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In recent years, deep learning-based watermarking algorithms have received extensive attention. However, the existing algorithms
mainly use the autoencoder to insert watermark automatically and ignore using the prior knowledge to guide the watermark
embedding. In this paper, an end-to-end framework based on embedding guidance is proposed for robust image watermarking. It
contains four modules, i.e., prior knowledge extractor, encoder, attacking simulator, and decoder. To guide the watermark
embedding, the prior knowledge extractor providing chrominance and edge information of cover images is used to modify cover
images before inserting the watermark by the encoder. To enhance the robustness of watermark extraction, the attacking simulator
applying various differentiable attacks on the encoded images is introduced before extracting the watermark by the decoder.
Experimental results show that the proposed algorithm achieves a good balance between invisibility and robustness and is superior
to state-of-the-art algorithms.

1. Introduction

(e unauthorized distribution of copies has become a threat
to sharing of multimedia products. Hence, how to declare
the ownership of the products is an urgent problem to be
solved [1]. Digital watermarking technologies are widely
used in copyright protection by embedding copyright in-
formation into digital products [2], such as digital literature,
music, film, photography, and face portrait. Robustness
against different attacks is significant for the practical ap-
plication of digital watermarking. Traditionally, water-
marking algorithms mainly rely on hand-crafted features to
improve the robustness, such as applying various transforms
[3–5] or using perceptual masking [6, 7]. (e drawback to
these hand-crafted algorithms is that they are not simul-
taneously robust to some types of distortions because dif-
ferent types of distortions often require different techniques
[8]. Consequently, some deep learning-based algorithms

have been presented [9–23]. (ey usually utilize convolu-
tional neural network (CNN) to design end-to-end archi-
tecture with an encoder and a decoder. In order to further
improve robustness, some improvement measures are
proposed. (ese improvements can be categorized into two
classes, i.e., attacking simulation and model architecture
design [10]. (e summary of different watermarking algo-
rithms is listed in Table 1.

1.1. Attacking Simulation. Zhu et al. [11] were the first to
propose a robust watermarking network HiDDeN with an
attacking simulator. (e attacking simulator was inserted
into the network to satisfy the end-to-end training. How-
ever, HiDDeN can only be robust to a single attack, such as
JPEG, Gaussian blur, crop, and dropout. (en, Mellimi et al.
[12] and Ahmadi et al. [13] improved the attacking simulator
to resist combined attacks. Since JPEG compression attack is
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nondifferentiable, some works [14–16] focused on JPEG
compression simulation and improved the JPEG simulator
by various differentiable methods to enhance the robustness
against JPEG compression.

1.2. Model Architecture Design. Dhaya et al. [17] proposed a
lightweight convolution neural network (LW-CNN) for the
digital watermarking scheme, which had more resilience
than other standard approaches. Fang et al. [18] exploited a
template-based approach combined with U-Net to achieve
better robustness. Cun et al. [19] used SplitNet and Refi-
neNet to smooth watermarked regions for a better quality of
watermarked images. Mun et al. [20] introduced attention
mechanism into the watermarking field to achieve good
performance in robustness against attacks. In addition, some
notable algorithms with adversarial training [21–23] have
greatly improved the perceptual quality of the watermarked
images.

However, these existing CNN-based robust water-
marking algorithms focus on attacking simulation and
model architecture design before the watermark extraction.
(ey do not consider prior knowledge to guide the water-
mark embedding. To further balance between invisibility
and robustness, motivated by the traditional algorithms,
some prior knowledge, such as the chrominance and edge
saliency of cover images, is considered before the watermark
embedding. (e major contributions are as follows.

(1) We propose a prior knowledge extractor to obtain
the chrominance and edge saliency of cover images
for guiding watermark embedding.

(2) We propose an embedding guided end-to-end
framework for robust watermarking based on the
proposed prior knowledge extractor and attacking
simulator.

(3) We conduct a lot of empirical experiments to
evaluate the performance of the proposed algorithm
in terms of invisibility and robustness. Experimental
results demonstrate that our algorithm achieves a
good balance between invisibility and robustness and
performs better than state-of-the-art algorithms.

2. Methods

In this section, the proposed framework is described in
detail. (e overall architecture and loss functions are pre-
sented in subsection 2.1. (en, each module is explained in
subsections 2.2–2.6 one by one, i.e., prior knowledge ex-
tractor, encoder, attacking simulator, decoder, and
discriminator.

