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As the video streaming traffic grows exponentially nowadays, variable bitrate (VBR) encoding has been widely utilized by modern
live video streaming service providers, such as YouTube, TikTok, and Twitch. However, video bitrate can be a delicate fingerprint
of the video streaming, leading to risks of privacy leakage. )ere are several studies that attempt to eavesdrop the privacy from
encrypted video streaming, but most of them presume strict requirements on the implementation environments and have great
limitations when noise interference exists. Actually, the video traffic from the multimedia edge server is distinct from inter-
application traffic flows due to device customization and can be identified even if there are noise interferences or the victim in a
weak network condition. In this paper, a video traffic identification method is proposed to identify the encrypted video streaming
frommultimedia edge server under the interference of irrelevant traffic flows. Initially, we use an interapplication filter to identify
the traffic from the edge server. )en, a longest-common-subsequence (LCS)-based method is developed for similarity matching
to resist the noise interference from unpredictable burst traffic and network environment variations. In order to evaluate the
system performance, we setup the prototype system with an AWS EC2 server and a raspberry pi device, then utilize the real-world
trace data for pushingmovies to victims.)e experimental results show that the accuracy of our proposed strategy can reach 89.1%
within 140 seconds eavesdropping even mixed with 14% noise interference.

1. Introduction

With the improvement of the network bandwidth, the video
streaming service has been popular in recent years, which
quickly sweeps across the world and takes up the viewers’ free
time by high-quality content in live e-commerce, sports
events, or video games. For example, according to the report
of Statista, which is a global business data platform, shows that
the number of monthly active users of TikTok worldwide has
exceeded 1 billion [1]. Meanwhile, the number of monthly
active users of YouTube has exceeded 2.3 billion. However,
the growing number of users has brought great bandwidth
pressure to video data center. )anks to the development of
edge computing in recent years, more and more Internet
service providers try to save server resources and reduce the
round-trip time by handing user tasks to edge servers, such as
computation offloading [2] and video delivery [3]. In the
foreseeable future, more and more applications will be
handled by edge servers with the performance improvement
of edge devices and popularity of 5G infrastructure.

Conventionally, the bitrate-based fingerprint carried by
video traffic flow can be identified by video traffic pattern
analysis even with the transportation layer security (e.g.,
TLS) encryption. )ere are many studies attempting to
eavesdrop the content of videos from viewers which are
under TLS encryption in recent years [4–6], but most of
these works assume that the encrypted video stream can be
directly observed by attackers without interference of ir-
relevant traffic flows. Some studies also proposed noise-
resistant fingerprint identification methods, but all of them
are not suitable for video bitrate fingerprints [7]. Actually,
the video traffic is usually delivered from content delivery
network (CDN) which may serve multiple websites or ap-
plications at the same time [8]. )erefore, the complete and
noiseless bitrate-based traffic fingerprint can be hardly
identified from the real-world trace data. Furthermore, the
effectiveness of traffic fingerprints is highly sensitive to
network fluctuations, and the partial features of traffic
fingerprint will drift seriously during unstable network
conditions.
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)e prevalence of edge server brings a new risk to video
traffic identification due to the customization of the edge
devices. Conventionally, the CDN server usually undertakes
several tasks including video delivery and static resource
delivery using the same domain name, which will make it
difficult to identify the video traffic flow encrypted by TLS.
However, the multimedia edge server hardly delivers the
irrelevant traffic due to the customization of the edge device,
which leads to the possibility of identifying the bitrate-based
traffic flows from it.)erefore, the video traffic from the edge
server is easier to identify and the traffic features are more
stable. In this paper, we will present a noise-resistant video
traffic identification method for VBR traffic flow. We will
show that the traffic fingerprint from the real-world trace
data captured from multimedia edge server can also match
the bitrate fingerprint after appropriate preprocess. Initially,
a simple traffic filter which only uses three labels from the
unencrypted traffic is used to filter out the traffic that is from
the multimedia edge server. After that, an LCS-based fin-
gerprint-matching method is proposed to eliminate the
interference of the remaining two types of noise and match
the traffic fingerprint and bitrate fingerprint.

