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Federated learning, as a new security exchange paradigm, is widely used in medical care, driverless cars, finance, and other fields.
However, federated learning still faces the problem of sybil attacks common in distributed frameworks. +e existing schemes
mainly defend against malicious model attacks with distance comparison, neural network, and confidence vote. But they are
significantly limited in dealing with collusive sybil attacks. +erefore, we propose a federated learning malicious model detection
method based on feature importance (Fed-Fi). Firstly, we screen important features by feature importance reasoning method
based on LRP and compare the similarity based on Hamming distance between important features. +en, we adjust model
learning rate adaptively to reduce the effect of collusive sybil attacks on the global model. +e experimental results indicate that it
can effectively resist the attack of collusive sybils in federated learning.

1. Introduction

When big data is gradually applied in medical, trans-
portation, finance, and other fields, its security issues also
pose a huge potential threat to user privacy. At the same
time, the strict data restrictions imposed by policies and
regulations also bring about new security challenges for
cross-domain data exchange. Hence, the pattern based on
user private data migration is no longer suitable for some
new data security exchange scenarios.

As a new pattern in data security exchange, federated
learning can realize cross-domain collaborative analysis
without multiparty private data aggregation. In federated
learning, users train private data locally to obtain models,
and the server completes joint training on global data
through aggregation of local models. Since the data is stored
locally, federated learning is considered to be one of themost
potential development directions in the field of data security
exchange.

However, FL also faces some key security challenges.
Malicious users may disrupt the training of the global model
by sending fakemodel updates.+e global model will change

the prediction results on a specific instance. +e central
server can only contact the user’s local model and cannot
access the user’s private data; therefore, malicious users can
control the federated learning global model by arbitrarily
modifying the local model. Recent studies have shown that
federated learning is vulnerable to sybil attacks in distributed
architectures. In sybil attacks, the adversary will increase the
success rate of the attack by controlling multiple users. +e
users controlled by the sybil will exhibit relatively similar
characteristics. Due to the influence of distributed archi-
tecture, federated learning is likely to be subject to saturation
attacks from users, that is, sybil attacks. In sybil attacks, the
adversary will influence the training of the global model by
controlling a large number of users. Server without detection
capability is easily controlled by the adversary. In order to
achieve the same attack goal, the local models controlled by
sybils often show the same characteristics. In contrast, the
local model updates of honest users often show diverse
characteristics. +erefore, the existing malicious model
detection algorithms use similarity comparison to eliminate
users whose models are too similar. On the one hand,
models with too much similarity are likely to come from
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users attacked by sybils. On the other hand, even if these
users are honest, the excessive similarity limits their con-
tribution to federated training.

As the level of attack-defense confrontation escalates, in
order to avoid the detection of malicious model algorithms,
sybil attacks are likely to coordinately tamper with model
parameters to reduce the similarity between malicious users.
For example, the adversary will deliberately tamper with the
parameters that are not important to the prediction result.
So, adversary will change the similarity of the model while
minimizing the impact of tampering as much as possible.
+erefore, we propose a federated learning malicious model
detection method based on feature importance (Fed-Fi).
Fed-Fi eliminates sybil collusion attacks by combining the
characteristics of model update diversity and tampering
impact minimization. Firstly, we screen important features
through the feature importance reasoning method based on
LRP. +en, we compare the similarity based on Hamming
distance between important features of different user models
and adjust the model learning rate adaptively. +e experi-
mental results show that Fed-Fi is almost unaffected in the
scenario of collusive sybil attacks, which proves that Fed-Fi
can effectively resist the destruction of collusive sybil attacks
during federal training.

In summary, the contributions of this paper are as
follows:

(1) We describe the threat model of collusive sybil at-
tacks in federated learning from the attack target,
attack capability, and attack strategy.

(2) We propose a malicious model detection method
based on feature importance, Fed-Fi, which can
screen and eliminatemalicious models by comparing
the important feature similarity of local models.

(3) Experiments prove that Fed-Fi is almost not affected
by the collusive sybil attacks, and it could effectively
resist the collusive sybil attacks in the federal
learning.

+e rest of this paper is organized as follows. Section 2
reviews related work. Section 3 introduces the threat model
of collusive sybil attacks. Section 4 describes the details of
this method. Section 5 verifies the detection ability of the
Fed-Fi algorithm through experiments and finally sum-
marizes the work of this paper.