2.1.ModelArchitecture. (emain framework is presented in
Figure 1. As shown in Figure 1, the proposed model is based
on autoencoder structure, which consists of four modules: a
prior knowledge extractor, an encoder, an attacking simu-
lator, and a decoder. (e prior knowledge extractor obtains
prior knowledge to modify cover images for guiding wa-
termark insertion. After that, the encoder hides the water-
mark into the modified cover image. (en, the attacking
simulator performs various simulated attacks on encoded
images as a network layer. Finally, the decoder extracts the
watermark from attacked (or unattacked) encoded images.
(ese modules achieve their objectives through the fol-
lowing loss functions.

(e encoder aims to insert the watermark into the cover
image invisibly. So, the distortion loss is used to limit the
distortion of the encoded image by

LD Ico, Ien( 􏼁 � Ico − Ien
����

����
2
2, (1)

Table 1: Review of different deep learning-based watermarking algorithms.

Improvements References Techniques Attacks Capacity

Attacking simulation

Zhu [11] (e first work to simulate attacks by inserting the
noise layers

Crop, Gaussian, dropout, and
JPEG 90 bits

Mellimi [12] Simulation of noise layers against agnostic attacks JPEG, noise, and noise 1024 bits
Ahmadi
[13] Simulation of noise layers to resist mixture attacks Crop, Gaussian, resize, and

JPEG 1024 bits

Chen [14] Simulation of differentiable JPEG quantization JPEG 1024 bits

Jia [15] Combination of simulated and real JPEG in noise
layer JPEG, crop, and Gaussian 1024 bits

Ying [16] Training a network to simulate JPEG compression JPEG, scaling, and Gaussian A whole
image

Model architecture
design

Dhaya [17] Lightweight CNN scheme JPEG, Gaussian, and median 512 bits
Fang [18] U-net architecture Transparency, JPEG, and crop 128 bits

Cun [19] Combination of SplitNet and RefineNet Crop and color A whole
image

Mun [20] Attention mechanism JPEG, crop, filtering, and noise 512 bits

Yu [21] Generative adversarial network with attention
mask Noise, crop, and shift A whole

image

Hao [22] Generative adversarial network with a high-pass
filter Crop, Gaussian, and flip 30 bits

Li [23] Generative adversarial network with perceptual
losses Noise, filtering, and sharpen 1024 bits
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where Ico and Ien represent the cover image and encoded
image, respectively.

(e decoder wants to extract the watermark from the
encoded images as much as possible. So, the reconstruction
loss is adopted to improve the quality of the extracted
watermark by

LR M, Mout( 􏼁 � M − Mout
����

����
2
2, (2)

whereM andMout are the original watermark and extracted
watermark, respectively.

(e discriminator is used to judge whether the generated
images are similar enough to the cover images. (e dis-
criminator and encoder compete with each other. So, the
adversarial loss is considered to optimize the visual quality of
the encoded image by

LA � Ico, Ien( 􏼁 � log 1 − D Ico( 􏼁( 􏼁 + log D Ien( 􏼁( 􏼁, (3)

where D represents the discriminator.
(erefore, the total loss for the proposed framework is

Ltotal � αLD Ico, Ien( 􏼁 + βLR M, Mout( 􏼁 + cLA Ico, Ien( 􏼁, (4)

where α, β, and c are three hyper-parameters.

2.2. Prior Knowledge Extractor Module. Most existing deep
learning-based algorithms mainly use the autoencoder to
insert watermark automatically and ignore using the prior
knowledge to guide the watermark embedding. According to
the human visual system (HVS), people are less sensitive to
modification in regions with rich chrominance and edge
information [24–29]. So, the chrominance and edge saliency
proposed in [30] are considered prior knowledge in this
paper. (e cover image is modified before watermark in-
sertion to make the watermarking robust. Figure 2 depicts
the flow diagram of our proposed prior knowledge extractor.

In order to obtain the chrominance information of the
cover images, first, the cover image is converted into YCbCr
color space by

Y � 0.299R + 0.587G + 0.114B,

Cb � 0.564(B − Y),

Cr � 0.713(R − Y),

(5)

where Y represents the luminance component and Cb and Cr
represent chrominance components.

(en, the chrominance saliency SC(x) of a point x is
obtained by

SC(x) � 1 − exp −
f
2
b(x) + f

2
c(x)

δ2
􏼠 􏼡, (6)

where fb(x) and fc(x) are the normalization mappings of the
Cb and Cr components, respectively, δ is a parameter set as
0.25 in this paper.

