Hindawi

Security and Communication Networks
Volume 2022, Article ID 6903370, 15 pages
https://doi.org/10.1155/2022/6903370

Research Article

WILEY | Q@) Hindawi

COOPS: A Code Obfuscation Method Based on Obscuring

Program Semantics

Yang Li©), Fei Kang), Hui Shu

, Xiaobing Xiong, Zihan Sha, and Zhonghang Sui

State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450000, China

Correspondence should be addressed to Fei Kang; kfminnie@163.com

Received 27 March 2022; Accepted 10 August 2022; Published 25 September 2022

Academic Editor: Mohamed Nassar

Copyright © 2022 Yang Li et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As reverse engineering technology develops rapidly, the financial loss caused by software security issues is urgent. Therefore, how
to effectively protect software is a critical problem to solve. The software protection method based on code obfuscation is an
effective way, and constructing an effective obfuscation algorithm can increase the cost of reverse software. It is conspicuous that
current development of code obfuscation focuses on increasing the complexity of the code structure without paying much
attention to the protection of program semantic information, which may help experienced attackers improve their analysis
efficiency. This paper proposes COOPS for protecting software based on program semantic information, in which functions are
regarded as basic semantic units. The switch relationship between the intrafunction control flow and the interfunction calling is
established. The interfunction calling can be hidden in the intrafunction control flow, and in reverse, the intrafunction control
flow can also be converted to interfunction calling. In this way, considering intraprogram function semantic unit level discrete,
this method reconstructs the intraprogram semantic relationship. To determine the relative effectiveness, we have evaluated
COOPS on OpenSSL and SpecInt-2000 test sets. For both of them, the function calling graphs before and after obfuscation differ
more than 90%, which means COOPS significantly changes the control flow of the program. The evaluation shows that compared
with O-LLVM, COOPS manifests strong resistance to Asm2vec and other program similarity analysis techniques and significantly

improves the level of software protection rather than necessitating time-consuming and heavyweight problems.

1. Introduction

At present, the commonly used code obfuscation technology
is to construct an effective obfuscation algorithm. Collberg
[7] divides the code obfuscation into data obfuscation and
control flow obfuscation. Currently, there are several studies
on control flow obfuscation. And among various ways of
that, the most popular is to obfuscate the intraprocess
structure. State-of-art obfuscation algorithms include the
opaque predicate algorithm [8-15] and the control flow
flattening algorithm [16-20]. The former uses one-way
transparency of opaque predicates to create a bogus branch
that will not be executed, while the latter flattens the control
flow of the program and uses a switch-case to jump. Rajba
et al. [21] propose a code protection method for JavaScript.
The core idea is to encrypt and encode data such as string
arrays and identifiers in the code. Ahire et al. [22] protect the
data arithmetic operation process and propose four

obfuscation techniques applicable to all arithmetic opera-
tors. The abovementioned two methods achieve data pro-
tection by encrypting and replacing the data in the program.

The existing obfuscation algorithms aim at improving
the complexity. For example, Sharif et al. [23] proposed a
conditional obfuscation algorithm, which used hash value to
replace the constant in the path branching condition to strip
it from the original program besides encrypting the code
block to increase the difficulty of reverse engineering. Xie
et al. [24] proposed a binary code obfuscation method based
on the random fuzzy table and hash coding to prevent re-
verse analysis of the stack trace, where the fuzzy table maps
the calling address. If the program runs, the hash code and
random value encode/decode the data of the stack frame.
Linn et al. [25] focused on the static disassembly process and
proposed two algorithms to disturb the static disassembly,
which failed the disassembly of executable files. Sha et al.
[26] protect the function calling process using multi-

mailto:kfminnie@163.com
https://orcid.org/0000-0002-4957-051X
https://orcid.org/0000-0003-2545-4079
https://orcid.org/0000-0002-2797-1355
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6903370

threaded mutually exclusive execution. The method creates
multiple threads in a program. It assigns different functions
to different threads for execution, so that the program ex-
ecution trajectory with functions is converted as a unit from
calling execution within a single thread to repeated
switching execution between multiple threads. Yadav et al.
[27] and Hataba et al. [28] implement code protection at the
source code level, where the former uses a pointer multi-
plication mechanism to replace integer operations, and the
latter diversifies the generated software by changing the
control flow of the input program at the compiler level.

However, the abovementioned code obfuscation algo-
rithm mainly focuses on how to increase the complexity of
the internal structure of the code, and the complex code
structure fail to hide the semantic information behind the
structure. The stage semantic information obtained by the
attacker during the reverse analysis process is still available.
Experienced attackers can effectively improve the analysis ef-
ficiency by using the semantic information. Therefore, how to
improve the protection of program semantics by code ob-
fuscation technology is our necessary technique in this paper.

From the perspective of protecting program semantics,
this paper proposes a code obfuscation method named
COOPS to obscure program semantics. It is important to
note that the code obfuscation is converted on the basis of
the equivalence of overall semantics of a certain program.
The obscure program semantics in this paper does not
change the overall semantics of the program, but obscures
the intraprogram semantic layers and the relationship be-
tween levels. To destroy the interfunction semantic rela-
tionship and the semantic information of the function itself,
we regard the function as a basic semantic unit, and semantic
obscurity is implemented both the control flow inside and
outside the function. So that attackers are faced with more
abstract function units and calling relationships. The core
approach is based on function inlining and outlining. The
initial mention of function inlining and outlining in code
obfuscation is in the Collberg article [7]. This article only
describes the obfuscation effect of this method, but there are
no specific implementation details. In this paper, we initially
combine the function inlining and outlining technology with
the obfuscation strategy and present a novel control flow
obfuscation method.

In order to verify the effectiveness of the obfuscation
algorithm, we designed a code obfuscation system based on
the LLVM [29] compiler. The system considers software
programs written in C/C++ as input and PE binary files after
obfuscation as outputs. We choose OpenSSL and SpecInt-
2000 as test set. Extensive tests are used to evaluate the
effectiveness of the system in terms of code protection and
the costs of operation caused by the obfuscation process.
Experiments show that the system has effective obfuscation
and is suitable for various complex code structures. After
obfuscation, the difference in the calling graph of the
software is more than 90%, and the complexity of the calling
graph circle also increases by about 20%, which significantly
improves the analysis difficulty. We select Asm2vec [30],
DeepBindiff [31], Safe [32] and BinDiff [33] for similarity
analysis, and the results show the system is strongly resistant

Security and Communication Networks

to these techniques. The main contributions of this paper are
summarized as follows:

(i) We initially propose the idea that code obfuscation
based on semantic obscurity. A function is regarded
as a semantic unit, and the switch relationship
between the intrafunction control flow and the
interfunction calling is established. In the level of
control flow inside and outside the function, the
intraprogram semantic hierarchy is changed.
Through experimental comparison and analysis, it
can effectively resist the similarity analysis tech-
niques such as Asm2vec.

