
Research Article
Practical Undeniable Multiparty Drawing-Straw Protocol in
Asynchronous Networks for Resource-Constrained
Information Systems

Ching-Fang Hsu ,1 Lein Harn ,2 Zhe Xia ,3 and Hang Xu1

1Computer School, Central China Normal University, Wuhan 430079, China
2Department of Computer Science Electrical Engineering, University of Missouri, Kansas, MO 64110, USA
3Department of Computer Science, Wuhan University of Technology, Wuhan 430071, China

Correspondence should be addressed to Zhe Xia; xiazhe@whut.edu.cn

Received 1 April 2022; Revised 30 April 2022; Accepted 6 May 2022; Published 26 May 2022

Academic Editor: Jinbo Xiong

Copyright © 2022 Ching-Fang Hsu et al. ,is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

,e next generation of mobile networks and communications (5G networks) has a very strong ability to compute, store, and so on.
Group-oriented applications demonstrate their potential ability in resource-constrained information systems (RISs) towards 5G.
,e security issues in RIS towards 5G have attracted great attention. For example, how to conduct fair and orderly multiparty
communication in an intelligent transportation system (ITS). One of the main challenges for secure group-oriented applications
in RIS towards 5G is how to manage RIS communications fairly in multiparty applications. In other words, when the users cannot
transmit their messages simultaneously, the order of their communication can cause security concerns in multiparty applications.
A feasible solution to the problem is for the group of users to follow a specific order to transmit their messages. Otherwise, some
users may take advantage over other users if there has no agreeable order to be followed. In this paper, we propose a novel
cryptographic primitive, called multiparty drawing-straw (MDS) protocol, which can be used by a group of users to determine the
order of the group to participate in the multiparty applications. Our scheme is based on Pedersen’s verifiable secret sharing (VSS),
which is a well-known scheme. Our proposed protocol is fair since the output is uniformly distributed, and this is an attractive
feature for secure multiparty applications in RIS towards 5G.

1. Introduction

Since the emergence of the next generation of mobile
networks and communications (5G), technologies such as
resource-constrained information systems (RIS) towards
5G have attracted more attention, as various smart devices
have been constantly connected to the Internet over the
past decades. ,e number of devices connected to the
Internet is increasing since its appearance. Now, this
number far exceeds that of people in the world, we are no
longer talking about the Internet but about the internet of
things (IoT). IoT gives rise to revolutionary applications
for emerging technologies of RIS towards 5G. group-
oriented applications also show the great potential of
society.

Group-oriented applications demonstrate the impor-
tance of RIS towards 5G, such as joint data collection for
traffic analysis, weather prediction, multiuser interactive
computation, and so on. ,ese applications motivate the
demand for secure group-oriented applications over open
and insecure networks. In particular, the devices in RIS
towards 5G are heterogeneous, and the RIS communication
environments are asynchronous, where multiple users
cannot transmit their messages simultaneously. One of the
main challenges for secure group-oriented applications in
RIS towards 5G is how to secure the communications among
these heterogeneous devices in such an asynchronous en-
vironment. Note that it is widely known that asynchronous
transmission can cause security problems in cryptographic
functions.

Hindawi
Security and Communication Networks
Volume 2022, Article ID 6841428, 11 pages
https://doi.org/10.1155/2022/6841428

mailto:xiazhe@whut.edu.cn
https://orcid.org/0000-0003-3847-7659
https://orcid.org/0000-0003-0922-6148
https://orcid.org/0000-0003-4397-1248
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6841428

Devices in RIS towards 5G generate, process, and ex-
change vast amounts of security and safety-critical data as
well as privacy-sensitive information; hence, they are ap-
pealing targets of various attacks [1–8]. To ensure the correct
and safe operation of RIS towards 5G systems, it is crucial to
ensure the integrity of the underlying devices, in particular
of their code and data, against malicious modifications [9].
Recent researches have revealed many security vulnerabil-
ities in the embedded devices [2, 4, 6, 7, 10, 11]. ,is
highlights new challenges in the design and implementation
of secure embedded systems that typically must provide
multiple functions, security features, and real-time guar-
antees at a minimal cost [12]. How to design a lightweight
protocol to determine the order of the group members to
communicate in RIS towards 5G applications is needed in a
network that involves multiple devices/users. For example,
how to manage multiparty communication in an intelligent
transportation system (ITS; see Figure 1). In some specific
applications, like multiparty bidding or multiparty gaming,
for the sake of fairness among users, users need to transmit
their messages in a particular order. Otherwise, users can
gain unfair advantages over other users if there has no
particular order to be followed. Although users can rely on a
mutually trusted center to decide this order, most Internet
users would prefer to make their own decisions. ,e ob-
jective of this paper is to design such a lightweight protocol
to determine the order of the group members to participate
in applications.