)e rest of this paper is organized as follows: )e lit-
erature is explored in Section 2. )e data analysis is pre-
sented in Section 3.)e system design is presented in Section
4. )e traffic filter and LCS-based matching method are
illustrated in Section 5 and Section 6. )e system perfor-
mance is evaluated in Section 7. Finally, Section 8 concludes
this paper.

2. Related Work

2.1. Privacy Leakage and Protection. With the growth of
Internet applications, new security issues arise with the
development of Internet infrastructures. On the one hand,
the new paradigms could bring facilities to our daily life such
as recommendation system [9, 10], computation offloading
[2, 11, 12], and route planning [13, 14]. On the other hand,
the privacy defense strategy also needs to consider more
aspects with the upgrading of infrastructure: mobile devices
[15], Internet of things (IoT) device [16–18], and cloud
server [14, 19]. Specifically, machine learning [20] and edge
computing are developed rapidly, which brings more
complex privacy leakage problems [21]. With the im-
provement of bandwidth and device performance, more
video streaming service providers use edge servers to cache
and distribute video content in order to reduce the pressure
of data center, which leads to the popularity of research of
multimedia privacy protection on edge server [22, 23]. In
this paper, we will discuss the privacy leakage caused by
encrypted video under noise interference.

2.2. Privacy Leakage from Video Stream. )e side channel
attack caused by privacy leakage of encrypted video has
attracted extensive attention in recent years. Saponas et al.
[4] makes fingerprints by using multiple sliding windows to
divide the video into segments of several milliseconds based
on VBR encoded video, but they only achieve 62% accuracy

with 10 minutes eavesdropping without noise interference.
Gu et al. [24] improved the DTW algorithm to make it
suitable for DASH protocol and made a classifier that can
identify videos from both Netflix and YouTube, but they
claim that the low bandwidth and high packet loss rate are
not in their consideration since users will normally leave
video streaming immediately because of the bad experience.
As the prevalence of machine learning, neural network has
an advantage of feature extraction in a sophisticated envi-
ronment. Schuster et al. [5] modeled the fingerprints and
proposed a CNN-basedmodel to identify the fingerprints for
VBR-based videos from YouTube and Netflix. Nevertheless,
all the bitrate-based video identification strategies need the
assumption of stable network. Otherwise, both weak net-
work condition and burst traffic will have a serious inter-
ference on traffic fingerprint, which will inevitably lead to
wrong identification results because the points in bitrate
fingerprint will be matched incorrectly. In the following part,
we will analyze the noise interference and then propose a
noise-resistant video traffic identification method.

2.3. Sequence Matching Method. Sequence matching
methods are essential in solving many pattern recognition
problems such as anomaly detection, speech recognition,
and other domains [25]. )e popular methods usually
consider using points for matching (e.g., Edit Distance on
Real Sequence (EDR) [26], Dynamic Time Warping (DTW)
[27]), using shape for matching (e.g., Frechet distance [28]),
and segmenting the sequence for matching (e.g., One Way
Distance [29]). Nevertheless, most sequence matching
methods do not consider the matching effectiveness in in-
terference environment. )anks to the powerful represen-
tation ability of deep learning, similarity learning can
accommodate heterogeneous features in the sophisticated
environments, and there are several deep-learning-based
methods like the CNN-based solution [30, 31], and the
LSTM-based solution [32]. However, deep-learning-based
models usually need online training to adapt the latest
features, and the computational cost is very high.

3. Traffic Data Analysis

In this section, we will introduce the video data analysis to
illustrate the video bitrate and several types of traffic noise
using the classic movie Titanic. In the following parts, nginx
and ffmpeg is used to push the encrypted video traffic,
Chrome downloader is used to provide the irrelevant traffic,
and wondershaper is used to simulate the weak network
environment with the random interference of bandwidth
limitation, RTT, and packet loss.

3.1. Side Channel Attack on Video Traffic. VBR can bring the
risk of privacy leakage through the bitrate fluctuation.
Figure 1 shows the bitrate of a video which encode with
constant bitrate (CBR) and VBR, and it can be seen that
there are significantly different fluctuation trends between
them.
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Additionally, TLS only encrypts the content, but leak the
statistical features of the traffic. Figure 2 shows the corre-
lation between the bitrate of VBR video and it is encrypted
video streaming.

Obviously, the privacy of video viewers can be identified
through the analysis of the video traffic even after encryp-
tion. When the attacker obtains a traffic fingerprint segment,
the privacy may be leaked.

