Method.
Firstly, the feature extraction module was used to extract the
7 × 7 feature image of query image.&en the support images
were input into the DFM, SFM, and Weighted Module
(WM), respectively, to get the corresponding 7 × 7, 3 × 3,
1 × 1 feature maps, while the channels were consistent. Next,
we applied dot product 7 × 7 feature of support images with
7 × 7 feature generated by query image, and finally generated
7 × 7 feature—Detail Feature Auxiliary Information (DFAI),
then the 7 × 7 feature generated by query image was con-
volved with the 3 × 3 feature of support images as a filter, and
finally generated 7 × 7 feature—Semantic Feature Auxiliary
Information (SFAI). &e average operation was carried out
on the two kinds of auxiliary information. &e next step was
to convolve the processed averaged feature (7 × 7 feature)
with the weight information (1 × 1 feature) generated by the
support images; thus, the 7 × 7 MFAI to be detected was
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generated. Finally, the detection feature map was put into
the detection network to generate the classification and
location information.&e process was described as shown in
Figure 1.

To explain the function of each module in detail, we
elaborated the function into two steps. &e first step was to
combine the Semantic Feature Auxiliary Module (SFAM)
with the WM to output the feature to be detected; then
combine the dot product information auxiliary module with
the WM to output the feature to be detected. &e former is
illustrated in Figure 2. Firstly, query image and support
images were input into both the SFM and the feature ex-
traction module to extract their respective features. &en the
feature extraction module outputs the 1024 × 7 × 7 feature
IQ, the SFM outputs the N × 1024 × 3 × 3 feature SC, and the
WM outputs the N × 1024 × 1 × 1 feature SW. After the
convolution operation of SC and IQ, FC was generated, as
shown in

FC � SC ∗ IQ. (1)

&en, SW and FC were convolved to get the N × 1024 ×

7 × 7 feature YC to be detected, as shown in

YC � SW ∗FC, (2)

YC � SW ∗ SC ∗ IQ . (3)

&e DFM is illustrated in Figure 3. Similarly, the query
image and support images were put into the feature ex-
traction module and the DFM to extract their respective
features. So, the feature extraction module outputs the
1024 × 7 × 7 feature IQ, the DFM outputs the N × 1024 ×

7 × 7 feature SD, and the WM outputs the N × 1024 × 1 × 1
feature SW. After the dot production operation of SD and IQ,
FD was generated, as shown in

FD � SD ⊗ IQ. (4)

&en, SW and FD were convolved to obtain the N × 1024 ×

7 × 7 feature YD to be detected, as shown in

YD � SW ∗FD, (5)

YD � SW ∗ SD ⊗ IQ . (6)

3.3. Loss Function. To handle the various objects which need
to be detected in one-shot detection, the model in this paper
adopted a softmax layer [18]. &e predicted score on clas-
sification for the i-th class was represented by
c � eci/

N
j�1 ecj . To get better model convergence, the cross-

entropy loss over the calibrated scores c was adopted, as
shown in

Lc � − 
N

i�1
O(·, i)log ci( , (7)

where O(·, i) is an indicator function. When the current
anchor box fits into class i, its value is 1. Otherwise, the value
is 0. For the bounding box regression calculation and object
determination method, we followed the same detection way
as YOLOV3. After anchors with different aspect ratios were
preset, coordinate classification of anchors would be pro-
cessed through calculation and finally predicted the object.
In this paper, corresponding loss functions were adopted,
such as the Mean Squared Error (MSE) loss and the Binary
Cross-Entropy (BCE) loss. &e loss function of multifeature
information-assisted one-shot detection proposed in our
model is shown in

Ldet � Lc + Lbbx + Lobj, (8)

Table 1: Recent related works.

Category Ref. Methods

Few-shot classification

[9] &e Mahalanobis distance in a state-of-the-art few-shot learning approach (CNAPS [10]) is adopted to
improve performance

[11] Presents a novel network to learn and preserve the feature manifold’s topology formed by different classes
[12] Proposes the similarity ratio as an indicator for the generalization performance of a few-shot model

[13] Takes advantage of the earth mover’s distance (EMD) to measure the distance between dense image
representations which determines image relevance

[14] Merges three learning methods: visual feature learning, knowledge inferring, and classifier learning, into a
unified framework

[15] Introduces the oPen sEt mEta LEaRning (PEELER), which randomly selects a set of novel classes, maximizes
the posterior entropy over every sample, and utilizes the Mahalanobis distance as a new metric

Few-shot object
detection

[16] Improves the CentreNet detector for the few-shot learning and a class-specific code generator is modeled by
meta-learning