2. Related Work

In this section, we introduce the basic concepts of federated
learning. +en, we classify and analyze the sybil attacks that
federated learning may suffer. Finally, we discuss the current
malicious detection algorithms based on different defense
strategies.

2.1. Federated Learning. +e federated learning consists of
server and n users (see Figure 1). +e goal of the server is to
learn a machine learning model based on n users, and the
goal of user is to find amodel parameterw that canminimize
the loss function through local training. LetDi represent the

local data set owned by user i, where i ∈ 1, 2, . . . , N{ }. |D| �

􏽐
N
i�1 |Di| represents the sum of data in all users. +erefore,

the server aggregates the model parameters of n users to
obtain

w � 􏽘
N

i�1
piwi, (1)

where wi represents the model parameters trained by the
user i, w represents the global model parameters aggregated
by the server, pi � |Di|/|D|≥ 0, and 􏽐

N
i�1 pi � 1. In sum-

mary, the global optimization problem of federated learning
can be formalized as follows:

w
∗

� argmin
w

􏽘

N

i�1
piFi w, Di( 􏼁, (2)

where Fi(w, Di) represents the local loss function of user i,
which is obtained through the local empirical risk function.
+e training process of federated learning usually includes
four steps: (1) local training: all users train the machine
learning model locally and send the obtained model pa-
rameters to the server; (2)model aggregation: the server does
not need any local private data to perform security aggre-
gation; (3) parameter broadcast: the server transmits the
aggregated parameters to n users; and (4) model update: all
users update their models and test the performance of the
updated models.

Federated learning allows n users to train model with the
help of the server jointly. +e size of the loss function is
inversely proportional to the accuracy of the model, so the
objective function optimization of federated learning is
usually to minimize the loss function.

2.2. Sybil Attacks. +is paper focuses on a malicious setting
in federated learning, where the adversary controls multiple
users and attempts to upload carefully designed parameters
to the central server. When these parameters are aggregated
with honest users, the global model will learn the pattern
expected by the adversary from the poisoning parameters.

Server

local model

global model

...

ClientClient

train

global model

train

Figure 1: Federated learning.
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We call these sybil attacks by controlling multiple nodes in a
distributed system.

To realize the sybil attacks, the adversary needs to control
multiple users completing the poisoning target. Existing
research has done a lot of research on poisoning attack
strategies. All poisoning attacks can be divided into two
categories: privacy security attacks and model quality attacks
(see Figure 2). Privacy security attacks refer to stealing the
privacy of users’ local data sets by analyzing and reasoning
model updates. In the existing research, the methods to
realize privacy security attacks can be divided into two types:
member reasoning attacks [1–3] and reconstruction attacks
[4–7]. Both derive private characteristics of local data from
the federated learning local model. +e member reasoning
attacks aim to determine whether a specific sample belongs
to the local training data set. Melis et al. [1] applied the
member inference attack to the federated learning for the
first time. +ey further inferred the training set features
through the batch attribute classifier. Shokri et al. [2] re-
alized the member reasoning attack by analyzing the dif-
ference between model updates with specific instances and
without specific instances. Recently, Nasr et al. [3] proposed
a comprehensive framework for federal learning privacy
analysis based on white-box membership inference attacks,
which can measure the risk of privacy leakage through
model parameters. +e reconstruction attacks aim to re-
construct the local training set by updating the constructed
model. Fredrikson et al. [6] proposed a method of maxi-
mizing the confidence values concerning a white noise image
to recover the original image from the local model of the face
recognition project. Hitaj et al. [7] proved that the malicious
users can reconstruct private data from other users using
generative adversarial networks (GAN), if it can access all
models in each training iteration.

In a poisoning attack, the adversary not only wants to
steal user privacy, but also may affect the prediction result of
the global model, that is, model quality attack.Model quality
attacks are divided into untargeted poisoning attacks [8, 9]
and targeted poisoning attacks [10, 11]. In untargeted poi-
soning attacks scenario, the adversary’s goal is to establish a
global model with low test accuracy, which has poor ac-
curacy for all categories in the test data. In the targeted
poisoning attacks scenario, the adversary attempts to control
the prediction direction of the global model. +e poisoning
global model will predict specific categories as incorrect
categories, such as label-flipping attacks [12] and backdoor
attacks [13, 14]. +is kind of targeted poisoning attacks
usually does not modify the accuracy of class prediction that
has nothing to do with the target class. It will avoid the
possibility of being detected by the central server as much as
possible. Bagdasaryan et al. [10] focused on backdoor at-
tacks, where malicious users can use model placement
strategies to inject backdoor attacks into the federated
learning global model. Zhang et al. [11] deployed a GAN
model on a malicious user to imitate the training data set
samples of other participants. +ey proposed a new type of
poisoning attack model for federated learning, which can
successfully launch poisoning attack under threat assump-
tions with fewer prior conditions.