3.2. Bitrate Features with Irrelevant Traffic. When providing
video streaming services for users, edge devices can also
provide other multimedia services from different websites at
the same time (such as encode offloading or download
acceleration), resulting in the eavesdropped traffic con-
taining multiple types of packets, which make it difficult to
identify the video traffic. Figure 3 shows the traffic from a
raspberry edge server, which contains only video stream and
both video stream and download stream.

It can be seen that the video stream traffic is covered by
mixed traffic, resulting in the disappearance of the video
traffic features.

3.3. Bitrate Features in the Weak Network Condition.
VBR features are usually easy to identify, which is more
likely to lead to privacy leakage. However, such features are
easily affected by noise or weak network condition, which
reduces the accuracy of identification. Figure 4 shows the
interference of bandwidth limitation and RTT on the traffic
fingerprint of Pirates of the Caribbean 5 from 1000 seconds
to 1700 seconds. )e video traffic is collected from raspberry
edge server.

Since the beginning of traffic eavesdropping, the
bandwidth limitation from 50 to 120 second and the burst
RTTfrom 170 to 180 second lead to video playback jitter and
corresponding backward drift of traffic features. Figure 5
adds the interference of 15% random packet loss to the traffic
fingerprint of Pirates of the Caribbean 5 from 2000 seconds

to 2200 seconds. Due to the packet retransmission function
of TCP protocol, the interference of feature drift is reduced,
but it still reduces the matching accuracy between bitrate
fingerprint and traffic fingerprint. In a word, the bitrate-
based video fingerprints raise stringent requirements on
network conditions.

3.4. Bitrate Features with Intra-Application Interference.
Even in the same application, the features will also be sig-
nificantly affected by user operations, which usually cannot
be predicted. Whether viewers explore the video list while
watching or communicating through the intrasite chat
system, it will have a destructive interference on the traffic
features and seriously reduce the identification accuracy.
Figure 6 shows the burst traffic by browsing the video list and
the interference on the traffic features.
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Figure 2: Video bitrate and traffic.
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Figure 3: Video traffic and mixed traffic.
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Figure 1: A comparison of CBR and VBR bitrate.

Security and Communication Networks 3



Obviously, the traffic generated by unpredictable be-
havior on 100 s to 110 s completely covers the original traffic
features.

4. System Design

In this section, we will present the system design with the
noise-resistant encrypted video traffic identification. )e
system structure is presented in Figure 7. )e proposed
system can be divided into following parts:

(i) Interapplication traffic filter: A filter based on three
labels including server name indicator (SNI) is
proposed to filter out the traffic that from the
multimedia edge server.

(ii) LCS-based fingerprint matching: An LCS-based
method is proposed formatching the traffic fingerprint
and bitrate fingerprint under noise interferences.

)e SNI tag is used to bring the domain name requested
by the server through a plain text in the handshake stage of
the TLS protocol. )e attacker can easily obtain the target
domain using SNI as an interapplication traffic filter, and
further identify the whole TLS session through IP address or
sequence number, and then obtain the video traffic flow
completely without other interinterference due to the cus-
tomization of the edge device. It should be noted that all the
video providers need to transfer the video stream according
to the protocol which specified by the edge multimedia
framework, and the edge server will use the unified video
protocol to send the video stream to users. As the popular
edge multimedia frameworks such as EasyNVR or Link
Visual all use TLS for video delivery, so our filter can be
regarded as a general method for the existing video service.
However, the traffic fingerprint will still affect by the burst
traffic from unpredictable behaviors (such as exploring the
video list), or the weak network condition, for example, low
bandwidth and packet loss after filtering. So an LCS-based
method is proposed to filter the intraapplication interference
and identify the matched segments between traffic finger-
print and bitrate fingerprint.

5. Interapplication Traffic Filter

We will propose a traffic filter to eliminate irrelevant traffic
from other applications in this section. )ree labels are
utilized to achieve the traffic filter: SNI, content type, and
source IP address (srcaddr):

(i) SNI is used to filter the video traffic which to be
identified.

(ii) ContentType is used to divide the TLS session.
(iii) IP address is used to obtain the continuous TLS

session.