[17] Uses Attention-RPN, multirelation detector and contrastive training strategy to detect novel objects

[18] Proposes the model that uses labeled base categories and quickly improves to new categories, utilizing a
meta-feature learner and a new upgraded module

One-shot object
detection

[19] Develops coattention and coexcitation framework (CoAE) that contributes to several technical aspects

[20] Develops a new algorithm to guide the parameter posterior towards its true distribution to remedy the
posterior fading problem that compromises the effectiveness of shared weights
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where Lbbox is expressed as

Lbbox � λcoord

S2

i�0


B

j�0
I
obj
ij 2 − wi × hi( 

ai − ai( 
2

+ bi − bi 
2

+ wi − wi( 
2

+ hi − hi 
2

 ,

(9)

where S means the grid set in YOLO and S2 represents
13 × 13, 26 × 26, and 52 × 52. B stands for prediction box.
I
obj
ij means the box at i, j, which is 1 if it is an object;
otherwise, it is 0. ai, bi, wi, hi represent the central point
coordinates and the width and height of the object, re-
spectively. ai, bi, wi, hi represent the predicted values of the
center point coordinates, width, and height, respectively.

Lobj can be expressed as in

Lobj � λnoobj 
S2

i�0


B

j�0
I
noobj
ij ci − ci( 

2
+ λobj 

S2

i�0


B

j�0
I
obj
ij ci − ci( 

2
,

(10)

where I
noobj
ij means the box at i, j which is 1 if it is not an

object; otherwise, it is 0. ci is the prediction confidence on
the object for class i. ci is set to 1 if the object is the true value
of a certain class; otherwise, it is 0.

4. Experiment

4.1. Experimental Environment. &e running environment
of the algorithm verification experiment is shown in Table 2.

4.2. Dataset. &e datasets we adopted are VOC 2007 [21]
and VOC 2012 [22], which are the widely used object de-
tection benchmarks. Out of the 20 categories, we selected
samples of five categories as novel datasets and the
remaining 15 categories as the base datasets. &e model
training was divided into two stages: base training stage and
one-shot fine-tuning stage. In the base training stage, the
images of base samples were used to train the normal model
in the supervised mode. And in the one-shot fine-tuning
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Figure 1: &e structure of the one-shot detection assisted by multiple feature information.
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Figure 2: Schema of the semantic feature auxiliary module.
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Figure 3: Schema of the detail feature auxiliary module.
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stage, the images of novel ones were used to ensure that each
class of objects only had one annotated bounding box.

4.3. Experiment and Analysis. A large number of experi-
ments have been done on these datasets. To illustrate the
effectiveness of the different methods, several representative
datasets were selected. In the test phase, we used five unseen
categories of data in training: bird, bus, cow, motorbike, and
sofa. Due to the space limitation, we only present the results
data of bird and bus categories in Figures 4 and 5.

As can be seen from the above Figure 4, there are a total
of 12 images arranged in four rows, with three object images
in each row. All the object images used the same kind of
detection algorithm. &e first line to the fourth line, re-
spectively, shows the detection results of the original al-
gorithm [18], the detailed feature information auxiliary
algorithm, the semantic feature information auxiliary al-
gorithm, and the multifeature information auxiliary algo-
rithm proposed in this paper. Different detection results of
the same object are presented in each column for those four
algorithms. For column (a), the object is conspicuous, so all
four algorithms can correctly identify it. As the background
of the object in column (b) is relatively complex, the original
algorithm and the auxiliary algorithm of detailed feature
information cannot detect the object well. In contrast, the
algorithms in the third and fourth lines that integrate se-
mantic information can detect the object more accurately.
Since the objects in column (c) belong to multiobject de-
tection in a complex background; the detection effect of the
second row is not ideal. &e algorithms in the first and third
rows can completely detect conspicuous objects. While the
fourth line algorithm can detect multiple objects, the second
object detection is not complete because there is little dif-
ference between the background color and the object color.

Similarly, there are also 12 images in Figure 5, which are
arranged in the same manner. &e object image of each row
uses the same kind of detection algorithm. &e first row to
the fourth row, respectively, represents the detection results
of different buses by the four algorithms. For column (a), the
object is prominent, so all the four algorithms can correctly
identify it. In column (b), the background of images is
relatively complex. Although the original algorithm and the

detailed feature assist algorithm can locate the object more
accurately, there is still a misjudgment in the classification
of extracted features. As a result, the bus is misclassified as
a train. &e algorithms in the third and fourth rows in-
corporate semantic information to detect objects more
accurately. Since the object in column (c) is similar to a
train, the four algorithms misjudge the result. &at is why
the accuracy of bus detection results is low.