2.3. Malicious Model Detection. Due to the particularity of
federated learning, the server cannot access the collection
and training phases of the user’s private data. It can only
obtain the update of the user’s local model. +is special
distributed structure makes the central server vulnerable to
sybil attacks [15]. Many sybil attacks’ defense follows an
outlier-detection-based strategy to exclude outlier model
updates. +ey assume that all honest users’ local model
updates are identically and independently distributed (IID),
so only filtering outlier models different from most models
can reduce the impact of sybil attacks. However, there is a big
difference between honest model because the user data are
non-IID in the federated learning. +is resulted in many
honest models being culled, and the global model was not
suitable for all honest users.

Multi-Krum [16] selects the single local model with the
smallest Euclidean distance from other local models as the
aggregation model. +en, the model deviating from the
overall data distribution will never be selected. Muñoz-
González et al. [17] choose to exclude a local model if its
cosine distance to the aggregation model deviates from the
median distance plus or minus the standard derivative.
However, this method has a high false-positive rate. Fool
Golds [18] assumes that datasets from different honest users
are different from each other and assigns different weights to
users by calculating cosine similarity between local models.
+erefore, users with high model similarity will be given
lower weights, which to some extent harms the interests of
honest users with similar data. Median [19], as a distributed
algorithm based on Median, proves its robustness against
Byzantine attacks by looking at Median as an aggregation
model.

In addition to the distance-based malicious model de-
tection methods, neural network training detectors and
confidence voting methods are also included. Zhao et al. [20]
proposed poison defense generative advermation network
(PDGAN) to detect persistent attacks. Precisely, the method
can reconstruct training data from model updates and audit
the accuracy of each participant’s model by using the
generated data [21, 22]. By establishing a high-quality data
test set in the central server, Su et al. [23] reduced the in-
fluence of malicious models to calculate the reputation of
each user. Baffle [24] sends the global model to a subset of
users who evaluate its quality based on local data and vote on
whether to accept it. +is approach relies on validating the
user’s data trigger sample. But honest users are not neces-
sarily able to trigger hidden attack categories.

In conclusion, we believe the distance-based detection
method is efficient, convenient, and practical. It has more
excellent research value in federated learning malicious
detection. But the similarity detection algorithm cannot
resist collusive sybil attacks, and we propose a federated
learning malicious model detection method based on feature
importance (Fed-Fi). Fed-Fi uses the Layer-Wise Relevance
Propagation to reversely derive important feature. +en,
server obtain similarity between important features of dif-
ferent user models based on Hamming distance. Finally,
server adjusts model learning rate adaptively to reduce the
effect of collusive sybil attacks.
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3. Threat Model and Motivation

Here we provide detailed threat model and motivation for
the sybil attacks in federated learning. Among them, Di

represents the local data set owned by user i, wi represents
the model parameters trained by user i, and Fi() represents
the loss function obtained by user i through the local em-
pirical risk function.

3.1. Attack Target. In our attack settings, the adversary’s
ultimate goal is to control the prediction results of the global
model by uploading the poisoned local model parameter w

p
i .

In general, the adversary controls multiple users in federated
learning to generate a global model that maintains high
accuracy for the main prediction task, while showing ob-
vious poisoning characteristics for specific target inputs. For
example, in the classification task, the poisoning attack
causes the global model to classify specific target samples to
the adversary target label, while maintaining a high accuracy
rate for nontarget samples to prevent being discarded by the
server. In this paper, we refer to this attack feature as the
tampering impact minimization, that is, the minimum
modification of model parameters, to ensure that they are
not discovered as much as possible under the premise of
achieving the target of the attack.

3.2. Attack Ability. Here, we define the adversary’s ability,
which represents what he can and cannot do in federated
learning. On the one hand, the attacker can (1) completely
control the local training data and training process; (2)
arbitrarily modify the hyperparameters; and (3) dynamically
change the local model update between communication
rounds. On the other hand, he cannot (1) influence the
aggregation and averaging algorithms on the server; (2)
control the training data or local training process of any
other honest participants; and (3) change the pre-agreed
local training algorithm.