)e video content is sent in stream, but each video
segment is encrypted in a TLS session, thus, the session is
denoted as a video segment in a fixed length. ContenType is
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Figure 5: Traffic features under packet loss.
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Figure 6: Burst traffic caused by user behavior.
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Figure 4: Traffic features under bandwidth limitation and RTT.
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used to check whether the packet is a TLS handshake packet
(denote the start of a new TLS session). Since the SNI in the
handshake packet holds the source domain name without
encrypted, all video streaming TLS sessions can be identified.
)e filtering process is shown in Algorithm 1.

After filtering, we get a set S � s0, s1 . . . sj􏽮 􏽯 containing j

packets in all TLS sections, where sj is a two-tuple
〈lengthj, timej〉 for the j th packet with tj as the arrival time
and lengthj as the packet length.

6. Noise-Resistant Fingerprint Matching

In the previous section, we obtain the packet sequence
through filtering the TLS session. However, the intra-
application interference still exists and seriously reduces the
matching accuracy. In this section, we will propose a noise-
resistant similarity matching method based on LCS model.
Before performing the matching model between bitrate
fingerprint and traffic fingerprint, we should discuss the
feature drifting caused by weak network condition and
intraapplication noise interference. )e bandwidth fluctu-
ation caused by weak network will limit the data obtained by
viewers and then destroy the traffic fingerprint. For example,
for the same video segment which bitrate fingerprint is (1, 2,
3, 4, 5), the traffic fingerprint eavesdropped from a viewer
with stable network is (2, 3, 4, 5, 6), but eavesdropped from
another viewer with weak network will become (2, 3, 0, 0, 4,
5, 6), which will seriously reduce the identification accuracy.
Similarly, the intraapplication noise will also change the
traffic features and reduce the accuracy. For example, the

traffic fingerprint eavesdropped from a viewer without in-
terference is (2, 3, 4, 5, 6), but when there is a burst traffic
caused by unpredictable behavior, the traffic fingerprint will
cover by burst traffic interference and become (2, 7, 11, 8, 6).
)e two types of interference above refer to the drift between
bitrate fingerprint and traffic fingerprint which violates the
uniqueness in a fine granularity observation, even though
the trend keeps consistent in the long-term observation.
In order to perform the similarity matching method, we
relocate the traffic fingerprint by second, as shown in
Algorithm 2.

)e algorithm recalculates the length of the packet in
sequence S and matches the element in bitrate fingerprint
with the timeline. Generally, weak networks and burst traffic
are infrequent, it means that if most intervals of traffic
fingerprint and bitrate fingerprint are matched in the long-
term trend, we can ignore a few local mismatch caused by
weak network or burst traffic. However, the common
similarity matching method requires that all the elements in
the sequence must be matched even if the fingerprint is
under interference. )erefore, we propose a fingerprint
matching method considering the traffic noise interference.
We define F(xa, xb) as the Euclidean distance between xa

and xb. For a given xa and xb, if F(xa, xb) is less than
threshold ϵ, the xa is considered to match xb. )en, a noise-
resistant model N-LCS based on LCS model is proposed to
adapt the fingerprint mismatches.

First, for the bitrate fingerprint TB and traffic fingerprint
TF, the points in TB can only match the points in TF forward
(e.g., TB

5 can only match TF
5,6,7...). )is is because during the
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Figure 7: An overview of system structure.
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video playback, the video player will not cache the played
video contents. In addition, the matching strategy of LCS
is too simple to adapt the weak network condition, so
N-LCS optimize the matching strategy to adapt the noise
interference. For TB � tb

0, tb
1, . . . , tb

d . . .􏼈 􏼉 and TF � t
f
0 ,􏽮

t
f
1 , . . . t

f
c . . .}:

(i) if t
f
c > tb

d and F(t
f
c , tb

d)< ϵ, the point t
f
c and tb

d are
considered to be matched.

(ii) if t
f
c > tb

d and F(t
f
c , tb

d)< ϵ, the point t
f
c and tb

d are
considered to be not matched, and the unmatched
point tb

d may have been caused by burst traffic.
(iii) if t

f
c < tb

d and F(t
f
c , tb

d)< ϵ, the point t
f
c and tb

d are
considered to be not matched, and the unmatched
point tb

d may caused by limited bandwidth, RTT or
packet loss. As the limited traffic will usually lead to
the drift of traffic features, and the backtracking
function should be added to LCS model in order to
drop the redundant fingerprint at the trail of TB to
avoid false matching.