In manymultiparty applications, the users need to follow
a specific order to transmit their messages. Otherwise,
messages can collide with each other if multiple transmis-
sions occurred simultaneously. Moreover, in some appli-
cations, a user who on purposely transmits his message last
may gain unfair advantages. Coin flipping is a simple way of
deciding the order between two users. It is widely used in
sports and other games to decide the random factors such as
which side of the field a team will play from or which side
will attack or defend initially. Coin-flipping protocol is a
cryptographic primitive that has been introduced by Blum
[13] and is one of the basic building blocks of secure two-
party computation. Coin flipping is the process of throwing a
coin into the air to choose between two possible and equally
likely outputs. In cryptography, a commitment scheme can
be used to achieve a coin-flipping protocol. Aharonov et al.
[14] proposed a quantum protocol with no dishonest player
that can bias the coin with a probability higher than 0.9143.
Ambainis [15] proposed an improved protocol with cheating
probability at most 3/4. Since then, several different pro-
tocols have been proposed [16, 17] that achieve the same
bound of 3/4. In the following, we describe Blum’s two-party
coin-flipping protocol [13] between Alice and Bob:

(i) Alice chooses a random bit a ∈ 0, 1{ } and sends a
commitment c� commit (a) to Bob

(ii) Bob chooses a random bit b ∈ 0, 1{ } and sends it to
Alice

(iii) Alice sends the bit a to Bob together with decommit (c)

(iv) If Bob does not abort during the protocol, Alice
outputs a⊕b; otherwise, she outputs a random bit

(v) If Alice does not abort during the protocol and c is a
commitment to a, then Bob outputs a⊕b; otherwise,
he outputs a random bit

,e trend of network applications inspires us to consider
scenarios involving multiple players. A novel cryptographic
primitive, called multiparty drawing-straw protocol (MDS),
is introduced in this paper. ,is technique can be used by a
group of users to determine the order of the group to
participate in applications. ,e users need to follow the
decided order to take turns to make a movement or release a
message in these applications. For example, in multiparty
computation, multiple parties want to jointly compute a
function over their inputs and keep these inputs private.
MDS can be used to determine the order of releasing their
inputs. In a real-world solution to provide MDS, the group
leader prepares a set of straws of different lengths. Each user
of the group randomly draws a straw from the unseen set of
straws prepared by the group leader. At the end of the
offering, the order of the group is determined by the lengths
of straws chosen by group users. ,e fairness of this solution
depends on the trustworthiness of the group leader. If the
group leader colludes with any group member, the output of
this process can be biased. ,e requirement of a mutually
trusted party is unrealistic in some applications. ,e MDS
without the assistance of a mutually trusted party is
desirable.

If there are only two players in MDS, the coin-flipping
protocol [13, 18] can be used to determine the order of
players. ,e “winner” of a coin-flipping protocol can be the
starter. ,us, the coin-flipping protocol is a special type of
MDS. Actually, we can use the coin-flipping protocol in a
straightforward manner to provide a solution for a general
MDS. In this solution, all players are arranged on the leaves
of a binary tree. Using a coin-flipping protocol between two
users can determine a “winner.” Repeatedly executing the
coin-flipping protocol multiple times following the tree
structure (i.e., with complexity O(n) can determine the “1st
winner” among n users). ,en, using the same approach on
remaining n− 1 users can determine the “2nd winner” and so
on. However, this approach is not effective because of the
time-consuming process. Multiparty coin-flipping protocols
[19–21] have been developed recently. However, these
protocols are restricted for multiple parties to jointly choose
one of the two possible outputs, which are different from our
MDS. In 2008, Lit et al. [22] have proposed a secure mul-
tiparty ranking problem (SMR) [22], which is extended from
Yao’s Millionaires’ problem [23]. ,is problem has been
studied in [24]. We assume that there are n users and each
user has a secret input. In SMR, it intends to get the order of
inputs in the ascending ranking sequence while not leaking
the value of any input. In particular, each user knows his
order of input but does not know the orders of the other
users’ inputs. ,e SMR is different from MDS since (a) in
SMR each user knows only the order of his input, but in
MDS each user knows all inputs, and (b) in SMR the inputs

2 Security and Communication Networks

are users’ data, but in MDS the inputs are random secrets
selected by users.

In this paper, we propose a multiparty undeniable
drawing-straw protocol (MUDS). Formally speaking, this
primitive realizes the following function:
(s1, s2, . . . , sn)
√√√√√√√√√√√√

n

↦(o1, o2, . . . , on)n, where (s1, s2, . . . , sn)
√√√√√√√√√√√√

n

are

an array including n secret inputs and (o1, o2, . . . , on) is a
permutation uniformly distributed over 1, 2, 3, . . . , n{ }. User
Ui receives his order oi along with other orders. We present a
protocol for this primitive. Our protocol consists of two
phases, the commitment phase and the open-commitment
phase. In the commitment phase, every group user chooses a
secret and releases a commitment of the secret. In the second
phase, every group user opens the commitment by revealing
the secret.,e output of the group order is determined by all
released secrets of group users. In our protocol, after making
any commitment in phase 1, the user can no longer deny his
commitment in phase 2 since we employ a secret sharing
scheme (SS) and verifiable secret sharing scheme (VSS) in our
design. If the majority of users are honest, we can prove that
our protocol is secure by setting the threshold, t, as t � [n/2],
where n is the number of group users.

Many communication networks in practice are asyn-
chronous in which multiparty users cannot transmit their
messages simultaneously. ,e asynchronous transmission
can cause security problems in cryptographic functions. For
example, the work in [19] has used Blum’s two-party coin-
flipping protocol [13] to demonstrate the problem.,emain
concern in designing coin-flipping protocols is to prevent
the bias of the output. ,e bias of a coin-flipping protocol
measures the maximum influence of malicious parties on the
output of the honest parties. ,e bias is 0 if the output is

always uniformly distributed, and the bias is 1/2 if the ad-
versary can force the output to be always (say) 1. In Blum’s
protocol [13], since Alice recovers the output a⊕b before
sending her decommit (c) to Bob, [19] demonstrated that
Alice has an advantage over Bob, and the bias of the protocol
is 1/4.