In addition, in order to successfully deploy poisoning
attacks in the federated learning, the adversary must increase
the influence of poisoning parameters on the global model so
that the poisoning parameters can dominate the prediction
of the target class. We assume that the attacker can control

one or more users in the federated learning to launch sybil
attacks. But it needs to be explained that no matter how the
adversary tampered with the parameters of the poisoning
model, the adversary’s attack capability must also meet the
following two characteristics.

Model Update Diversity. +ere are n users in the fed-
erated learning, and they have different local dataDi, so
the model update wi (parameters) is also different. +e
poisoning model update does not have such charac-
teristics. Usually, the adversary will use multiple
identical poisoning data to enhance the impact on the
global model.
Tampering Impact Minimization. According to the
principle of attack-defense confrontation, we believe
that the adversary will follow the direction of mini-
mizing impact when tampering withmodel parameters.
+e adversary attempts to tamper with the model
parameters to increase the dissimilarity between the
poisoning model and the honest model. It will prior-
itize modifying the least important parameters in the
model because changing important parameters makes
poisoning attacks easier to identify. +e server will
abandon its secure aggregation when discovering the
abnormality of the model parameters.

3.3. Attack Strategy. Due to the saturated attack charac-
teristics of sybil attacks, the similarity between the param-
eters of the poisoning model is generally significantly more
significant than the honest model, which is an effective
detection method for sybil attacks at present. We believe that
the adversary can not only control multiple users in the
federated learning, but also have the ability to coordinate
[25]. +erefore, sybils will deliberately modify the similarity
between the parameters of the poisoning model through
joint negotiation to avoid server checks, that is, collusive
sybil attacks.

Collusive Sybil Attacks. We assume that the local model of
Sybil A is wa and the local model of Sybil B is wb. Sybils can
deliberately change the model similarity between Sybils A
and B by tampering with the value of the local model. We
adjust the local model of SybilA to w∗a � wa + δ and the local
model of Sybil B to w∗b � wb + δ. +en, when the aggregation
operation is performed on the central server, we can get
w∗a + w∗b � wa + δ + wb − δ � wa + wb. +erefore, by
adjusting the local model, the adversary can control the
similarity to any value between [0,1] and implement sybil
attacks at the same time. When it comes to single malicious
user, the adversary will use label-flipping attack or backdoor
attack to achieve an impact on the target tag (see Figure 3).
Label-flipping attack means that malicious users can make
the trained model deviate from the original prediction
boundary by reversing the label of the target class [26].
Different from label-flipping, backdoor attack [27, 28] re-
quires use some specific hidden modes to train a target deep
neural network (DNN) model on the poison training data
Dpoison. +e patterns chosen by the adversary are defined as

Poison
attack

Privacy
security

Model
quality

Membership
attack [1,2,3]

Reconstruction
attack [4,5,6,7]

Untargeted
Poisoning [8,9]

Targeted
Poisoning [10,11]

Label-flipping
attack [12]

Backdoor
attack [13,14]

Figure 2: Malicious attack classification in federated learning.

4 Security and Communication Networks



backdoor triggers that cause the learning model to produce
unexpected results during the prediction phase.

3.4. Motivation. +e purpose of the collusive sybil attacks is
to inject the final global model with label inversion attack or
backdoor attack through multinode collaboration. In the FL
system, the central server does not know any auxiliary in-
formation, only the gradient of the user.

Because honest users in federated learning have different
data feature distributions, the local model updates obtained
by the central server are diverse. However, sybils can effec-
tively enhance influence through multiple nodes in the dis-
tributed framework. At the same time, to prevent excessively
similar malicious models from being removed by the central
server, the similarity of malicious models between nodes is
adjusted by modifying unimportant feature parameters in the
model. +e fact that sybils conspire to evade detection by the
central server is essentially an escalation process of offensive
and defensive confrontation, making malicious models
harder to detect and remove. Layer-Wise Relevance Propa-
gation (LRP) is a feature contribution calculation method,
which reversely deduces the contribution of neurons through
the prediction results. Different neurons have different
contributions to the prediction results. Hamming distance is a
similarity comparison method, which judges the similarity
degree by comparing the similarity of positive and negative
signs of two vector codes. +erefore, we reverse-derive the
important features of the model through LRP algorithm and
then use the similarity of the more important features of the
Hamming distance to defend against the collusive sybil at-
tacks effectively.