We use a two-dimensional matrix M with the size of
k∗ k to save the temporary matching result, where k is the
length of bitrate and traffic fingerprint. )e values of matrix
M are calculated by the following formula:

M[i][j] �

M[i − 1][j − 1],

F t
f
i , t

b
j􏼐 􏼑> ϵ and t

f
i > t

b
j ,

M[i − 1][j − 1] + 1,

F t
f

i , t
b
j􏼐 􏼑< ϵ and t

f

i > t
b
j ,

max(M[i1][j − 1], M[i − 1][j]),

F t
f
i , t

b
j􏼐 􏼑< ϵ and t

f
i < t

b
j ,

0,

i � 0 orj � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0< i, j< � k,

(1)

where ϵ is the threshold of F. In order to eliminate the
interference of feature drift, N-LCS makes two rounds of
backtracking at the end of the algorithm. )e first round of
backtracking determines the drift distance of the traffic
fingerprint and drops the fingerprint at the tail of the bitrate
fingerprint according to the drift distance.)e second round
of backtracking will use the bitrate fingerprint calculated in
the first round to find thematching path in thematrixM and
calculate the longest common subsequence between two
fingerprints according to the new matching path using
dynamic programing as the matching result. )e calculating
process is shown in Algorithm 3.

Figure 8 shows the partial match result between traffic
fingerprint and bitrate fingerprint. )e red line shows the
match relation between bitrate and traffic fingerprint. It can

be seen that the LCS-based matching model can successfully
ignore the invalid features caused by interference.

7. Implementation and Evaluation

7.1. Experimental Setup. In order to build the prototype
system, we have an Amazon EC2 server as the video
stream server, a raspberry pi as the edge server, and an
Xiaomi 11 Ultra as the victim, respectively. )e server
configuration is listed in Table 1. nginx and ffmpeg is used
to push the video streaming in RTMPS protocol, and
Wireshark is used to simulate Man-In-)e Middle
(MITM) attack to capture the encrypted TLS traffic of the
victim. We use videos with several bitrates to generate the
bitrate and traffic fingerprint and evaluate the effective-
ness of N-LCS, and the configuration of video dataset is
shown in Table 2 ()e data set can be found at https://1drv.
ms/u/s!AnB84OgJQM04jkAYDlzO9fhchxeZ?e�fj4cY8).

7.2. Effectiveness of the Traffic Filter. )en we test the ef-
fectiveness of the interapplication traffic filter proposed in
Section 5. We use Wireshark to capture the video traffic
encrypted by RTMPS protocol, and A domain name reg-
istered from Tencent cloud is used to fill in the SNI tags. )e
output traffic from the edge device and the filtered input
traffic from the victim are collected, respectively, as shown in
Figure 9. )e results show that the proposed traffic filter can
identify all the target TLS sessions accurately.

7.3. 8reshold Analysis. In this part, we will calculate the
threshold ϵ of N-LCS model, which is used to identify the
matched point in traffic fingerprint and bitrate fingerprint. A
total of 300 groups of 50 seconds bitrate fingerprints and
traffic fingerprints are used to calculate the similarity dis-
tance in the following cases, and the similarity distance is
shown in Figure 10:

(i) Fingerprints come from the same video.
(ii) Fingerprints come from different videos, but the

bitrate is similar.
(iii) Fingerprints come from different videos, and the

bitrate of different videos varies greatly.

)en, True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN) is used to define
accuracy:

Accuracy �
TP + TN

TP + TN + FP + FN
. (2)

After that, we use the intersection of two false rate lines
as the threshold to maximize the accuracy. As shown in
Figure 11, 239 is the best threshold to reach the maximum
accuracy of 0.766 (76.6% points in the fingerprints can be
accurately matched).
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Finally, we calculate the identification accuracy with
1–100 matching points as the threshold δ in above three
cases, and the results are shown in Figure 12. When the
bitrate of different videos varies greatly, there are less
matched points between fingerprints, and the similarity
distance between mismatched points is usually large, so only
a small threshold is required to achieve high accuracy. When
the bitrate is similar and the length of fingerprints is short,
there are also many matched points though the fingerprints
that come from different videos, result in the a lower ac-
curacy compared with other cases. Since the identification
accuracy of the threshold for matching points is not 100%,
the identification accuracy will eventually decrease to 0 with
the increase of threshold δ. Considering the difference be-
tween fingerprints, we use 0.43 as the threshold δ in fol-
lowing experiments.