(ii) We apply function inlining and outlining tech-
nology to code obfuscation, and three outlining
methods are proposed novelly.

(iii) We implemented an automatic code obfuscation
system-based on LLVM, which can automatically
obfuscate the input source code program. The source
code and the experimental results are available at
GitHub (https://github.com/Rookiellvm/COOPS).

2. Motivation

Figure 1 presents a high-level abstraction how an attacker
can perform analysis on a program using semantic infor-
mation. The figure below on the left depicts the program
under the protection of conventional obfuscation tech-
niques, where the semantic level inside the program has not
changed. The functions themselves and interfunction rela-
tionship have clear semantics. The attacker deduces the
behavior of the program through obtained semantic in-
formation and semantic relationship of each function. The
design goal of the obfuscation method in this paper is to
destroy interfunction semantic information and the function
itself, and change the intraprogram semantic level. The
figure below on the right depicts that the internal semantic
level of the program is obfuscated by COOPS, where
interfunction semantic logic is disordered. It becomes in-
feasible for the attacker to understand whether the analyzed
function has the correct semantic function, let alone deeply
understand the program.

3. System Design

In this chapter, we describe the obfuscation system design
method in this paper. In Section 3.1, we provide an overview
of the obfuscation system. In Section 3.2, we describe the
control flow transformation methods used in the obfusca-
tion system. In Section 3.3, we describe how to reconstruct
the data relationship, that is, broken during control flow
transformation. Combining control flow transformation
methods with obfuscation strategies to implement program
control flow protection is described in Section 3.4.

3.1. Overview. The overview of COOPS is shown in Figure 2.
It is mainly divided into two stages. The first stage analyzes
the calling relationship of the original program and inline
the functions with higher importance. The so-called inlining

https://github.com/Rookiellvm/COOPS

Security and Communication Networks

Deduce

Semantic
logic

Conventional Code Obfuscation

Semantic
Function
Non-semantic
Function

Deduce

Non-semantic
logic -

Semantic Obscurity Obfuscation

FIGURE 1: Semantic obscurity affects attack efficiency.

FIGURE 2: Overview of our approach. (a) Original call graph. (b) Inline call graph. (c) Outline call graph.

is to hide the called function into the caller’s function,
thereby eliminating the function calling relationship, which
corresponds to the process of Figures 2(a) and 2(b). As-
suming that functions C, E, F, and H are functions of high
importance, we inline these functions into A, B, and D. In the
second stage, on the basis of inlining transformation,
function outlining transformation is performed on the
program. The so-called outlining is to transfer the code
snippet to the outside of the function. COOPS consists of
three outlining methods, corresponding to the process of
Figures 2(b) and 2(c). The split outlining corresponds to
function G being converted into G' and G”. The parent-child
outlining corresponds to functions B, I, K, and L being
converted into subfunctions B/, I', K/, and L'. The cross
outlining corresponds to the outline code snippets of
functions B’ and D being converted to functions K and L, in
which there originally is not calling relationship between
functions B'\D and K\L. Section 3.2 of this chapter intro-
duces inlining obfuscation methods and strategies, and
Section 3.3 introduces three outlining methods and strate-
gies. Three outlining methods are applied at different stages
of the obfuscation process. COOPS uses inlining and out-
lining as the control flow transformation method, and

combines the obfuscation strategy to achieve the purpose of
control flow obfuscation.

3.2. Control Flow Transformation Method. Function inlining
and outlining is a way to implement control flow trans-
formation. In this paper, function inlining and outlining are
used to implement control flow transformation. Combining
inlining and outlining can effectively change the control flow
structure of a program.

3.2.1. Inlining Transformation. Inlining transformation is a
control flow transformation technique that eliminates
function callings by inlining the called function into the
caller’s function. The inlined program will make the inlined
function and its related callings disappear, and the semantic
function unit composed of the original instruction set will be
destroyed. In reverse analysis, it is only necessary to un-
derstand the function semantic unit, but it becomes the
understanding of the instruction semantic unit. It is much
more difficult for a reverse analysis program to understand a
piece of instruction than to understand an independent
function unit, because it is not clear that this piece of code

\

Callee

FIGURE 3: Inlining transformation.

represents a function semantic unit, so it will inevitably lead
to the weakening of function semantics. For example, for the
object-oriented C++ language, when using the functions in
one object, the program behavior can be quickly understood
through the key function names and the reference rela-
tionship between the functions. When inlining these
functions, we will find that these clues are hidden.

The function inlining transformation is shown in Fig-
ure 3, which inline the function named Callee into the
function named Caller. The relationship between them is
hidden in the control flow jump, which realizes the con-
version from function calling to intrafunction control flow.

3.2.2. Outlining Transformation. Outlining transformation
is a way of implementing intrafunction control flow to
functions callings. Outlining transfers, the intrafunction
code snippet to the interfunction calling, which destroys the
control flow logic and function semantic information of the
program, and increases the complexity of interfunction
calling. The combination of inlining and outlining with the
original function forms functions without semantic be-
havior. This paper mainly implements three outlining
methods.

Cross outlining moves code snippets from one function
to another, and there is no direct reference relationship
between the two functions. As shown in Figure 4, there is no
calling relationship between the function F1 and the func-
tion F2. The code snippet D in the function F1 is outlined to
the function F2. When the function F1 needs to execute the
code snippet D, the function F2 is called. This outlining
method has two advantages, one is that a calling relationship
can be formed between any two functions; the other is that
when the called function is executed, a piece of its own code
will be executed first, and then the outlining code snippet
will be executed. The code snippet that really needs to be
executed is hidden into the code of the called function.

Parent-child outlining moves the code snippet out of the
function to form a subfunction call. When the code snippet
is executed, the subfunction is called. As shown in Figure 5,
the parent-child outlining is to outline the code snippets S1
and S2 in the function F1 to form a child function calling.
The advantage of this outlining method is that it can expand
the number of functions in the program and improve the

Security and Communication Networks

FIGURe 5: Parent-child outlining.

diversity of obfuscation. Both parent-child outlining and
cross outlining transfer the code snippet within the function
to execution outside the function. The two outlining
methods in this paper move structures such as branches and
loops inside functions to outside functions. Branches and
loops expose important control flow information in func-
tions. Outlining these structures can effectively protect
control flow information.