In order to obtain the edge information of cover images,
the canny operator [31] is used to extract edge information.
(e edge saliency SE(x) of a point x is computed by

SE(x) � exp −
Canny(x) + 1

τ
􏼠 􏼡, (7)

where Canny(x) represents the result calculated by the canny
operator for a given point x and τ is a threshold set as 2 in
this paper.

Finally, as is known to all, the stronger the chrominance
and edge saliency are, the less sensitive the human eye is. So,
the cover image is modified by

Iin � Ico − 1 −
SC(x) + SE(x)

2
􏼠 􏼡, (8)

where Ico is the original cover image after normalization and
Iin is its modified one. According to (8), the greater the
chrominance and edge saliency is, the smaller the modifi-
cation of the cover pixel is, consequently, the relatively
greater the change of cover pixel is in the watermark
insertion.

2.3. Encoder Module. (e architecture of the encoder net-
work is illustrated in Figure 3. As shown in Figure 3, the
encoder network has two parallel branches corresponding to
the cover image and watermark image, respectively. One
branch uses some convolutional layers to extract shallow
detail features and deep semantic features of input nor-
malized watermark images. (e other branch uses a se-
quence of convolutional layers to extract features of the
input cover image for merging with the features extracted
from the watermark image. Specifically, in order to embed

Watermarked?
Adversarial loss LA

Encoder Decoder

Discriminator

Gaussian blur
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Dropout

JPEG compression

Attacking
Simulator

Prior knowledge extractor
Ien

Distortion loss LD
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Mout

Reconstruction loss LR

Iin

Prior
Knowledge

M

Normalization

Normalization

Figure 1: Overall architecture of the proposed model.
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watermark images into cover images, the encoder concat-
enates the features map extracted from each alternate layer
of the watermark branch to the corresponding output fea-
tures of the cover branch. Like [32], this concatenating
process is repeated four times. Finally, the cover image and
watermark are entirely fused as encoded images.

2.4. Attacking Simulator Module. In order to be robust
against a variety of image distortions, as shown in Figure 1,
an attacking simulator is inserted between the encoder and
decoder to simulate various attacks by differentiable
methods. Its parameters do not require to be updated during
the entire network training process. Note that each iteration
randomly selects one type of attack with equal probability.
Specifically,[33], as shown in Figure 4, our attacking sim-
ulator includes four types of attacks: Gaussian blur, crop,
JPEG compression, and dropout.

2.4.1. Gaussian Blur. Gaussian blur is also called Gaussian
smoothing. It blurs the encoded images by performing a
convolution operation with a Gaussian kernel.(e larger the
size of the convolution kernel, the stronger the blur attack.

2.4.2. Crop. Crop operation is simulated by randomly
cropping out a small rectangle from the encoded images,
namely, by replacing all the pixel values in this rectangle with
zero. Specifically, the attack is simulated by multiplying with
a 0–1 mask of the same size as the encoded image. In this
mask, the region with pixel value 0 represents the cropped
region, while the region with pixel value 1 represents the
remaining region.

2.4.3. JPEG Compression. (e steps of JPEG compression
are composed of color space transformation, discrete cosine
transform, quantization, and entropy coding. (e sampling
and discrete cosine transform steps are modeled by the max-
pooling layer and convolution layer, respectively. Especially,
as shown in Figure 5, the nondifferentiable quantization step
is approximately simulated by performing JPEG-mask on
the feature maps [11].

2.4.4. Dropout. Dropout attack is a common noise in image
processing. It is implemented by arbitrarily replacing a
certain ratio of pixels with zero. (e detailed processing is
similar to crop attack by multiplying with a 0–1 mask. (e

Iin

3/16

3/32 3/32 3/163/16

M 

Ien

3/16

3/16 3/32 3/32

concat concat concat concat

3/16 3/16 3/16 3/16 3/16

3/64 3/128 3/64 3/32 3/16 3/3

normalization

Figure 3: Architecture of the encoder. (e numbers in the form m/n represent the kernel size (m) and the number of kernels (n) in each
convolution layer.
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Figure 2: Flow diagram of the proposed prior knowledge extractor.
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difference is that the pixel values 0 and 1 are randomly
distributed in the mask.