In addition, differential privacy can effectively protect
the privacy security of federated learning users by limiting
L2 norm of model updates and adding randomly generated
noise. +is popular privacy protection mechanism is also

affected by poisoning attacks. +erefore, the research on
malicious model attacks has significant research value.

4. Our Proposed Scheme

In this section, we first introduce the feature importance
reasoning method based on LRP in federated learning.+en,
we compare the similarity between the important features of
the model based on Hamming distance. Finally, we propose
a malicious model detection algorithm Fed-Fi based on
feature importance to realize the detection of collusive sybil
attacks.

4.1. Feature Importance Reasoning. For a more vivid un-
derstanding, we collectively refer to the model parameters
mentioned above as model features. +e size of the parameters
essentially reflects the feature information of the model, which
is also common usage in machine learning. +e importance of
features refers to the degree of contribution to the prediction
results. If the feature contributes more to the prediction result,
the more important the feature is. However, due to the black-
box nature of neural networks, it is more challenging to rank
the importance of all features. Here we use the Layer-Wise
Relevance Propagation (LRP) algorithm [29] to calculate the
relationship between each feature xij and the model output
Fk(w).

+e LRP algorithm can use the output to infer the
contribution of neurons in the model. Neural network in-
cludes input layer neurons, output layer neurons, and
hidden layer neurons. +e model parameters are the biases
and the weights connecting these neurons. Our goal is to use
the LRP algorithm to rank the contribution of neurons and
then find the model parameters connected to these neurons.
+e more outstanding the contribution to the output result,
the more important the model parameters.
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Figure 3: Label-flipping attack and backdoor attack.
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In addition, we need to make some assumptions about
federated learning. +is is the primary condition of the Fed-
Fi algorithm: (1) there are honest users in the federated
learning; (2) the server has a small amount of sample data.
First, after the server obtains the local model of the honest
user, it inputs the sample data into the local model to obtain
the model output Fk(w). +en, through the model output
Fk(w), we can infer the contribution of each neuron to the
output. In the neural network (see Figure 4), the correlation
between all neurons is determined by correlations from all
upper neurons. Among them, Rk

m(xi) represents the cor-
relation of a neuron m in layer k, and xi is sample data.

R
k
m xi( 􏼁 � 􏽘

n∈Mk

R
(k,k+1)
m←n xi( 􏼁. (3)

For example, as shown in Figure 4, the correlation of
neuron m is accumulated layer by layer through prediction
results. We have

R
l1
a1

xi( 􏼁 � 􏽘
an∈l2

R
l1 ,l2( )

a1←an
xi( 􏼁 � R

l1 ,l2( )
a1←a4

xi( 􏼁 + R
l1 ,l2( )

a1←a5
xi( 􏼁

+R
l1 ,l2( )

a1←a6
xi( 􏼁 + R

l1 ,l2( )
a1←a7

xi( 􏼁. (4)

Here, “←” represents the connection relationship be-
tween two neurons, and (l1, l2) refers to the relationship
between the first and second layers in the neural network.
R(k,k+1)

m←n (xi) is composed of the ratio of local neuron to global
neuron affine transformation, which is given as follows:

R
(k,k+1)
m←n xi( 􏼁 �

am × Wmn

􏽐m∈Mk
am × Wmn( 􏼁 + μ

R
k+1
n xi( 􏼁 􏽘

m∈Mk

am × Wmn( 􏼁≥ 0,

am × Wmn

􏽐m∈Mk
am × Wmn( 􏼁 − μ

R
k+1
n xi( 􏼁 􏽘

m∈Mk

am × Wmn( 􏼁≺0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(5)

Here, am represents the value of neuron m in the data
instance xi, and Wmn is the weight between neuron m and
neuron n. A predefined stabilizer u≥ 0 is introduced to
overcome unboundedness. According to equations (3)–(5),

the contribution can be deduced inversely from the con-
tribution of the next layer:

Fk(w) � R
l3
a8

xi( 􏼁 + R
l3
a9

xi( 􏼁,

� R
l2
a4

xi( 􏼁 + R
l2
a5

xi( 􏼁 + R
l2
a6

xi( 􏼁 + R
l2
a7

xi( 􏼁,

� R
l1
a1

xi( 􏼁 + R
l1
a2

xi( 􏼁 + R
l1
a3

xi( 􏼁.