Split outlining splits the control flow of a function into
several independent parts, and different parts form different
functions. However, due to the existence of conditional
branches, the snippet of control flow needs to ensure the
correct operation of the program. Therefore, it is necessary
to analyze the function control flow graph before split to find
that the control flow graph must pass through the nodes, and
start from the must-pass nodes to cut. As shown in Figure 6,
through the static analysis of the control flow graph, it can be
found that the basic blocks that must pass when the function
is executed are Entry, A, B, C, D and End. By cutting the
function between B and C, two independent subfunctions F1
and F2 can be formed, and further, if there are multiple
necessary points in the function, it can be divided into
multiple independent functions. Different from the above-
mentioned two kinds of outlining, there is no calling rela-
tionship between the split functions, but to ensure the
execution of the split function correct in the caller. Split
outlining can increase the number of functions in the
program, and cooperating with cross outlining and parent-

Security and Communication Networks

FIGURE 6: Split outlining.

child outlining can increase the complexity of the function
calling relationship.

The abovementioned three outlining transformation
methods move the code snippet intrafunction to the outside
for execution. As shown in Figure 7, the outlining destroys the
control relationship between basic blocks within a function
and generates a new interfunction call. In the process of
outlining transformation, the control relationship of basic
blocks A to B is converted into Calllnst instruction, in which
data dependencies are passed through parameters; the control
relationship between basic blocks F to G is converted into
Return instruction, in which data dependencies are passed
through return values; the control relationship within the
outlining code snippet remains unchanged. Therefore, the
conversion from intrafunction control relations to inter-
function calls is proved equivalent. The construction of pa-
rameters and return values is described in Section 3.3.

3.3. Data Relationship Reconstruction. During inlining, the
entire code segment of the function is inlined at the calling
point. However, this process destroys the original data re-
lationship, which needs to be reconstructed. Figure 8 shows
the implementation process of inlining obfuscation. First,
the code in the inline function is replicated to the calling
point, and then variable remapping and basic block logic
processing are performed. When the parameters inlined by
the function are processed, the process of calling function
parameters is transformed into the process of instruction
assignment. Since the exit of the function is not unique, the
return value is uncertain. Hence, all the exit basic blocks at
the intermediate semantic level are collected, and a tag
variable is added when processing the return value. Based on
the runtime result, the return value is determined at the
switch basic block according to the tag scalar. Finally, the
calling instruction and the function prototype are removed.
When the system performs outlining, outlining code
snippets to form functions. The outlining of the code will
destroy the data dependencies during program execution, so
it is necessary to analyze the intraprogram data flow, find the
relevant dependencies and complete the reconstruction.

Definition 1. Assume that basic block is composed of in-
structions, and Inst is an instruction in the basic block:

def [Inst]

={v|the set of variables defined when Inst is executed},

(1)

use[Inst]

={v|the set of variables referenced when Inst is executed}.

(2)

Definition 2. If variable v € def[Inst;] and v € use[Instj],
Inst; # Inst;, where Inst; and Inst; have an executable path.
On this path, there is no statement to redefine v; hence,
instruction Inst; directly depends on Inst; or instruction
Inst; directly dominates Inst; on the data stream of variable
Inst;, which is denoted as

DD(Instj, Inst;, v). (3)

As shown in Figure 9, “Code Snippet” is a code snippet
obfuscated by outlining. Each basic block is represented as a
set of instructions, in which each instruction is represented
as a set of corresponding variables. The dependent in-
struction data in the outlining basic block set are analyzed to
determine the return value and the parameters of the out-
lining function.

For each instruction Inst; in the outlining code snippet,
the set of variables referenced by instruction use[Inst;] are
calculated (Phase). For each instruction Inst; in the
predecessor instruction set (Prev in Figure 9) of the outlining
code snippet, the variable set def [Inst]-] (Phase @) defined
by the instruction Inst; are calculated. Each variable v in
use[Inst;] is used as the parameter of the outlining function
(Phase ®), if the variable v is in def (Inst;].

For each instruction Inst; in the outlining code snippet,
the variable set def[Inst;] (Phase @) defined by the in-
struction Inst; are calculated. For each instruction Inst; of
the subsequent basic block set (Succ in Figure 9) of the
outlining code snippet, the variable set use[Inst j] (Phase ®)
referenced by the instruction Inst; are calculated. Each
variable v in def[Inst;] is used as the return value of the
outlining function, if the variable v is in use[Inst;]. All
variables used as the return value are stored in the Ret Struct
(Phase ®).

3.4. Control Flow Obfuscation Strategy. Two types of control
flow transformation methods are described in Section 3.2. In
summary, inlining can hide function calls into intrafunction
control flow. Outlining can transfer the intrafunction to
interfunction call. The design goal of this paper is to destroy
the internal semantic unit level of the program as much as
possible, and obfuscate the control flow inside and outside the
program. This section designs the control flow transformation
strategy in stages, applies the abovementioned control flow
transformation methods to different stages to achieve the
destruction of the internal control flow of the program, and
then protects semantic information of the program.

Caller]

I
| | Remaplnstruction
I
I

Security and Communication Networks

______________ y

- ~

Callee R

basicblock
||

FIGURE 8: Reconstruction of the inlining data flow.

Stage 1. We hide highly important functions by inline
transformation. The inlining transformation hides the
function calling into the intrafunction control flow, and the
inlining of the function with complex calling relationship
can destroy the control flow logic to the greatest extent.
Therefore, the object of the inline transformation is the
important function in the program calling relationship.
Function calling graphs can be abstracted into directed
graphs with explicit pointing relationships, so vertex im-
portance can be used to evaluate the importance of functions
in function calling relationships. The connectivity between
vertices and other vertices is of great significance for judging
the importance of vertices. That is, the more paths through a
vertex, the more important that vertex is. Therefore, the
path-based vertex importance is specifically defined as:

Definition 3. For a vertex, the number of all paths passing
through the vertex is used to judge the importance of the

vertex. Let v; represent the i function in the program, then
the calculation formula of the importance can be expressed
as

Sy (vi) =1, (v;) x O, (v)), (4)

where I, (v;) represents the number of paths ending with
vertex v;, and O, (v;) represents the number of all paths
starting with vertex v,. Different from the conventional
directed graph, the function calling graph has two partic-
ularities: (1) the function calling graph is a directed graph
with rings; (2) the function calling graph has a definite
starting point and end point.

For the former, the ring of the directed graph may cause
the vertex path to explode, so the back-edge in the ring is
pruned to convert the graph with rings into an acyclic graph.

For the latter, since the function calling graph has a
definite starting point (main function) and a definite end
point (leaf node), the calculation formula for the number of

Security and Communication Networks

Parameter

DD (Instj, Inst;, v)

|
4

Arguments

i~~~ /

Ret Struct

C==—1C===—
C===—1C===—1

A
|
DD (Inst;, Inst;, V)

1l

~ Ret Values .