7.4. 8e Effectiveness of N-LCS without Noise Interference.
Figure 13 compares the N-LCS with two popular similarity-
matching methods in a noise-free environment with dif-
ferent fingerprint lengths.

With the increase of fingerprint length, the proportion of
matched segments in fingerprints gradually stabilizes, so the
accuracy of all algorithms are increasing. However, the focus

of N-LCS is to identify and remove the noise interference in
the traffic fingerprint, rather than improve the matching
accuracy of fingerprints without noise interference; there-
fore, the accuracy of N-LCS is close to Pearson. It is worth
noting that the fluctuation of traffic features lead to the poor
performance of DTW algorithm based on global optimal
distance, and the accuracy is significantly lower than Pearson
and N-LCS.

7.5. 8e Effectiveness of N-LCS under Noise Interference.
In order to evaluate the effectiveness of N-LCS under the
noise interference, we use the automatic script to randomly
generate different levels of noise interference during video
playback. )e fingerprint with a length of 200 seconds is
used to test the interference of bandwidth limitation, burst
RTT, packet loss, and burst traffic on the identification
accuracy of N-LCS under different noise levels. )e results
are shown in Table 3 then, the traffic captured with mixed
noise (bandwidth limitation, packet loss and burst traffic
account for 1/3 respectively) is used to compare the N-LCS,
Pearson, and DTW algorithms. )e results are shown in
Figure 14.

With the increase in the proportion of noise inter-
ference, the identification accuracy of above algorithms

Input:
packet sequence P;

Output:
packet sequence S;

(1) while packet [++i] !�NULL do
(2) if ContentType��HandShake and SNI �� target domain then
(3) Create a new sequence s

(4) Old IP � packet [i]. ip
(5) else if ContentType !�HandShake and packet [i].ip��Old IP then
(6) Add packet [i]. length to sequence
(7) end if
(8) end while

ALGORITHM 1: Video filter.

Input:
packet sequence S;

Output:
traffic fingerprint Tf;

(1) old time� 0
(2) acc len� 0
(3) while packet [++i] !�NULL do
(4) ifpacket [i].time - old time≥ 1 then
(5) Tf. append(acc_time)
(6) acc len� 0
(7) old time ++
(8) else if packet [i].time - old time< 1 then
(9) acc len +� packet [i]. length
(10) end if
(11) end while

ALGORITHM 2: Traffic fingerprint relocator.
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decreased in varying degrees, while the accuracy of DTW
and Pearson decreased much faster than N-LCS. In ad-
dition, when the proportion of noise interference is less
than 14%, the accuracy of N-LCS decreases slowly, while
when the proportion exceeds 15%, the accuracy decreases
significantly. )is is because the N-LCS matching strategy
reserves sufficient redundant for noise interference. )e

average number of matching points between matched
fingerprints is much higher than the identification
threshold, and it will not have a great interference to the
accuracy though there is a small amount of unmatched
points. )en, we set the noise proportion to 14%, and
compare N-LCS with three latest identification methods
based on video fingerprint: beauty [5], p-dtw [24], and

Input:
bitrate fingerprint TB;
traffic fingerprint TF;

Output:
the length of subsequence Result

(1) k � len (TB); define matrix M [k][k] and pre [k][k]
(2) for iterate TF and TBdo
(3) if TF [i] - TB [j] < ϵ then
(4) if TF [i]>TB [j] then
(5) M [i][j]� M [i− 1][j− 1] + 1, mark i and j as matched points in matrix pre
(6) else
(7) M [i][j]� M [i− 1][j− 1]
(8) end if
(9) else ifM [i− 1][j]>M [i][j− 1] then
(10) M [i][j]� M [i− 1][j]
(11) else
(12) M [i][j]� M [i][j− 1], mark i and j as noise points in matrix pre
(13) end if
(14) end for
(15) i� TF.length; j� TB.length
(16) while iterate similarity path in pre do
(17) if pre [i][j] holds noise points then
(18) tmp ++
(19) end if
(20) end while
(21) i� TF.length - tmp; j� TB.length
(22) while iterate similarity path in pre do
(23) if pre [i][j] holds matched points then
(24) Result ++
(25) end if
(26) end while