2.5. Decoder Module. In the end-to-end training, the de-
coder carries out the decoding procedure after encoding or
attacking. (e structure of the decoder is shown in Figure 6.
(e decoder takes the encoded or attacked image as input
and extracts the watermark image. It uses seven Conv-BN-
ReLU blocks to extract the watermark image from the input
image. In this process, the function of convolutional op-
eration is to extract features, and batch normalization (BN)
speeds up the calculation while ReLU activation plays the
filtering role.(e final convolutional layer with a 3× 3 kernel
outputs watermark images.

2.6. Discriminator Module. (e primary role of the dis-
criminator is to improve the visual similarity between the
encoded and cover images by adversarial training. (e ar-
chitecture of the discriminator is presented in Figure 7. It is
similar to that of the decoder. (e difference is that the

discriminator outputs binary classification results to judge
whether the image contains the watermark or not.(erefore,
the discriminator is built with five Conv-BN-ReLU blocks,
an adaptive average pooling layer, a linear layer with a single
output unit, and a Sigmoid activation layer.

3. Experimental Results and Analysis

In this section, experiments are carried out to prove the
effectiveness and robustness of the proposed algorithm. (e
training datasets and experimental details are described in
subsection 3.1. (en, the ablation experiments in subsection
3.2 are performed to demonstrate the improvements in the
proposed algorithm. Finally, the robustness of the model for
different types of attacks is tested in subsection 3.3.

3.1. Experimental Datasets, Implementation Details, and
Evaluation Metrics

3.1.1. Experimental Datasets. 5,000 images randomly se-
lected from the COCO dataset [34] are used as cover images.

(a) Gaussian blur (b) Crop (c) JPEG compression (d) Dropout

Figure 4: Samples of various attacks: (a)Gaussian blur; (b)crop; (c)JPEG compression; (d)dropout.
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(ree types of images are taken as watermark images for
experiments. (ey are 5,000 logo images randomly selected
from logo-2k + [35], 5,000 digital number images from
MNIST [36], and 5,000 general images from ImageNet [37].
(ese watermarks are converted into grayscale images be-
fore embedding. 5,000 cover images and each 5,000 wa-
termark images are regarded as 5,000 pairs for the following
experiments. (en, the cover images and watermark images
are, respectively, divided into training/validation/testing sets
according to the ratio of 8 :1:1 and resized to 128×128.

3.1.2. Implementation Details. (e proposed watermarking
model is trained iteratively using the ADAM optimizer [38]
with an initial learning rate of 1.0e-3. (e batch size is set as
16. (e weights in the loss function shown in (4) are set as
α� 0.3, β� 0.7, and c � 0.001. In addition, all simulated
attacks have a hyperparameter governing the strengths: the
kernel width ω of Gaussian blur is 3; quality factor QF of
JPEG compression is 90; and ratios p of crop and dropout are
0.1 and 0.15, respectively.

3.1.3. Evaluation Metrics. (e image visual quality is
commonly evaluated by peak signal-to-noise ratio (PSNR)
and structural similarity index metric (SSIM) metrics. (eir
definitions are given in the following.

Given two images U and V, the PSNR can be defined as

PSNR(U, V) � 10log10
L
2

MSE(U, V)
􏼠 􏼡, (9)

where L is the maximum pixel value, which is usually set as
255, MSE is mean squared error defined as

MSE �

����

1
n

􏽘

n

i�1

􏽶
􏽴

Ui − Vi( 􏼁
2

, (10)

where n is the number of pixels.
(e SSIM between two images U and V is defined as

SSIM(U, V) �
2μUμV + C1( 􏼁 2σUV + C2( 􏼁

μ2Uμ
2
V + C1􏼐 􏼑 σ2Uσ

2
V + C2􏼐 􏼑

, (11)

where μU and μV are the means, σU and σV are the standard
deviations, σUV is the cross-covariance of U and V, and C1
and C2 are two constants used to avoid a null denominator.

3.2. Ablation Experiments. Here, some ablation experiments
are conducted to validate the proposed model. All the ex-
periments are performed under the combined attacks with
all four different types of attacks.

Firstly, we begin by analyzing what the prior knowledge
extractor can do. Table 2 shows the average PSNR and SSIM
values of 5,000 encoded images and 5,000 extracted wa-
termarks with/without the extractor. As the results are
shown, the visual quality of both the encoded images and
extracted watermarks is improved after introducing the
prior knowledge extractor. (is is because the extractor
obtains prior knowledge to find more suitable locations for
watermark embedding.