We use another example, rational secret sharing [25], to
demonstrate the security problem caused by asynchronous
networks. In 2004, Halpern et al. [25] considered a scenario
in which users in the secret reconstruction are neither
completely honest nor arbitrarily malicious; instead, the
users are assumed to be rational. In rational secret sharing, it
assumes that all users are rational and want to maximize
their utility. A rational user acts honestly when he cannot
gain any advantage over other users (i.e., they will all obtain
the secret) but acts dishonestly when he can gain an ad-
vantage over others (i.e., he is the only one to obtain the
secret). ,e classical SSs including Shamir’s SS [26] fail in a
rational setting. In Shamir’s secret reconstruction, if the user
who broadcasts his share last, the user will see that others
have broadcasted their shares already. ,us, he will remain
silent because other parties cannot reconstruct the secret, but
this user can reconstruct the secret by using his own share
and shares broadcasted by other parties. ,ere are vast
research papers on rational secret sharing (RSS) [27–29]. In
fact, the objective of the RSS scheme is to ensure rational
users that the secret can be reconstructed successfully.,is is
the same as that of the fair secret reconstruction scheme,
which was originally proposed by Tompa et al. in [30] in
1988. In most RSS schemes, information exchanged among
users is restricted to be in a synchronous network. ,ere are
only handful papers on RSS schemes assuming asynchro-
nous networks. ,ese include Fuchsbauer et al.’s result [27],

Industrial & Energy

User
Trusted authority

Medical & Healthcare

Transportation & Logistics

Communication
Infrastructure

Internet of �ings

Figure 1: A typical ITS model.

Security and Communication Networks 3

which requires cryptographic primitives, and the results of
Ong et al. [28] andMoses et al. [31], which require to assume
that a certain number of shareholders must be honest.

,emotivation of our paper is to develop amultiparty coin-
flipping protocol that involves more than two parties without
the assistance of a mutually trusted party. RIS towards 5G
devices can employ this protocol to determine their order in
Internet applications. Since the order is determined by all RIS
towards 5G devices, this protocol needs to prevent dishonest
devices fromcheating in the process.We consider adopting both
Shamir’s SS and Pedersen’s noninteractive VSS to achieve this
objective. ,e primary reason to adopt both schemes is due to
their simplicity to be implemented in an asynchronous network.
Shamir’s SS is unconditionally secure and polynomial-based,
which is the most widely used secret sharing scheme since it is
simple and computationally efficient. While for Pedersen’s VSS,
the privacy of Pedersen’s VSS is unconditionally secure, and the
correctness of the shares is based on a computational as-
sumption. In Pedersen’s VSS, verification is based on the
commitments computed by the owner of the secret, and there is
no interaction among verifiers during verification. ,e verifi-
cation of shares can be performed by each verifier individually.

We propose a novel design to overcome the security
problem caused by asynchronous networks. Our protocol is
undeniable since in the process of making a commitment for
the secret, where the secret needs to be shared by all other
users. Moreover, shares can be verified by other users. ,us,
after making a commitment, the user can no longer deny his
commitment. If some user denies making the commitment,
the secret can still be able to reconstruct by other honest
users. ,e undeniable feature prevents the users from dis-
rupting the protocol by releasing either a fake secret or no
information after making their commitments. Our protocol
is based on Shamir’s SS [26] and Pedersen’s verifiable secret
sharing scheme (VSS) [32]. ,us, our design is particularly
suitable for group-oriented applications in RIS towards 5G.

Here, we summarize the contributions of our paper.

(i) A novel cryptographic primitive, called multiparty
drawing-straw protocol (MDS), is introduced

(ii) An MDS protocol with undeniability (MUDS) is
proposed that can overcome the security problem
caused by asynchronous networks

(iii) MUDS is useful in many multiparty applications,
providing a fair way to determine an order of users

,e rest of the paper is organized as follows. In Section 2,
we present some preliminaries. ,e model of our proposed
protocol is introduced in Section 3, including protocol de-
scription, type of entities, and attacks of the proposed pro-
tocol.,e protocol is outlined in Section 4.We give a concrete
protocol in Section 5. ,e conclusion is given in Section 6.

2. Preliminaries

Our proposed MUDS is based on Pedersen’s VSS [33]. We
review this scheme in this section.

Chor et al. [34] proposed the notion of VSS in which
shareholders can verify that their shares are valid without

revealing the secrecy of their shares and the secret. We give a
definition of VSS below.

Definition 1 (t-out-of-n verifiable secret sharing scheme
(VSS)). A t-out-of-n verifiable secret sharing scheme π �

(G, R, V) consists of a sharing algorithm G, a reconstruction
algorithm R, and a verification algorithm V. ,e sharing
algorithm G guarantees that it is impossible for any ad-
versary to reconstruct the secret from fewer than t shares.
,e reconstruction algorithm R guarantees that the secret
can be recovered from any t or more than t shares. ,e
verification algorithm V guarantees that shareholders can
verify their shares are generated consistently without
compromising the secrecy of both their shares and the secret.