FIGURE 9: Reconstruction of the outlining data flow.

vertex paths can be quickly converged after the pruning of
the backward edges is completed. It can be seen from for-
mulas (2) and (3) that the number of paths passing through a
vertex can be solved by calculating I » (v;) and o, (v;) re-
spectively, and this calculation process is recursive:

I,(v;) = Z I, (w),

uel (v)

0,(v) = Z 0, (u).

ueO(v)

(5)

Among them, I (v) represents the set of vertices that have a
direct calling relationship with vertex v;, and O (v) represents
the set of vertices that have a direct calling relationship with
vertex v;. Since the function calling graph has a definite start
and end point, the recursive calculation process is determin-
istically convergent. The function with high importance in the
program is obtained by formula (1) for inline transformation.

Stage 2. The split outlining can split functions into different
functions. Therefore, the split outlining is performed on the
function that was inlined in the first stage, and the inline
code and the function interleaved by the inline function are
split into different ones. As a result, the function semantic
information with high importance is discrete.

Stage 3. The function call spanning tree is constructed to
implement parent-child outlining, and the function call
process is similar in form to the depth-first-based multi-fork
tree node traversal. Therefore, building a multi-fork tree

would be an abstract solution for implementing function
outlining: suppose the function calling graph is shown on the
left of Figure 10. Traverse the function calling graph, gen-
erate a multi-fork tree A that describes the function calling
relationship, and build a target spanning tree B on the basis
of the multi-fork tree A. The tree B has the following re-
quirements: (1) complete multi-fork tree; (2) tree B has more
layers than tree A. In this example, the number of layers of
the target spanning tree B is 3, and the number of forks is 3.
The nodes generated in the process of constructing the target
spanning tree B are used as candidates for parent-child
outlining to provide a variety of choices for the third stage.

Stage 4. The real function calling graph has back-edges, and
Cross outlining is implemented on the constructed target
spanning tree with the help of the Barabasi—Albert model
[34] to generate the final function calling graph. The Bar-
abasi—Albert model is a graph generation algorithm for the
preferential connection model. Preferential attachment
means that the more connections between vertex, the greater
the possibility of accepting new connections. The core idea of
the algorithm is to add an edge between the vertex and the
vertex in the original graph for a new vertex in the graph. The
probability of connection is k;/ '\, k;, where k; represents
the degree of vertex i in the original graph. Referring this
model to the calling graph, the more connections between
vertexes, the greater the importance of functions. However,
the purpose of the obfuscation in this paper is to hide the
importance of the function, and the probability of trans-
forming the model connection is as follows:

Multi-fork tree A

Security and Communication Networks

Target spanning tree B

F1GURE 10: Build target spanning tree.

1
1
| Orig.bc
\

Call Graph Diversification

: (LLVM bitcode)
! Orig-obf.bc
\

/
o EXE Generation |

(EXE binary)
(x86)

Compiler

CPam)—’C Pass2 "’@» Link

...... A

LLVM_API

» Obfuscation

Generate the Obfuscated
Executable

I
I
I
I
I
I
I
I
i
I
RCEEDS M
i LLvm-link
I
I
I
I
I
I
I
I
I
I
I
I
\

1
1
1
1
I
I
1
1
1
1
|
Orig_obf.exe |
1
1
I
I
1
1
1
1
I
I
1
1
1

FIGURE 11: Architecture of the code obfuscation system.

Z'il k,- - ki
p, =52t L
Qi ki

We select the subfunctions generated in the second stage
and the functions with low importance in the original
program as new vertexes, and perform cross outlining
according to probability (5). The probability calculated from
this will reduce the probability of connecting vertexes with
high importance, increase the probability with low vertex
degree, and increase the importance of low vertex degree.
The calling graph constructed through the abovementioned
three stages have no important vertexes. Each vertex has the
same status in the calling graph, and the calling relationship
between functions is completely reconstructed.

Summary: After the abovementioned four stages, the
inlining and outlining is applied to the transformation of the
program control flow, so that the transformed program
calling graph has no important nodes, and each node has the
same status in the calling graph. The calling relationship is
reconstructed. Intrafunction code is discretized into new
subfunctions and other unrelated functions, breaking the
semantic hierarchy inside the program.

(6)

4. System Implementation

In this section, the design and implementation of a com-
piler-level tool developed to achieve automatic obfuscation
of programs is presented. The LLVM framework, an ex-
tensible program optimization platform, provides a large
number of APIs to analyze and modify the intermediate
language codes. As shown in Figure 11, this paper imple-
ments the obfuscation system based on the LLVM. The
system uses the source code written in C/C++ as the input
and outputs the obfuscated binary file after the obfuscation
system, which has three phases:

(1) Front-end code parsing phase
(2) Analysis and transformation phase

(3) Binary file generation phase

5. Experimental Design and Evaluation

In this chapter, we evaluate COOPS performance using 6
applications and compares it with the O-LLVM [35] ob-
fuscation technique.

Security and Communication Networks

TaBLE 1: Information of the benchmarks.

Program Size (kB) Description Instr number Func number
AES 87 Encryption algorithm 10046 36
RSA 60 Encryption algorithm 3078 49
Bzip 95 Compression algorithm 8131 75
Gzip 111 Compression algorithm 11321 96
Parser 200 Grammar parser 27815 324
Twoif 262 Simulated annealing algorithm 72353 191

5.1. Evaluation Platform and Benchmarks. In this section, we
explain how the COOPS obfuscation method is tested and
verified. The machine used for testing has an Intel Core i7-
9700 CPU @ 3.00 GHz with 32 GB memory and Windows 10
as the operating system.

We evaluated the test sets commonly used in the field,
including the cryptographic algorithms RSA and AES in
OpenSSL, Bzip, Gzip, Twoif, and Parser in SpecInt-2000 [36].
Table 1 shows the basic information of the test suite. The first
column is the test program name, the second column is the
size of the program, the third column is a brief description of
the program function, the fourth column is the number of
program instructions, and the fourth column is the number
of program functions.

5.2. Evaluation of System Protection Effect. In this section, we
analyze the antianalysis capability of the software under the
protection of the obfuscated system. Antianalysis ability is an
important indicator to evaluate the increase of the cost of
software analysis by obfuscation methods. In this section, we
intend to evaluate from two aspects. One is obfuscation
system resistance to similarity analysis; the other is obfus-
cation strength.

Similarity analysis can eliminate the confounding factors
faced by reverse analysis. A common situation is that a
statically linked lib library is carried during software de-
velopment, and a large number of library functions can be
excluded by similarity analysis with known library function
codes to improve analysis efficiency. This section evaluates
the resistance of COOPS to similarity analysis using
Asm2vec, DeepBindiff, and Safe academic similarity analysis
techniques in 5.2.1, as well as commercial-grade BinDiff.