4.4. Ablation Experiments. &e accuracy improvement of
our proposed method was due to the multifeature auxiliary
detection mechanisms, that is, SFM and DFM. To illustrate
the importance of these modules, we implemented ablation

experiments by disabling different modules.

4.4.1. Semantic Feature Auxiliary Detection Algorithm.
Figure 6 shows the flow chart of the semantic feature
auxiliary detection algorithm. Two modules were con-
structed, namely, the SFAM and the WM. &e semantic
feature-assisted detection algorithm was compared with the
original algorithm in the experiment. As can be seen in
Table 3, semantic feature assistance achieves better
performance.

4.4.2. Detail Feature Auxiliary Detection Algorithm. &e
detail feature auxiliary detection algorithm was imple-
mented, as shown in Figure 7. Two modules were also
constructed: the detail feature auxiliary module (DFAM)
and the WM. In the experiment, this detail feature-assisted
detection algorithm was also compared with the original
algorithm. As indicated in Table 3, the performance of the
detail feature-assisted detection algorithm is only better than
that of the basic weight network.

4.4.3. Multifeature Auxiliary Detection Algorithm. In the
multifeature auxiliary detection algorithm, both the above
modules were introduced into the network and fused with
the basic weighted network structure.

&e detection results of the above three algorithms and
the original benchmark algorithm are shown in Table 3.

Table 3 shows the comparison results of those algorithms
proposed in this paper and the original algorithm, from
which we can see the performance of the designed modules.
On the left side of the table are different algorithms, while on
the right side are the corresponding experimental results.
&e average precision (AP) of objects in the five classifi-
cations has also been calculated separately for the bird, bus,
cow, motorbike, and sofa. &e mAP represents the mean of
AP for these five novel classes. &e first row is the original
algorithm, and the other three are related algorithms pro-
posed in this paper.&e second and third rows are the results
of ablation experiments. &e second algorithm adds the
DFAM to the original algorithm, which is called the detail
feature auxiliary detection algorithm. It can be observed that
the AP for the bird, cow, motorbike, and sofa is higher than

Table 2: Runtime environment.

Item Parameter

GPU
Titan Xp (12G video memory)

CUDA 10.0
cuDNN 7.0

Operating system Ubuntu 16.04
Python version 3.6
Iterations 60
Learning rate 0.001
Momentum 0.9
Momentum attenuation
coefficient 0.00004
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that of the original algorithm, while it is not the case for the
bus. Well, the performance is improved by less than 1%.&e
third row adds the SFAM to the original algorithm, which is
called the semantic feature auxiliary detection algorithm. It
can be observed that the AP of the algorithm is higher than
that of the original algorithm, with an increase of 2.58% in
AP and 1.75% in mAP for the bus. It can also be seen that the
SFAM proposed in this paper does enhance the semantic
information of objects and promotes classification accuracy
and detection precision. &e fourth row is the result of the

multifeature auxiliary detection algorithm proposed in this
paper. Notably, the algorithm has enhanced the detailed
information and semantic information, and the detection
results of all those five novel objects are superior to the
original algorithm. In particular, the AP of the bus has been
improved by 5.06%, and the mAP has been improved by
2.97%. &e detection results in the fourth row show that the
detail feature and semantic feature, two auxiliary informa-
tion introduced in the algorithm, successfully improve the
AP and mAP of one-shot object detection.

1 (a)

2 (a)

3 (a)

4 (a)

1 (b)

2 (b)

3 (b)

4 (b)

1 (c)

2 (c)

3 (c)

4 (c)

Figure 4: Bird object detection results.
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Figure 5: Bus object detection results.
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Figure 6: One-shot detection algorithm structure assisted by semantic information.
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5. Conclusion

In this paper, a novel one-shot detection method based on
multifeature auxiliary information was proposed. Compared
to previous studies, this algorithm utilized two auxiliary
mechanisms: the Semantic Feature Module and the Detail
Feature Module, which significantly improved the detection
effect of a single sample object. Experimental results on
public datasets demonstrate that the new proposed algo-
rithm has better one-shot detection performance than the
original method. To further evaluate the advanced perfor-
mance, an ablation experiment was conducted. Experiments
showed that the two auxiliary modules play a positive role in
the detection results. &e combined detection accuracy of
the two modules has been increased by 2.97% compared to
the benchmark algorithm. In the future, we will apply this
proposed method to other types of datasets, including in-
frared images and SAR images. Although this method is
mainly for one-shot object detection, we also look forward to
its application in few-shot object detection.
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