VSSs of Feldman [32] and Pedersen [33] are based on
cryptographic commitment schemes. ,e security of Feld-
man’s VSS is on the hardness of solving discrete logarithm,
while the privacy of Pedersen’s VSS is unconditionally se-
cure, and the correctness of the shares is based on a com-
putational assumption. Benaloh [35] proposed an interactive
VSS, which is unconditionally secure. Stadler [36] proposed
the first publicly verifiable secret sharing (PVSS) scheme that
allows each shareholder to verify the validity of all shares.
Most noninteractive VSSs [30, 32] can only verify the val-
idity of his/her own share, but not of other shareholders’
shares. ,e security of Schoenmaker’s PVSS [37] is based on
the discrete logarithm problem. Peng andWang’s PVSS [38]
uses a linear code, and Ruiz and Villar’s PVSS [39] uses
Pailler’s cryptosystem [40]. ,ere are noninteractive PVSSs
based on bilinear pairing [41, 42].

Pedersen’s VSS is information-theoretic secure. ,ere
are public parameters, g, h ∈ Zp, and assumes that no one
knows loggh. Pedersen’s VSS uses the following commit-
ment scheme.

Pedersen’s Commitment Scheme. To commit the secret S,
the dealer computes and publishes a commitment
E(s, k) � gshk � E0modp, where k is a random integer with
k ∈ Zp. Such a commitment can later be opened by releasing
s and k.

Definition 2 (perfectly hiding commitment (PHC) scheme).
A commitment scheme is perfectly hiding if it does not
reveal any information about the committed value in the
commitment phase.

In [33], it has proven that the commitment E0 reveals no
information on the secret S and that the committer cannot
open a commitment to s as s′ ≠ s unless he can solve loggh.
Pedersen’s commitment scheme is a PHC. Pedersen’s VSS
consists of three algorithms as shown in Figure 2.

3. Model

3.1. Description of MUDS. MDS deals with the following
setting: n users, U � U1, U2, . . . , Un , interactively work
together to uniformly choose an order for some computa-
tion. In the following, we give a formal definition of MDS.

Definition 3 (multiparty drawing-straw (MDS) protocol).
MDS computes the following functionality:

4 Security and Communication Networks

s1, s2, · · · , sn(
√√√√√√√√√√√√

n

↦ o1, o2, · · · , on(
n
,

(1)

where l is a security parameter, (s1, s2, · · · , sn)
√√√√√√√√√√

n

are an array

including n secret inputs, and (o1, o2, . . . , on) is a permu-
tation uniformly distributed over 1, 2, 3, . . . , n{ }. At the end,
each user Ui obtains his order oi along with an order of
others.

,e output permutation (o1, o2, . . . , on) obtained in
MDS should be determined by all users without the assis-
tance of a mutually trusted third party. We adopt Pedersen’s
VSS in our design. In the first phase, each user needs to select
a random secret and then compute and release a commit-
ment of the secret to all other users. In the second phase,
each user releases his secret to all other users. To avoid the
problem caused by any user who may deny releasing his real
secret in the second phase, we introduce the following
definition of MUDS.

Definition 4 (multiparty undeniable drawing-straw
(MUDS) protocol). In a MUDS, no user can deny his secret
after revealing his commitment of the secret to others. ,e
security of this functionality is called undeniability.

3.2. Entities and Possible Attacks. ,e security objective of
our protocol is to enable all IoT devices to work together to
determine the order among them in a fairway. Since the
protocol allows each device to contribute an input and the
final order is determined by all inputs, our protocol needs to
prevent dishonest devices from cheating in the process. We
consider dishonest devices (also called attackers) may take
advantage of most asynchronous networks by releasing their
inputs last. ,us, we divide our protocol into two phases. In
the first phase, each input is divided into shares by the device
owner. Shares are distributed to other devices secretly. A
commitment of this input is also published by the owner.

Figure 2: Pedersen’s VSS.

Security and Communication Networks 5

Other devices can verify that their shares are generated con-
sistently by the owner. In the second phase, each input can be
released in any asynchronous way. If any dishonest device
owner refuses to release their input or releases a fake input,
other honest devices can work together to recover the input.We
adopt Shamir’s SS and Pedersen’s VSS to achieve this objective.

In a VSS, the owner of the secret is the prover, and all
other users are the verifiers. ,e verifiers want to verify that
their shares are generated consistently without compro-
mising the secrecy of the secret. In Pedersen’s VSS, verifi-
cation is based on the commitments computed by the owner
of the secret, and there is no interaction among verifiers
during verification. ,e verification of shares can be per-
formed by each verifier individually. Inconsistent shares may
be generated due to the following two reasons: (a) in shares
generation/distribution, nature noise, such as transmission
noise or computational error, may cause the inconsistency
and (b) inconsistent shares may be generated by a user who
tries to cheat other honest users. In summary, we adopt
Pedersen’s VSS in our design since Pedersen’s VSS is (a)
unconditionally secure and (b) noninteractive.

Attackers may try to obtain secrets from commitments.
Pedersen’s commitment can prevent this attack. Moreover,
we need to prevent colluded attacks on users. Since com-
munication networks are asynchronous, colluded attackers
can always release their fake secrets after knowing the secrets
of other users. Any fake secret can be detected by VSS.
Moreover, in our protocol, we employ a threshold SS to
ensure that any committed secret can always be recon-
structed by the majority of honest users if the threshold is
t � [n/2], where n is the number of users.

3.3. Properties. Our protocol has the following properties:

Randomness. ,e output is uniformly distributed. No user
can influence the output.

Secrecy. From the commitment of each secret, the secret
cannot be recovered. Furthermore, the secret is protected by
a threshold SS.