The obfuscation strength is used to evaluate the com-
plexity increment of the obfuscated program. Anckaert et al.
[37] proposed to evaluate obfuscation strength based on
complexity measure in software engineering. In this section,
we adopt the software cyclomatic complexity in Section 5.2.2
to evaluate the obfuscation strength.

5.2.1. Program Similarity Analysis. Asm2vec, Safe and
DeepBindiff are the techniques used in the academic com-
munity to perform binary similarity analysis. By matching
known functions through similarity analysis, the influence of
obfuscation is eliminated and the analysis efficiency is im-
proved. BinDiff is a tool used by the business community for
similarity comparison analysis. It compares the similarity of
binary files from five dimensions: Function, Calls, Basic-
Block, Jumps, and Instructions.

Obfuscator-LLVM (O-LLVM) [35] is applied beyond
LLVM’s intermediate language (IR) to generate more
complex binary files by transforming IR. O-LLVM includes
three different obfuscation techniques: control flow flat-
tening (FLA), instruction substitution (SUB), and bogus
control flow (BCF).

FLA flattens the control flow of the program, adding new
conditional predicates to hide the control logic of the
original program through switch-case. FLA greatly changes
the internal control flow structure of the program.

BCF adds a large number of conditional judgments to the
program by adding opaque predicates and garbage in-
structions to the program. The program after BCF obfus-
cation adds a lot of conditional branches, which
differentiates between the control flow and the original
program significantly.

SUB is to replace the operation in the program with a
more complex operation, for example, replace the AND
operation with a = (b~c) & b. SUB significantly changes the
sequence of instructions in the program.

O-LLVM has greatly changed the control flow structure
of the original program. Based on the abovementioned
similarity analysis techniques and tools, the following 4
experiments were set up.

Experiment 1. To compare similarities, we use Asm2vec,
Safe, and DeepBindiff.

Experimental setup: we considered the original AES
program as the benchmark comparison object, and the
compare the similarities between RSA, Bzip, Gzip, Parser,
Twoif and obfuscated AES (AES-Obf).

Experimental results: the experimental results are shown
in Figure 12. The similarity between AES-Obf and AES is at a
low level, indicating that COOPS significantly changes the
internal control flow structure of the program and can ef-
fectively resist the similarity comparison technology such as
Asm2vec. The similarity comparison results obtained by
AES-Obf and the complex program Twoif are similar, in-
dicating that the degree of difference of the programs after
COOPS obfuscation has reached the level of complex pro-
grams. Technologies such as Asm2vec extract the semantic
information of the assembler by analyzing the assembly
code. Since both RSA and AES are cryptographic algorithms,
the similarity between the two is high, while the similarity of
the obfuscated AES-Obf is low, which also reflects that
COOPS obscures the semantic information of the program.

Experiment 2. Comparing COOPS with O-LLVM using
Asm2vec.

10

120 + -

40 +

ok 4

1 1 1
AES-Obf RSA Bzip Gzip Parser Twoif

o ASM2VEC
o DeepBindiff
Safe

FIGURE 12: Asm2vec, DeepBindiff and Safe similarity comparison.

Experimental setup: we use BCF, FLA, SUB, MIX
(BCF + FLA + SUB) and COOPS to obfuscate the 6 appli-
cations respectively, and use Asm2vec to compare the
similarities between the programs before and after the
obfuscation.

Experimental results: the experimental results are shown
in Figure 13. Compared with the other four obfuscation
methods, COOPS has better control flow obfuscation effect,
and the program similarity before and after COOPS ob-
fuscation is maintained at about 30%. It can be seen that
COOPS is better than O-LLVM obfuscation techniques in
the face of similarity analysis techniques such as Asm2vec.

Experiment 3. We used BinDiff to analyze the similarities
among five dimensions of programs under COOPS
protection.

Experimental setup: using BinDiff to compare the
similarity of the five dimensions of Function, Calls, Basic-
Block, Jumps, and Instruction before and after the obfus-
cation of the 6 applications.

Experimental results: the experimental results are shown
in Figure 14. COOPS caused confusion of all five dimensions
of the program. There are large differences in the five di-
mensions before and after confusion. The similarity between
functions is slightly higher than that of the other four di-
mensions. This result shows that the obfuscation algorithm
obtains a better control flow obfuscation effect without
causing great damage to the function, reflecting the light-
weight advantage. At the same time, it can be seen that the
similarity between Calls and Jumps remains at the low point
of the five dimensions. The results show that COOPS has a
strong confounding effect on the function calling relation-
ship and the control flow within the function.

Experiment 4. Comparing COOPS with O-LLVM using
BinDiff.

Experimental setup: using BCF, FLA, SUB, MIX
(BCF + FLA + SUB), and COOPS to obfuscate 6 applications
respectively, and compare the similarities between programs
before and after each obfuscation by BinDiff. The similarity

Security and Communication Networks

120
90
60

Percentage (%)

1 1 1 1
AES RSA Gzip Bzip

Parser Twoif
-=— BCF -4 COOPS
—-v— MIX —A— SUB
—eo— FLA

FiGure 13: Comparing COOPS with O-LLVM using Asm2vec.

30

Percentage (%)

10

0 L h L 1 L 1 L 1 L 1
AES RSA Gzip Bzip Parser

1)
Twoif

—w— Instruction
—o— Jumps

—m— Function
—o— Calls
—A— Basic Block

FIGURE 14: Analysis of the 5 dimensions of the program.

of the program is marked as the average of the similarity of
the five dimensions of BinDiff comparison.

Experimental results: the experimental results are shown in
Figure 15. In the comparison of the five dimensions of BinDiff,
COOPS also reflects a better confusion effect than O-LLVM.
The similarity of the five dimensions of the program before and
after the obfuscation is about 15%, and the O-LLVM mixed
obfuscation option MIX only obtains the similarity result of
30%. It shows that COOPS also has good resistance in the face
of BinDiff commercial-level similarity analysis tool.

5.2.2. Obfuscation Potency Evaluation. Collberg [2] draws
on the idea of complexity measurement in software engi-
neering and proposes an index of obfuscation potency, in
which the cyclomatic complexity increment is used to

Security and Communication Networks

120 -

oL A\k/&—ﬁ/‘_\“

| -\./'_/\'

Percentage (%)

AES RSA Gzip Bzip Parser Twoif
—m— BCF —— COOPS
—v— MIX —4— SUB
—eo— FLA

F1GUre 15: Comparing COOPS with O-LLVM using BinDiff.

measure the complexity of a software’s internal structure. In
this section, the cyclomatic complexity is used to measure
the obfuscation potency, and the difference of the calling
graph before and after obfuscation is included in the ob-
fuscation potency evaluation.