(6)

In summary, we can calculate the contribution of each
layer and each neuron according to the above equation.

4.2. Comparison Method of Important Features. Comparing
the similarity of different model parameters has been widely
used in malicious model detection algorithms. We can
explain the rationality of this detection idea from two
perspectives: (1) If the similarity is significant and the model
is malicious, then detection is successful; (2) if the similarity
is large and the model is honest, the detection fails, but the
contribution of the model with the large similarity to the
aggregation update is also limited. Essentially, this type of
algorithm converts the detected object into mathematical
sense. +is paper uses this idea to convert the difference
between malicious model and honest model into distance
difference in mathematical matrix.

Since the important features in FL model are incoherent
and scattered in parameter spaces, the existing methods such
as cosine similarity and Euclidean distance cannot represent
the natural properties of model updating. However, the sign
of model parameters is not easily changed, so we can dis-
tinguish the similarity of different local models significantly
by Hamming distance [30].

+e Hamming distance is derived from the transmission
error control code of the data, and it represents the percentage
of different bits corresponding to two characters, as equation
(7). Among them, diff(x · y) represents the number of x, y.
XOR operation result is 1. Since Hamming distance is a bit
operation, it could be directly applied to specific comparisons.
+is paper analyses the matrix characteristics of the model,
and we have made an adaptive improvement to the calcu-
lation method of Hamming distance.
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Figure 4: Layer-wise relevance propagation.
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DHamming(x, y) �
diff(x · y)

len|x|
�
diff(x · y)

len|y|
. (7)

First, the model parameters are composed of signed
values (positive and negative signs), and positive and neg-
ative values represent two opposite machine learning di-
rections. When the sybil maliciously tampered with the
model parameters to affect the global model, it must show
similar symbols. According to the model update diversity
characteristics, the similarity of the model parameter sym-
bols of the honest user must not be as significant as the
similarity between the sybils.

+en, we adjust equation (7). +e adjusted Hamming
distance refers to judging the number of different signs of the
corresponding parameter positions between the two ma-
trices, rather than bit operations, such as equation (8),
diff(x, y) represents the position, where all parameter value
signs are the same.

diff(x, y) �
1
N

􏽘

N

i�1
I sgn xi( 􏼁 � sgn yi( 􏼁( 􏼁. (8)

In summary, the working principle of malicious model
detection based on Hamming distance is as follows: the
server obtains all local model parameters wi,t and uses the
Hamming distance to perform similarity detection on the
local model to obtain the similarity matrix Di. +en, the
matrix is mapped to the range of [0,1] to get the matrix α,
and the logic function is used to map the matrix α to make
the similarity more reasonable distribution. Finally, the
learning rate of each model is obtained, which is aggregated
by the server into the global model. See Algorithm 1 for
details.

4.3. Fed-Fi. According to the collusive sybil attacks strategy
in Section 3.3, this paper summarizes that the collusive sybil
usually follows the principle of tampering impact minimi-
zation. +e sybil will deliberately tamper with the features
that are not important to the prediction result. Based on this,
we use the local model to calculate the feature sequence on
the global model prediction result. +en, we compare the
Hamming distance between the feature sequences of different
user models. Below we analyze the algorithm components
one by one. For details of the algorithm, see Algorithm 2.

Model Training. In the user operation phase, user k is
responsible for training the local model Mk using
private data Dk. +e model structure and initial model
are delivered to each user by the server. +e poisoning
user obtains the sybil poisoning data Ds

k through the
poisoning attack, and the honest user’s data is Dh

k. +e
user trains the local model Mk under the pre-
determined epoch and batch.+e adversary will control
multiple users to implement sybil attacks and at the
same time adjust the local model through the item δ to
avoid the detection algorithm of server.
Feature Selection. In the operation phase of the central
server, the server performs an important feature sorting

operation after receiving the user’s local model Mk. +e
server first obtains the model update of the honest user
and then runs the LRP algorithm to reverse the im-
portant features of the deep neural network (DNN),
obtains the importance of all user’s features Rk

m(xi),
and sorts them. According to equation (6), the server
can reversely calculate the correlation Rk

m(xi) between
any neuron and the final output result Fk(w) through
the weight parameter, where the correlation Rk

m(xi)

represents the size of its contribution. At the same time,
we set the parameter p to control the ratio of important
features, where the value of p is (0,1]. When p is 1, the
server selects all the features for similarity comparison;
Mi

k represents the filtered local model.
Similarity Contrast. +e server can obtain the local
model Mi

k based on the feature importance after feature
selection and use algorithm 1 to compare the similarity
of different users. Finally, we get the similarity situation
of important features, used to detect the behavior of
sybils adding disturbance to unimportant features.
Model Aggregation. After the above operations steps, as
in equation (1), the central server will performweighted

for all clients i do:
Si � 􏽐

T
t�1 wi,t

for all other clients j do:
diff(Si, Sj) � 1/N 􏽐

N
i�1 I(sgn(Si) � sgn(Sj))