Efficiency. In our proposed protocol, all users work together
to determine the output. We use Shamir’s SS [26] and
Pedersen’s VSS [33] based on polynomials. At the beginning
of each phase, each user needs to act as a dealer to compute
and release values to others. ,ere has no interaction among
users to verify shares. Since both Shamir’s SS and Pedersen
VSS [33] are simple and efficient, our protocol is very
efficient.

Undeniability. After publishing any commitment of the
secret, the user can no longer deny the secret since the secret
can also be recovered by honest users.

4. Proposed Protocol

4.1. Outline. Let us assume that there are n users,
U � U1, U2, . . . , Un , participated in a MUDS. ,ese users

need to interactively work together to generate an output,
which is the order of the users. In our proposed protocol,
there are two phases, the commitment and open-commit-
ment phases. In the commitment phase, each user selects a
secret and acts as the dealer to use a threshold SS to generate
shares for other users. Each user makes the commitment of
the secret publicly known. For each received share, other
users can verify that the share is generated consistently by
the owner of the secret. If the verification is failed, a request
for regeneration of a share can be sent to the owner of the
secret till a share is verifiable.

In the open-commitment phase, each user releases his
secret of the commitment to other users. Each released secret
can be verified by other users using his commitment made in
the commitment phase. If any released secret is an invalid
secret, other honest users can work together to recover the
secret by using their shares of the secret obtained in the
commitment phase. ,is property, called undeniability, in
our proposed protocol prevents any user to deny his
commitment of a secret.

After obtaining all secrets of users, each user can de-
termine the order of group based on the secrets selected by
users.

4.2. Protocol. We illustrate the detail of the protocol in
Figure 3.

4.3. Security Proof. We say that two probability ensembles
are statistically indistinguishable if their statistical difference
is negligible.

Lemma 1. In our framework, if all users are honest, the
probability ensemble defined by the order (o1, o2, . . . , on) and
the probability ensemble defined by a permutation uniformly
chosen over 1, 2, 3, . . . , n{ } are statistically indistinguishable.

Proof. We observe that the difference between the two
probability ensembles is that some orders probably have the
same value in the former. ,at is, the event ∃i≠ j(oi � oj)

may appear in the former ensemble. Fortunately, we can
show that this event occurs with a negligible probability.

From step 3, we know that
Pr[∃i≠ j(oi � oj)] � Pr[∃i≠ j(ρi � ρj)]. If all users are
honest, then ρ1, ρ2, . . . , ρn are uniformly distributed. We
have Pr[∃i≠ j(ρi � ρj)]≤i≠jPr[(ρi � ρj)]≤ (n/2) × (1/2l).

,us, we have Pr[∃i≠ j(oi � oj)]≤ (n/2) × (1/2l). Note
that (n/2) is a positive constant. ,us, the event ∃i≠ j(oi �

oj) occurs with a negligible probability.
We say that two probability ensembles X, Y are com-

putationally indistinguishable, denoted as X ≈ Y, if there is
no probabilistic polynomial-time algorithm distinguishing
them. □

Lemma 2. In our framework, let ρ denote the probability
ensemble defined by ρ1, ρ2, . . . , ρn, and r denote the proba-
bility ensemble defined by a bit-string uniformly chosen over
0, 1{ }nl. If the commitment scheme is a PHC, the secret sharing

6 Security and Communication Networks

scheme is a t-out-of-n VSS, and there are at most t − 1
malicious users, then r ≈ ρ.

Proof. Let us focus on ρ and assume that there is at most one
malicious user Ui. ,ere are the following types of attacks
that can possibly bias ρ.

(1) ,e secret Si chosen by malicious Ui is not uniformly
distributed.
Note that ρ←⊕nj�1sj. ,us, Ui cannot bias ρ, and then
r ≈ ρ holds.

(2) Malicious user Ui may refuse to release their
decommitment or releases an illegal decommitment.
,e t-out-of-n VSS guarantees that other honest
users can recover the secret. ,is attack cannot bias
ρ, and then r ≈ ρ holds.

(3) In step 1, phase 2, Ui may open his commitment σi to
be a maliciously chosen value Si, which is different
from the real value he has committed in step 1 of
phase 1.

If Ui succeeds in this cheating, ρ is not uniformly dis-
tributed. Fortunately, the computationally binding the
commitment guarantees that the success probability of this
cheating is negligible. ,us, r ≈ ρ.

In a similar way, we can prove that this lemma holds
even if there are at most t − 1 malicious users. □

Theorem 1 (the distribution of the output). In our
framework, if the commitment scheme is perfectly hiding, the
secret sharing scheme is a t-out-of-n VSS, and there are at
most t − 1 malicious users, then the probability ensemble
defined by the order (o1, o2, . . . , on) and the probability en-
semble defined by a permutation uniformly chosen over
1, 2, 3, . . . , n{ } are computationally indistinguishable.

Proof. Let o denote the probability ensemble defined by the
order (o1, o2, . . . , on) and σ′ denote the probability ensemble
defined by a permutation uniformly chosen over
1, 2, 3, . . . , n{ }. ,en we want to show o ≈ o′.

Figure 3: Proposed protocol.