Cycle complexity C,, is used to measure the complexity
of a module’s decision structure, whose value is linearly
independent of the number of paths, i.e., the minimum
number of paths to be tested for reasonable error pre-
vention. C, can be obtained by calculating the cyclomatic
complexity of 9 (Gp) and C(Gp), i.e., V(Gy) = C - F + 2P,
where C and F respectively are the number of edges and
vertexes in the calling graph, and P is the number of
connected components of the graph, i.e., the maximum set
of connected vertexes. Since the control flow graphs are all
connected, P is equal to 1. Therefore, the obfuscation can be
expressed as

C,9,Gp = 100[%— 1]. (7)

The difference degree D, i.e., the difference of each
calling graph 9 (Gp) after obfuscation compared to G, before
obfuscation, can be defined as

(8)

F+S
DPS, Gp = 100[]

Here,

(i) F = |C(9(Gp)) — C(Gp)| represents that the figure
belongs to 9 (Gp) but does not belong to C(Gp) (the
cardinality of the edge)

(ii) S =|C(Gp) - C(S(Gp))| represents that the figure
belongs to C(Gp) but does not belong to 9(Gp) (the
cardinality of the edge)

(iii) T = F + S+ |C(Gp) NC(9(Gp))|, where |C(Gp)NC
(9(Gp))| is the cardinalate of intersection set be-
tween 9 (Gp) and C(Gp)

11
TaBLE 2: Obscurity of the benchmarks (%).

Program C, (%) D, (%)
AES 20.2 92.7
RSA 25.6 93.6
Bzip 13.6 96.9
Gzip 238 941
Parser 32.5 94.2
Twoif 335 97.2

As shown in Table 2, the difference degree of calling
graph before and after obfuscation reaches more than 90%.
As the number of functions of the obfuscated program
increases, the difference degree of calling graph is greater.
On the whole, the obfuscated calling graph is close to re-
construction, which is significantly different from the
original program calling graph. At the same time, the
cyclomatic complexity of the program has also increased,
which shows that the increased complexity of the callings
between the functions of the COOPS makes the calling
relationship more complicated after obfuscation, and ef-
fectively improves the anti-analysis ability of the program.

COOPS can provide multiple rounds of iterative ob-
fuscation, and multiple COOPS can be applied to improve
the obfuscation intensity and increase the diversity and
complexity of the function calling graph. The complexity of
calling graphs and the cost of running time after applying
COOPS for multiple times are summarized in Figure 16. It
can be seen that under the time overhead of not more than
50%, when the number of iterations is 3 and 4, the cyclo-
matic complexity of the program increases by about 50%. In
particular, the cyclomatic complexity of the complex pro-
gram Parser and Twoif calling graphs increases by more than
90%. The number of obfuscated functions in complex
programs is large, and the complexity of the generated
calling graph is high, so the COOPS has better obfuscation
effect on complex programs.

5.3. Evaluation of System Efficiency. This section compares
COOPS and O-LLVM with the abovementioned three ob-
fuscation options to evaluate program execution efficiency
and code inflation rate.

The execution efliciency of the program T is the
obfuscated program execution time T (9(P)) divided by the
original program execution time T (P), i.e.,

T(9(P))

TP = T(P)

cost™>

(9)

Similarly, the code inflation degree S, is the division of
program disk overhead after obfuscation S(9(P)) to the
original program disk overhead S(P):
o p_SE@)

S(P)

S (10)

cost ™

Each program in the test set is obfuscated. To accurately
measure the running time of each program, they are exe-
cuted one hundred times, and the average running time
before and after obfuscation is calculated.

12

Security and Communication Networks

100 100 100 100
N=1 N=2 N=3 N=4
50 R 50 50 T 50
§:°/ $: ‘Iv“
f | o 'y » *
2 []
E ‘ ‘
o v 0 0 : 0
50 100 50 50 100 50 100

Cyclomatic complexity (%)

Cyclomatic complexity (%)

Cyclomatic complexity (%) Cyclomatic complexity (%)

H RSA A AES V¥ Bzip
® Gzip & Twoif <« Parser
FIGURE 16: Iterative obfuscation cyclomatic complexity analysis.
2.0

Average Runtime

SUB
OCALLING

Parser

BCF
EE FLA

FiGure 17: Comparison of average cost of runtime.

Figure 17 shows the time cost comparison between the
obfuscation methods in COOPS and OLLVM before and
after the obfuscation. The x-axis represents each test pro-
gram, and the y-axis represents the ratio of cost of time of
postobfuscation to preobfuscation. The results show that the
cost of time of COOPS is close to that of OLLVM, and it has
almost no effect on obfuscation of simple programs such as
AES and RSA, and the overall the cost of obfuscation time is
less than 25%.

Figure 18 compares the obfuscation methods in
COOPS and OLLVM in terms of the cost of disk before
and after the obfuscation. The x-axis represents each test
program, and the y-axis represents the ratio of cost of disk
of postobfuscation to preobfuscation. The results show
that the cost of disk of COOPS is close to that of OLLVM,
but the cost of disk of complex programs increases
significantly.

6. Related Works

COOPS is a code obfuscation method based on control flow
transformation, which effectively protects the program
control flow. In recent years, the new direction of new
control flow obfuscation is to expand the obfuscation
process from intraprocedure to interprocedure. The control
flow transfer becomes the program and the system to co-
operate with. The state-of-art research summarized below is
similar to the obfuscation method of function calling rela-
tionship proposed in this paper.

In [38], Miguel et al. proposed a mechanism based on the
routing of function calls to realize the static obfuscation and
diversification of the function calling graph. Compared to
the original software, the obfuscated calling graph had an
average difference of 25% in structure, and the fuzziness was
increased from 20% to 30%. In all cases, only 3% of the

Security and Communication Networks

13

2.5

14

Code Size

.
.
/
%
%
%
g

SUB
OCALLING

Parser

BCF
EEE FLA

FIGURE 18: Comparison of code size.

execution time was spent. This mechanism allowed the ef-
ficient reconstruction of the entire calling graph, thereby
improving the protection level without significantly affecting
the software performance.

In [39, 40], the authors proposed an obfuscating method
to extract code snippets from original functions and store
them in another function, ie., each function had code
snippets of other functions. The correct execution of the
program was realized by unconditionally jumping to the
address of the basic block stored in the new function. In [40],
Vivek et al. guaranteed the correct execution of the in-
struction by returning the instruction to the end function of
the basic block. Therefore, there were many return in-
structions in the main body of the function, so the reverse
tool was unable to correctly identify the boundary of the
function. However, the program could execute correctly,
which effectively obfuscated the calling relationship between
the functions.