ALGORITHM 3: N-LCS solver.
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Figure 8: )e comparison of matching result. (a) Video traffic in weak network conditions. (b) Video traffic with burst noise interference.
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leaky [33]. )e test video clips were taken from the
films Titanic, Pirates of the Caribbean 5, Inception and
Avengers 3. )e results are shown in Table 4. As the
previous methods only focus on the accuracy of matching
strategy, ignoring the noise interference from the real-
world eavesdropping environments, result in the

Table 1: Sever configuration.

ec2 raspberry pi
System Windows server 2019 Ubuntu 18.04
Memory 1GB 1GB
Cpu 2.5GHZ∗ 1 1.2GHZ∗ 4
Hard disk 30GB 16GB
Network bandwidth 10mbps 100mbps

Table 2: Video dataset.

Time bitrate
Pirates of the Caribbean 5 02:48:30 10.1mbps
Pirates of the Caribbean 5 02:48:30 8005 kbps
Pirates of the Caribbean 5 02:48:30 5991 kbps
Pirates of the Caribbean 5 02:48:30 4022 kbps
Pirates of the Caribbean 5 02:48:30 2074 kbps
Titanic 03:06:49 2607 kbps
Inception 02:28:21 1986 kbps
Avengers 3 02:29:33 2217 kbps
Trainspotting 01:34:16 1825 kbps
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Figure 9: )e comparison of output traffic from the edge devices
and filtered traffic from the victim.
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Figure 10: Similarity distance of our method.
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Figure 11: False rate of N-LCS.
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Figure 13: Accuracy of different methods without noise interference.

Table 3: Accuracy of N-LCS under different noise levels.

2% 4% 6% 8% 10% 12% 14% 16% 18% 20%
Bandwidth limitation 0.870 0.861 0.859 0.855 0.845 0.837 0.821 0.781 0.733 0.679
Burst RTT 0.868 0.870 0.856 0.845 0.839 0.833 0.821 0.779 0.724 0.661
Packet loss 0.909 0.904 0.905 0.876 0.881 0.874 0.861 0.830 0.806 0.778
Burst traffic 0.883 0.877 0.850 0.849 0.840 0.827 0.815 0.767 0.718 0.650
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Figure 14: Accuracy of different methods under noise interference.

Table 4: Accuracy of different methods under noise interference.

50 s 60 s 70 s 80 s 90 s 100 s 110 s 120 s 130 s 140 s
N-LCS 0.649 0.711 0.776 0.821 0.850 0.872 0.883 0.887 0.889 0.891
Beauty 0.369 0.461 0.545 0.618 0.682 0.717 0.751 0.772 0.791 0.807
P-DTW 0.420 0.491 0.553 0.605 0.649 0.677 0.701 0.721 0.737 0.752
Leaky 0.349 0.398 0.452 0.483 0.510 0.531 0.545 0.558 0.564 0.562
Here, the data unit is percentage. So, 0.649 means the accuracy is 64.9%. )e bolded values represent the highest value for each column.
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reduction of accuracy in the weak network condition and
N-LCS can reach the highest accuracy even under noise
interference.

8. Conclusion and Future Work

In this paper, we proposed a noise-resistant bitrate-based
identification method for encrypted video traffic on the
raspberry pi platform, which uses the LCS-based model to
match the traffic and bitrate fingerprint. A real dataset using
several famous movies captured from edge server and a
prototype system was presented for performance evaluation.
)rough experiments, we proved that even the interference
proportion can reach to 14%, and we can reach 89.1% ac-
curacy after 140 seconds traffic eavesdropping.

With the prevalence of video streaming system, our work
provides a new eavesdropping method that robust to in-
terference. In the future work, we will optimize our model
from the following two aspects. First, the identification
accuracy will be optimized when the traffic fingerprints
eavesdropped from victims are similar. Second, the pro-
posed method only supports the popular protocols used in
multimedia edge frameworks such, as RTMPS, and more
protocols will be supported, for example, HLS and DASH in
the future.
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