Security and Communication Networks 7

Let us focus on step 3 in phase 2. We know that o is a
function of ρ, denoted by o � f(ρ). Following Lemma 2, we
have r ≈ ρ. ,us, f(ρ) ≈ f(r). Furthermore, we have
o ≈ f(r). Note that f(r) describes the case when all users
are honest. From Lemma 1, we have o′ ≈ f(r). Finally, we
obtain o′ ≈ o. □

Remark 1. ,e distribution of the order obtained by our
protocol is not uniformly distributed. Note that o � f(ρ)

and the string ρ is not uniformly distributed. From the proof
of Lemma 2, we know that the malicious user may break the
binding in step 1, phase 2, although the probability is
negligible. One may prefer to employ a perfectly binding
commitment scheme instead. In this case, the malicious
users may break the computational hiding of the scheme in
step 1, phase 1, although the probability is negligible too, and
bias the distribution of ρ.

Remark 2. It is easy to verify that ,eorem 1 still holds even
if the commitment scheme is computationally binding and
computationally hiding.

Theorem 2 (undeniability). In our framework, if the com-
mitment scheme is perfectly hiding, the secret sharing scheme
is a t-out-of-n VSS, and there are at most t − 1 malicious
users; then no user can deny his secret after revealing his
commitment of the secret to others.

Proof. Note that the threshold of t-out-of-n VSS is set to be
t � [n/2], to generate subshares for users.,us, after making
any commitment of secret, the user can no longer deny the
commitment. If the user tries to deny the commitment by
either releasing a fake subsecret or releasing no information,
the subsecret can still be recovered by honest users. □

Theorem 3 (secrecy). In our framework, if the commitment
scheme is perfectly hiding, the secret sharing scheme is a t-out-
of-n VSS, and there are at most t − 1 malicious users; then
each subsecret of the user cannot be recovered from its
commitment and is protected by a threshold SS.

Proof. ,is property should be satisfied using a t-out-of-n
VSS with a PHC commitment scheme as defined by Defi-
nition 2. □

4.4. Efficiency. In phase 1, each user needs to employ a one-
time share sharing algorithm G to generate subshares for
other users, a one-time commitment algorithm PHC to
commit his secret and (n − 1)-time share verification al-
gorithms V to verify subshares received from other users. In
phase 2, if we assume that all users act honestly by releasing
their secrets, each user needs to employ (n − 1)-time
commitment verification algorithm to verify each released
secret of other users. ,us, we can conclude that the
complexity of using this approach is O(n) for a group with n
members.

To the best of our knowledge, our proposed scheme is the
first MDS that can be used for a group of players to fairly

determine the order of the group in applications. In par-
ticular, the coin-flipping protocol is a special type of MDS,
that is, there are only two players. Although multiparty coin-
flipping protocols [19–21] have been developed recently,
these protocols are restricted for multiple parties to jointly
choose one of the two possible outputs, which are different
from our MDS.

When we compare our protocol with the coin-flipping
protocol, our protocol is more efficient. As we have men-
tioned earlier in the introduction that employing a coin-
flipping protocol repeatedly can achieve the same objective
as ours. However, the coin-flipping protocol works two
devices at a time to determine their order.,at is, we can use
the coin-flipping protocol in a straightforward manner to
provide a solution for a general MDS. In this approach, all
players are arranged on the leaves of a binary tree. Using a
coin-flipping protocol between two users can determine a
“winner.” Repeatedly executing the coin-flipping protocol
multiple times following the tree structure (i.e., complexity
O(n) can determine the “1st winner” among n users). ,en,
using the same approach on the remaining n− 1 users can
determine the “2nd winner” and so on. However, this ap-
proach is not effective because the complexity of using this
approach is O (n2) for a group with nmembers. It is a time-
consuming process. ,us, for large size of devices, it takes
too much computational delay to determine their final
order. In our proposed protocol, all devices work together at
once to determine their order with the complexity O(n). We
are currently building a test platform. With the completion
of this platform, we will take practical measurements and
make comparisons with other approaches as described in
[43] for our future work.

5. Concrete Instantiation

5.1. Protocol. We illustrate the detail of the proposed pro-
tocol by a concrete instantiation in Figure 4, where we use
Pedersen’s verifiable secret sharing (VSS) to allow each user
to commit to a secret in the first phase. As follows, the user
uses Shamir’s secret sharing to divide the secret into multiple
shares and share it among other users. ,e validity of these
shares can be verified using VSS. In the second phase, each
user releases his secret to the other users. If the user tries to
deny his commitment by either releasing a fake secret or
refusing to release the secret, misbehavior can be detected.
At this moment, the other honest users can work together to
recover this secret. ,is feature, called undeniability, can
prevent the users from denying their secrets after making the
commitments. ,e output of MDS (o1, o2, . . . , on) is a
function of all secrets (s1, s2, . . . , sn) of users.

5.2. Efficiency and Features. In this section, we evaluate the
efficiency and summarize the features of this concrete
protocol.

Efficiency. In our proposed protocol, all users work to-
gether to determine the output. Our protocol does not
depend on any mutually trusted party. At the beginning of

8 Security and Communication Networks

each phase, each user needs to compute and release values
to others. But there has no interaction among users to
verify shares and to determine the output. In the first
phase, each user needs to execute 2t modular exponen-
tiations to compute his commitments and 2(t + 1)

modular exponentiations to verify each pair of subshares.
Overall, each user needs 2(n − 1)(t + 1) modular expo-
nentiations to verify all subshares from other users. In the
second phase, each user needs two modular exponenti-
ations to verify each subsecret of other users. Overall, each
user needs 2(n − 1) modular exponentiations to verify all
subsecrets from other users.

In summary, we list the features of our proposed pro-
tocol as follows:

(1) ,e output of the protocol depends on inputs
generated by all users and is uniformly distributed.