(en, we verify the effectiveness of the attacking sim-
ulator. So, we compared the proposed models without and
with the attacking simulator in the training stage.(e results
are shown in Table 2. As shown in Table 3, when the
attacking simulator is considered, although the quality of the
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encoded images is sacrificed a little bit and the quality of
extracted watermarks improves significantly. (e PSNR
values of the extracted watermarks increase from 24.12 dB to
38.19 dB and SSIM from 0.7824 to 0.9722.

(e experimental results in Tables 2 and 3 show that
either the prior knowledge extractor or attacking simulator
is significant to the robust watermarking.

3.3. Comparison Experiments with Other Algorithms. In
order to further evaluate the performance of the proposed
algorithm, our algorithm is compared with some existing
deep learning-based algorithms [39–41] in terms of both
invisibility and robustness.

3.3.1. Invisibility. (e challenge for digital watermarking is
to improve robustness while keeping invisibility. Figure 8
shows the visual comparison of different watermarking al-
gorithms. In addition, Table 4 presents their corresponding
numerical results by PSNR and SSIM. It can be observed
from Figure 8 and Table 4 that the watermarks are invisible
in the encoded images for the proposed algorithm with high
PSNR and SSIM values, while it is not the case for the other
three algorithms who suffer from a little color bias. (is is
due to the use of prior knowledge for guiding watermark
insertion in our algorithm.

3.3.2. Robustness. In order to test the robustness, the
encoded images are carried out in five different types of
attacks. Table 5 presents the average PSNR and SSIM values
of 5,000 encoded images and 5,000 watermark images for
four compared algorithms. In addition, Figure 9 shows some
visual samples of the extracted watermarks. It can be ob-
served from Table 5 and Figure 9 that the proposed algo-
rithm achieves the best performance for all five types of
attacks in both numerical and visual aspects, especially for
the combined attack. Although the encoded images are
distorted under various attacks, our algorithm can preserve
watermark fidelity to a great extent with few errors. How-
ever, it is not the case for the other three algorithms, whose
extracted watermarks suffer from some errors with some
noise in vision. (is is attributable to the watermarking
guidance of prior knowledge and the consideration of

Table 3: Performance comparison between the proposed model without and with an attacking simulator.

Attacking simulator
Encoded image Extracted watermark

PSNR SSIM PSNR SSIM
Without 41.02 0.9913 24.12 0.7824
With 40.69 0.9904 38.19 0.9722

Table 2: Performance comparison between the proposed model without and with the prior knowledge extractor.

Prior knowledge extractor
Encoded image Extracted watermark

PSNR SSIM PSNR SSIM
Without 37.56 0.9626 35.29 0.9595
With 40.69 0.9904 38.19 0.9722

Cover

Encoded

Luo[39] Ding[40] Baluja[41] Ours Luo[39] Ding[40] Baluja[41] Ours Luo[39] Ding[40] Baluja[41] Ours

Diff x 5

Figure 8: Some examples of the cover images (landscape, sportsman, and cat) and their corresponding encoded images, as well as their five
times magnified differential images.

Table 4: PSNR and SSIM values of three encoded images in
Figure 8 for different algorithms.

Algorithms
Landscape Sportsman Cat

PSNR SSIM PSNR SSIM PSNR SSIM
Luo [39] 30.19 0.883 31.34 0.896 30.46 0.886
Ding [40] 30.53 0.892 32.78 0.912 31.89 0.905
Baluja [41] 31.42 0.9012 33.97 0.924 32.75 0.917
Ours 36.71 0.957 38.12 0.963 36.92 0.959

Security and Communication Networks 7



attacking simulator in our algorithm. Regarding three dif-
ferent types of watermark images, all the compared algo-
rithms perform best on the MNIST watermarks. (e main
reason is that the other two types of watermark images are
more complex and contain more semantic information,
which results in more difficulty in the watermark extraction.

In addition, we evaluate the generalization performance
of different watermarking algorithms against attacks dif-
ferent from those in the training stage in two aspects, i.e.,
different attack levels and different attack types.

3.3.3. Different Attack Levels. Figure 10 shows the average
PSNR values of the extracted watermark images under
different attack levels. As shown in Figure 10, our algorithm
still performs better than the other three algorithms when
being attacked by different levels of various attacks. In
addition, the performance of all four compared algorithms
decreases with the increase in attack levels.