In [41], the authors obfuscated the branching condition
containing the control flow logic of the program. They used
lambda calculus to hide the computational semantics of the
original condition and replaced the conditional jump in-
struction with the Lambda calculus function calling. This
obfuscation method can protect the key branching condi-
tions from symbolic execution technology with only mod-
erate overhead.

Tatsuya et al. imitated the obfuscation of the control flow
in functions, flattened and obfuscated the function calling
graph, employed the switchfunc function, and used random
numbers to ensure the proper scheduling of functions [42].
However, this method was easily influenced by dynamic
analysis and had certain obfuscating features.

The algorithm proposed in [43] generating the bogus
function calling graph, which changed the called function
before running the target program, and the program called
the Hook method at runtime to ensure its correct execution.
Although this method effectively resisted the static analysis
of programs, it failed to resist the dynamic analysis.

In [44], the authors removed the edge in the function
calling graph, i.e., the address of the calling function was
stored in a table at a different position from the obfuscated

program. When the program was executed, the obfuscation
program looked up the address table and restores the
function calling relationship.

In [45], the authors proposed an obfuscating method
based on Return Oriented Programming (ROP). This method
focused on transforming the direct control flow into an
indirect one, dividing the code in the binary file into a basic
block, and converting that basic block into code snippets
through binary tools. All identified direct control flows were
hidden by RET instruction, and all code snippets were added
to the original file to regenerate the obfuscated binary file.

The control flow mixing algorithms mentioned above can
be divided into two groups. One is obfuscating a specific
structure example in the function, as in [39, 40, 45], for
jumping between basic blocks. The others, e.g., [40-44],
scramble and obfuscate the function calling graph. The dif-
ference between COOPS and the studies covered above is that
our proposal obfuscates the jumps between basic blocks and
function-calling graphs at the same time. Besides, according
to dynamic and static program analysis, there occurs strategic
obfuscation. To conclude, COOPS provides more diversified
software calling graphs, achieving a better hiding effect on the
key structures in the programs. This richer diversity can better
protect software from code reverse engineering.

7. Conclusions and Future Work

This paper introduces COOPS, a code protection method
based on the obscure semantics. COOPS starts from pro-
gram semantics, regards functions as basic semantic units.
The switch relationship between the intrafunction control
flow and the interfunction calling is established, in which the
original semantic level of the program is destroyed. Ex-
periments show that COOPS can effectively change the
control flow structure of the program, and has excellent
resistance to similarity analysis techniques such as Asm2vec.
The difference in the degree of program calling relationship
between before and after obfuscation reaches more than
90%. COOPS makes the reverse analyzer have to face more
abstract functional units and significantly increases the cost
of code reverse engineering.

14

However, COOPS only implements inlining and out-
lining, and the obfuscation strategy is relatively simple. We
can expand it in future work to increase the diversification of
its obfuscation techniques.

Data Availability

The source code and the experimental results are available at
GitHub (https://github.com/Rookiellvm/COOPS).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Key Research and
Development Project (2016YFB08011601).

References

[1] M. Al Kadri, M. Nassar, and H. Safa, “Transfer learning for
malware multi-classification,” in Proceedings of the 23rd In-
ternational Database Applications & Engineering Symposium,
Athens, Greece, June 2019.

[2] M. Nassar and H. Safa, “Throttling malware families in 2d,”
2019, https://arxiv.org/abs/1901.10590.

[3] Y. Awad, M. Nassar, and H. Safa, “Modeling malware as a
language,” in Proceedings of the 2018 IEEE International
Conference on Communications (ICC), IEEE, Kansas City,
MO, USA, May 2018.

[4] H. Safa, M. Nassar, and Wael Al Rahal Al Orabi, “Bench-
marking convolutional and recurrent neural networks for
malware classification,” in Proceedings of the 2019 15th In-
ternational Wireless Communications & Mobile Computing
Conference (IWCMC), IEEE, Tangier, Morocco, June 2019.

[5] S. Schrittwieser and S. Katzenbeisser, “Code obfuscation
against static and dynamic reverse engineering,” International
Workshop on Information Hiding, Springer, Berlin, Heidel-
berg, 2011.

[6] K. Kuang, Z. Tang, X. Gong, D. Fang, X. Chen, and Z. Wang,
“Enhance virtual-machine-based code obfuscation security
through dynamic bytecode scheduling,” Computers & Secu-
rity, vol. 74, pp. 202-220, 2018.

[7] C. Collberg, C. Thomborson, and D. Low, A Taxonomy of
Obfuscating transformations, Department of Computer Sci-
ence, The University of Auckland, New Zealand, 1997.

[8] C. Collberg, T. Clark, and L. Douglas, “Manufacturing cheap,
resilient, and stealthy opaque constructs,” in Proceedings of the
25th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Boston, MA, USA, January 1998.

[9] G.Mylesand C. Collberg, “Software watermarking via opaque
predicates: implementation, analysis, and attacks,” Electronic
Commerce Research, vol. 6, no. 2, pp. 155-171, 2006.

[10] H. Xu, “Manufacturing resilient bi-opaque predicates against
symbolic execution,” in Proceedings of the 2018 48th Annual
IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), IEEE, Luxembourg, June 2018.

[11] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis
for malware detection,” in Proceedings of the Twenty-Third
Annual Computer Security Applications Conference (ACSAC
2007), IEEE, Miami Beach, FL, USA, October 2007.

Security and Communication Networks

[12] X. Xie, “Mixed obfuscation of overlapping instruction and
self-modify code based on hyper-chaotic opaque predicates,”
in Proceedings of the 2014 Tenth International Conference on
Computational Intelligence and Security, 1EEE, Yunnan,
China, November 2014.

[13] V. Sergeichik and I. Alexander, “Implementation of opaque
predicates for FPGA designs hardware obfuscation,” Journal
of Information, Control and Management Systems, vol. 12,
no. 2, 2014.

[14] Y. Yubo, F. Wenqing, H. Wei, X. Guoai, and Y. Yixian, “The
research of multi-point function opaque predicates obfus-
cation algorithm,” Applied Mathematics & Information Sci-
ences, vol. 8, pp. 3063-3070, 2014.

[15] D. Xu, M. Jiang, and D. Wu, “Generalized dynamic opaque
predicates: a new control flow obfuscation method,” in
Proceedings of the International Conference on Information
Security, Springer, Bali, Indonesia, September 2016.

[16] K. Yakdan, “No More Gotos: Decompilation Using Pattern-
independent Control-Flow Structuring and Semantic-Pre-
serving Transformations,” in Proceedings of the The 2015
Network and Distributed System Security (NDSS) Symposium,
NDSS, San Diego, CA, USA, February 2015.