(2) Subshares generated by the owner of the subsecret
can be verified by other users using the commitments
of the subsecret.

(3) Once subshares are successfully verified in the first
phase, the user can no longer deny his subsecret of
the commitment. If the user tries to deny his sub-
secret, the subsecret can be recovered by honest users

Figure 4: Concrete instantiation.

Security and Communication Networks 9

and is used in the evaluation of the output in the
second phase.

(4) ,e protocol can resist colluded users working to-
gether to attack the security of our protocol.

6. Conclusion

We propose a novel cryptographic primitive, called multi-
party undeniable drawing straws (MUDS), that allows n
users to work together to determine the order of users.
MUDS is very useful in multiparty applications since it
provides a fair way of determining an order of users. MUDS
can also prevent cheaters from taking advantage of honest
users by releasing their values last. Our proposal is more
efficient and secure than the state-of-the-art cryptographic
solutions, so it is absolutely attractive for multiparty ap-
plications in RIS towards 5G.

Data Availability

,e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

Acknowledgments

,is work was partially supported by the National Natural
Science Foundation of China (Grants nos. 61772224,
62172181, and 62072133), the National Natural Science
Foundation of China (Grants nos. U21A20465, 61922045,
and U1836115), and the key projects of Guangxi Natural
Science Foundation (no. 2018GXNSFDA281040).

References

[1] G. Hernandez, O. Arias, D. Buentello, and Y. Jin, Smart Nest
;ermostat—A Smart Spy in Your homeUniversity of Central
Florida, Orlando, FL, USA, 2014.

[2] A. G. Illera and J. V. Vidal, Lights off! the Darkness of the Smart
Meters, BlackHat, Europe, 2014.

[3] M. Kabay, Attacks on Power Systems: Hackers, Malware, Santa
Clara, CA, USA, 2010.

[4] K. Koscher, A. Czeskis, F. Roesner et al., “Experimental se-
curity analysis of a modern automobile,” in Proceedings of the
IEEE Symposium on Security and Privacy, Oakland, CA, USA,
May 2010.

[5] B. Miller and D. Rowe, “A survey SCADA of and critical
infrastructure incidents,” in Proceedings of the Research in
Information Technology (RIIT), Calgary, Alberta, Canada,
October 2012.

[6] C. Miller and C. Valasek, “A survey of remote automotive
attack surfaces,” in Whitepaper, Black Hat, USA, 2014.

[7] J. Xiong, R. Bi, M. Zhao, J. Guo, and Q. Yang, “Edge-assisted
privacy-preserving raw data sharing framework for connected
autonomous vehicles,” IEEE Wireless Communications,
vol. 27, no. 3, pp. 24–30, 2020.

[8] J. Vijayan, “Stuxnet renews power grid security concerns,”
Computerworld, vol. 26, 2010.

[9] J. Xiong, R. Bi, Y. Tian, X. Liu, and D. Wu, “Toward light-
weight, privacy-preserving cooperative object classification
for connected autonomous vehicles,” IEEE Internet of ;ings
Journal, vol. 9, no. 4, pp. 2787–2801, 2022.

[10] D. M. Nicol, “Hacking the lights out,” Scientificfic American,
vol. 305, no. 1, pp. 70–75, 2011.

[11] A. Soullie, “Industrial control systems: pentesting PLCs 101,”
in Whitepaper, Black Hat, Europe, 2014.

[12] A. R. Sadeghi, C. Wachsmann, andM.Waidner, “Security and
Privacy Challenges in Industrial Internet of ,ings,” in
Proceedings of the 52nd ACM/EDAC/IEEE Design Automation
Conference (DAC), San Francisco, CA, USA, June 2015.

[13] M. Blum, “Coin flipping by telephone a protocol for solving
impossible problems,” ACM SIGACT News, vol. 15, no. 1,
pp. 23–27, 1983.

[14] D. Aharonov, A. Ta-Shma, U. V. Vazirani, and A. C. Yao,
“Quantum bit escrow,” in Proceedings of the STOC’00: ;irty-
Second Annual ACM Symposium on ;eory of Computing,
pp. 705–714, New York, NY, USA, May 2000.

[15] A. Ambainis, “A new protocol and lower bounds for quantum
coin flipping,”;irtieth Annual ACM Symposium on;eory of
Computing, vol. 68, no. 2, pp. 398–416, 2004.

[16] R.W. Spekkens and T. Rudolph, “Degrees of concealment and
bindingness in quantum bit commitment protocols,” Physical
Review A, vol. 65, Article ID 012310, 2001.

[17] A. Nayak and P. Shor, “Bit-commitment-based quantum coin
flipping,” Physical Review A, vol. 67, no. 1, Article ID 012304,
2003.

[18] T. Moran, M. Naor, and G. Segev, “An optimally fair coin
toss,” ;eory of Cryptography Lecture Notes in Computer
Science, vol. 5444, pp. 1–18, 2009.

[19] A. Beimel, E. Omri, and I. Orlov, “Protocols for multiparty
coin toss with dishonest majority,” Advances in Cryptology,
vol. 6223, pp. 538–557, 2010.

[20] I. Haitner and E. Tsfadia, “An almost-optimally fair three-
party coin-flipping protocol,” SIAM Journal on Computing,
vol. 46, no. 2, pp. 408–416, 2014.

[21] A. Ambainis, H. Buhrman, Y. Dodis, and H. Röhrig, “Mul-
tiparty quantum coin flipping,” in Proceedings of the 19th
IEEE Annual Conference on Computational Complexity,
pp. 250–259, Amherst, MA, USA, June2004.