Different attack types. To evaluate the performance in
resisting the attacks that were not considered during the
training stage, we select four kinds of black-box image

Table 5: Comparison of robustness against different types of attacks.

Attacks Algorithms
Encoded image Extracted watermark

PSNR SSIM
Logo MNIST ImageNet

PSNR SSIM PSNR SSIM PSNR SSIM

Gaussian blur (ω� 9)

Luo [39] 33.79 0.9213 31.49 0.9109 32.76 0.9267 30.38 0.9015
Ding [40] 32.56 0.9146 30.24 0.8937 31.95 0.9086 28.89 0.8812
Baluja [41] 34.24 0.9322 32.62 0.9148 33.97 0.9275 31.04 0.9068

Ours 41.11 0.9751 36.24 0.9641 37.87 0.9753 34.92 0.9549

JPEG compression (QF� 60)

Luo [39] 33.08 0.9225 30.37 0.9021 31.43 0.9078 29.12 0.8994
Ding [40] 32.67 0.9114 29.73 0.8864 30.82 0.9026 28.23 0.8801
Baluja [41] 34.49 0.9511 31.39 0.9115 32.74 0.9248 30.59 0.9082

Ours 38.35 0.9657 34.17 0.9512 35.86 0.9573 33.11 0.9448

Crop (p� 0.4)

Luo [39] 32.93 0.9325 31.37 0.9121 32.66 0.9264 30.25 0.9027
Ding [40] 32.20 0.9007 30.88 0.8964 32.05 0.9128 30.08 0.8901
Baluja [41] 34.36 0.9461 32.59 0.9323 33.74 0.9456 31.23 0.9119

Ours 39.45 0.9727 37.06 0.9605 38.85 0.9773 36.39 0.9597

Dropout (p� 0.45)

Luo [39] 34.16 0.9321 32.45 0.9409 33.76 0.9487 31.07 0.9339
Ding [40] 32.64 0.9145 30.36 0.9047 31.83 0.9102 29.99 0.8995
Baluja [41] 33.97 0.9343 32.82 0.9222 33.75 0.9298 32.01 0.9186

Ours 39.18 0.9710 35.64 0.9586 36.83 0.9642 34.75 0.9503

Combined

Luo [39] 32.17 0.9189 30.01 0.8832 30.95 0.9045 28.67 0.8974
Ding [40] 31.01 0.9013 28.47 0.8813 31.08 0.8942 27.84 0.8757
Baluja [41] 33.12 0.9387 30.96 0.9102 31.89 0.9211 30.22 0.9032

Ours 37.64 0.9724 34.11 0.9505 35.79 0.9568 34.68 0.9501

Gaussian
blur

JPEG
compression

Dropout

Crop

(a) Luo[39] (b) Ding[40] (c) Baluja[41] (d) Ours (e) Luo[39] (f) Ding[40] (g) Baluja[41] (h) Ours (i) Luo[39] (j) Ding[40] (k) Baluja[41] (l) Ours

Combined

Figure 9: Visual comparison of robustness against different kinds of attacks. Samples (a)–(d) are from Logo-2k, (e)–(h) from MNIST, and
(i)–(l) from ImageNet.
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attacks (resizing, medium blur, salt and pepper noise, and
Gaussian noise) to test the model. (e levels of these attacks
are as follows: the scaling factor T of resizing is 2; kernel
width ω of medium blur is 3; ratio p of salt and pepper noise
is 0.2; and standard deviation σ of Gaussian noise is 1.0.
Table 6 shows the average PSNR values of the extracted
watermark images of different algorithms. As can be seen
from Tables 5 and 6, the proposed algorithm still maintains
higher PSNR values than the other three algorithms, though
its performance decreases when facing attacks different from
the training stage.

4. Conclusion

In this paper, we propose an embedding guided end-to-end
framework for robust image watermarking. In this algo-
rithm, a prior knowledge extractor and attacking simulator
are introduced to guide watermarking embedding and en-
hance the robustness of watermark extraction, respectively.
(e experiment results demonstrate that, compared to the
existing algorithms, the proposed algorithm performs better
in both invisibility and robustness. However, the proposed

algorithm does not consider other common attacks in
practical application, such as printing, screen photography,
and geometric transformation. (erefore, in the future, we
will focus on the simulation of these attacks and study the
deep learning-based watermarking algorithms against these
attacks.
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