[17] T.Laszl6 and A. Kiss, “Obfuscating C++ programs via control
flow flattening,” Annales Universitatis Scientarum Budapes-
tinensis de Rolando Edtvis Nominatae Sectio Computatorica,
vol. 30, no. 1, pp. 3-19, 2009.

[18] J. Cappaert and B. Preneel, “A general model for hiding
control flow,” in Proceedings of the Tenth Annual ACM
Workshop on Digital Rights Management, Chicago Illinois
USA, October 2010.

[19] J. Yi, “A security model and implementation of embedded
software based on code obfuscation,” in Proceedings of the
2020 IEEE 19th International Conference on Trust, Security
and Privacy in Computing and Communications (TrustCom),
IEEE, Guangzhou, China, January 2020.

[20] B. Johansson, P. Lantz, and M. Liljenstam, “Lightweight
dispatcher constructions for control flow flattening,” in
Proceedings of the 7th Software Security, Protection, and Re-
verse Engineering/Software Security and Protection Workshop,
Orlando FL USA, December 2017.

[21] P. Rajba and W. Mazurczyk, “Data hiding using code ob-
fuscation,” in Proceedings of the The 16th International
Conference on Availability, Reliability and Security, Vienna,
Austria, August 2022.

[22] P. Ahire andJ. Abraham, “Secure Cloud Model for Intellectual
Privacy protection of Arithmetic Expressions in Source Codes
Using Data Obfuscation Techniques,” Theoretical Computer
Science, vol. 922, 2022.

[23] M. L. Sharif, “Impeding malware analysis using conditional
code obfuscation,” NDSS, San Diego, CA, USA, February
2008.

[24] X.Xie, B. Lu, D. Gong, X. Luo, and F. Liu, “Random table and
hash coding-based binary code obfuscation against stack trace
analysis,” IET Information Security, vol. 10, no. 1, pp. 18-27,
2016.

[25] C. Linn and S. Debray, “Obfuscation of executable code to
improve resistance to static disassembly,” in Proceedings of the
10th ACM Conference on Computer and Communications
Security, Singapore, March 2003.

[26] Z. Sha, “Model of execution trace obfuscation between
threads,” IEEE Transactions on Dependable and Secure
Computing, 2021.

https://github.com/Rookiellvm/COOPS
https://arxiv.org/abs/1901.10590

Security and Communication Networks

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

(43]

K. Yadav, “Source code obfuscation: novel technique and
implementation,” ICT Systems and Sustainability, pp. 197-
204, Springer, Singapore, 2022.

M. Hataba, A. Sherif, and R Elkhouly, “Enhanced obfuscation
for software protection in autonomous vehicular cloud
computing platforms,” IEEE Access, vol. 10, Article ID 33943,
2022.

C. Lattner and V. Adve, “LLVM: a compilation framework for
lifelong program analysis & transformation,” in Proceedings of
the International Symposium on Code Generation and Opti-
mization, IEEE, San Jose, CA, USA, March 2004.

S. Ding, C. M. Benjamin, and P. Charland, “Asm2vec:
boosting static representation robustness for binary clone
search against code obfuscation and compiler optimization,”
in Proceedings of the 2019 IEEE Symposium on Security and
Privacy (SP), IEEE, San Francisco, CA, USA, May 2019.

L. Massarelli, “Safe: self-attentive function embeddings for
binary similarity,” in Proceedings of the International Con-
ference on Detection of Intrusions and Malware, and Vul-
nembility Assessment, Springer, Lisbon, Portugal, June 2019.
Y. Duan, “DeepBindiff: Learning Program-wide Code Rep-
resentations for Binary Diffing,” in Proceedings of the Network
and Distributed System Security Symposium, San Diego,
California, USA, February 2020.
BinDiff, “BinDiff,” 2001,
software.html.

A. L. Barabdsi, “Network science,” Philosophical Transactions
of the Royal Society A: Mathematical, Physical & Engineering
Sciences, vol. 371, Article ID 20120375, 1987 pages, 2013.

P. Junod, “Obfuscator-LLVM--software protection for the
Masses,” in Proceedings of the 2015 IEEE/ACM 1Ist Interna-
tional Workshop on Software Protection, IEEE, Florence, Italy,
May 2015.

J. L. Henning, “Spec CPU2000: measuring CPU performance
in the new millennium,” Computer, vol. 33, no. 7, pp. 28-35,
2000.

B. Anckaert, “Program obfuscation: a quantitative approach,”
in Proceedings of the 2007 ACM Workshop on Quality of
protection, Alexandria, VA, USA, October 2007.

M. Rodriguez-Veliz, Y. Nuiiez-Musa, and R. Septlveda-Lima,
“Call graph obfuscation and diversification: an approach,” IET
Information Security, vol. 14, no. 2, pp. 241-252, 2020.

V. Balachandran, W. K. Ng, and S. Emmanuel, “Function level
control flow obfuscation for software security,” in Proceedings
of the 2014 Eighth International Conference on Complex, In-
telligent and Software Intensive Systems, IEEE, Birmingham,
July 2014.

V. Balachandran, S. Emmanuel, and W. K. Ng, “Return
oriented obfuscation,” in Proceedings of the Eighth Int. Conf.
On Networks & Communications (NETCOM-2016), Sydney,
NSW, Australia, October 2016.

P. Lan, “Lambda obfuscation,” in Proceedings of the Inter-
national Conference on Security and Privacy in Communi-
cation Systems, Springer, Washington, WA, USA, October
2017.

T. Toyofuku, T. Tabata, and K. Sakurai, “Program obfuscation
scheme using random numbers to complicate control flow,”
in Proceedings of the International Conference on Embedded
and Ubiquitous Computing, Springer, Berlin, Heidelberg,
March 2005.

K. Fukuda and H. Tamada, “An obfuscation method to build a
fake call flow graph by hooking method calls,” in Proceedings
of the 15th IEEE/ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/

https://www.zynamics.com/

(44]

(45]

15

Distributed Computing (SNPD), IEEE, Las Vegas, NV, USA,
September 2014.

L. Jones, “Flowtables: program skeletal inversion for defeat of
interprocedural analysis with unique metamorphism,” in
Proceedings of the 5th Program Protection and Reverse En-
gineering Workshop, Los Angeles, CA, USA, December 2015.
D. Mu, “ROPOB: obfuscating binary code via return oriented
programming,” in Proceedings of the International Conference
on Security and Privacy in Communication Systems, Springer,
Washington, WA, USA, September 2017.

https://www.zynamics.com/software.html
https://www.zynamics.com/software.html