[22] W. Liu, S.-S. Luo, and P. Chen, “A study of secure multi-party
ranking problem,” in Proceedings of the Eighth ACIS Inter-
national Conference on Software Engineering, Artificial In-
telligence Networking and Parallel/Distributed Computing,
pp. 727–732, Qingdao, China, August 2007.

[23] A. C. Yao, “How to generate and exchange secrets,” in Pro-
ceedings of the 27th IEEE Symposium on Foundations of
Computer Science, pp. 218–229, Toronto, Canada, October
1986.

[24] C. Cheng, Y.-L. Luo, C.-X. Chen, and X.-K. Zhao, “Research
on Secure Multi-Party Ranking Problem and Secure Selection
Problem,” in Proceedings of the International Conference on
Web Information Systems and Mining (WISM), Sanya, China,
October 2010.

[25] J. Halpern and V. Teague, “Rational secret sharing and
multiparty computation: extended abstract,” in Proceedings of
the ;irty-Sixth Annual ACM Symposium on ;eory of
Computing - STOC’04, pp. 623–632, New York, NY, USA,
June 2004.

[26] A. Shamir, “How to share a secret,” Communications of the
ACM, vol. 22, no. 11, pp. 612-613, 1979.

[27] G. Fuchsbauer, J. Katz, and D. Naccache, “Efficient Rational
Secret Sharing in Standard Communication Networksficient

10 Security and Communication Networks

rational secret sharing in standard communication networks,”
in Proceedings of the 7th ;eory Of Cryptography Conference-
TCC’10, LNCS 5978, pp. 419–436, Berlin, Germany, February
2010.

[28] S. J. Ong, D. C. Parkes, A. Rosen, and S. P. Vadhan, “Fairness
with an honest minority and a rational majority,” in Pro-
ceedings of the 6th;eory of Cryptography Conference-TCC’09,
LNCS 5444, pp. 419–436, San Francisco, CA, USA, March
2009.

[29] C. Tartary, H. Wang, and Y. Zhang, “An efficient and in-
formation theoretically secure rational secret sharing scheme
based on symmetric bivariate polynomials,” International
Journal of Foundations of Computer Science, vol. 22, no. 6,
pp. 1395–1416, 2011.

[30] M. Tompa and H.Woll, “How to share a secret with cheaters,”
Journal of Cryptology, vol. 1, no. 3, pp. 133–138, 1988.

[31] W. K. Moses Jr., and C. Pandu Rangan, “Rational secret
sharing over an asynchronous broadcast channel with in-
formation theoretic security,” International Journal of Net-
work Security & its Applications, vol. 3, no. 6, pp. 1–18, 2011.

[32] P. Feldman, “A practical scheme for non-interactive verifiable
secret sharing,” in Proceedings of the 6th IEEE Symposium on
Foundations of Computer Science, pp. 427–437, Los Angeles,
CA, USA, October 1987.

[33] T. P. Pedersen, “Non-interactive and information-theoretic
secure verifiable secret sharing,” in Advances in
Cryptology—CRYPTO’91, Springer-Verlag, Berlin, Germany,
1992.

[34] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, “Veri-
fiable Secret Sharing and Achieving Simultaneity in the
Presence of Faults,” in Proceedings of the 26th Annual Sym-
posium on Foundations of Computer Science (SFCS 1985),
pp. 383–395, Portland, OR, USA, October 1985.

[35] J. C. Benaloh, “Secret sharing homomorphisms: keeping
shares of a secret,” Advances in Cryptology, vol. 263,
pp. 251–260, 1987.

[36] M. Stadler, “Publicly verifiable secret sharing,” Advances in
Cryptology, vol. 3, pp. 190–199, 1996.

[37] B. Schoenmakers, “A simple publicly verifiable secret sharing
scheme and its application to electronic voting,” in Pro-
ceedings of the Advances in Cryptology-CRYPTO’99, LNCS
1666, pp. 148–164, Santa Barbara, CA, USA, August 1999.

[38] A. Peng and L. Wang, “One publicly verifiable secret sharing
scheme based on linear code,” in Proceedings of the 2nd
Conference on Environmental Science and Information Ap-
plication Technology, pp. 260–262, Wuhan, China, July 2010.

[39] A. Ruiz and J. L. Villar, “Publicly verifiable secret sharing from
Paillier’s cryptosystem,” in Proceedings of the WEWoRC’05,
LNI P-74, pp. 98–108, Leuven, Belgium, January2005.

[40] P. Paillier, “Public-key cryptosystems based on composite
degree residuosity classes,” in Proceedings of the Advances in
Cryptology-EUROCRYPT’99, LNCS 1592, pp. 223–238, Pra-
gue, Czech Republic, May 1999.

[41] Y. Tian, C. Peng, and J. Ma, “Publicly verifiable secret sharing
schemes using Bilinear pairings,” International Journal on
Network Security, vol. 14, no. 3, pp. 142–148, 2012.

[42] T.-Y. Wu and Y.-M. Tseng, “A pairing-based publicly veri-
fiable secret sharing scheme,” Journal of Systems Science and
Complexity, vol. 24, no. 1, pp. 186–194, 2011.

[43] D. Wang, W. Li, and P. Wang, “Measuring two-factor au-
thentication schemes for real-time data access in industrial
wireless sensor networks,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 9, pp. 4081–4092, 2018.

Security and Communication Networks 11