Di � diff(Si, Sj)/len(Si)

α � Di/max(Di)

α � k(ln[α/(1 − α)] + 0.5)

wt � wt−1 + 􏽐iαiwi,t

ALGORITHM 1: HMFL.

Client operation:
//Model training
if client k is sybil then:

Ds
k←poisoningDk with collusive sybil

else:
Dh

k←Dk

for each local epoch i from 1 to E do：
for batch b ∈ B do

Mk � MG − η∇L(Mk, b)

end for
return Mk

Server operation:
//Feature selection
Rk

m(xi) � 􏽐n∈Mk
R(k,k+1)

m←n (xi)

Mi
k←maxp(Rk

m(xi))

//Similarity contrast
for all clients i do:

α←HMFL(Mi
k)

end for
//Model aggregation
MG � 1/n 􏽐

n
k�1 αiMk

ALGORITHM 2: Fed-Fi.
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aggregation during model aggregation. Fed-Fi will
compare the similarity of the user’s local model to
obtain the weight value α of each user.+at is, when the
global model is aggregated, the local user k corresponds
to the weight value αk.

5. Experimental Evaluation

5.1. Experimental Setup. We evaluate the malicious model
detection algorithm on the MNIST dataset [31], a hand-
written image dataset labeled 0–9. Among them, the training
set contains 60,000 image instances with a size of 28× 28.
+e test set contains 10,000 instances. +e research of Shen
et al. [32] showed that among all the poisoning attacks
launched on the MNIST data set, the most easily distin-
guishable source label and target label is (2,6), and the most
difficult to distinguish source label and target label is (4,8), so
we use these two sets of experiments as test cases for attack
detection algorithms. Among them, test 1 is source label 2,
poisoning target label 6; test 2 is: source label 4, poisoning
target label 8.

To better reflect the non-IID scenario of federated
learning, we set up a total of 10 users, each of which has only
one type of sample data, which means that any user cannot
train the global model separately, only through federated
learning to obtain the classification ability of 10 categories.
In addition, in the selection of malicious attacks, we use the
most commonly used label-flipping attack as an attack
method and set the malicious users to 5 and 10, respectively,
to simulate sybil attacks that can control multiple users. All
users use the model structure and initial parameters issued
by the server.

We injected item δ into the 50% weight value of model.
+e disturbance item δ is the smallest value in the weight of
the model, which is used to simulate the real collusion sybil
attack scenario. Finally, it should be noted that, to ensure the
validity of the experimental results, all experimental results
in this paper are the average of 10 experiments.

5.2.MaliciousDetectionAlgorithmBasedonModel Similarity.
We select the most popular detection algorithms and
evaluate their robustness in sybil attacks. Among them, the
Fool Golds algorithm represents the similarity comparison
based on the cosine direction; the Multi-Krum algorithm
represents the similarity comparison based on the Euclidean
distance; the Median algorithm is not based on the similarity
comparison, but this idea is also based on the perspective of
mathematical analysis. +is paper also includes this algo-
rithm in the scope of comparison. +e HMFL algorithm is a
malicious model detection algorithm based on Hamming
distance designed by ours.

Figure 5 shows the accuracy of the global model test
when different numbers of sybil attacks are added to the
federated learning. First of all, we observed that ten sybils
had a more significant impact on the accuracy of the global
model than five sybils. Secondly, algorithm’s accuracy with a

target label of 6 is slightly higher than that of the target label
with 8. We believe that the easier to distinguish classes are
more difficult to attack. Finally, the Fool Golds and HMFL
have the best results, which can effectively defend against the
influence of different numbers of sybil attacks. +e Multi-
Krum algorithm based on Euclidean distance is probably
stable at 70%–80%. We think this is because the algorithm
basically cannot resist the influence of sybil attacks. +e
target label cannot be accurately judged, and the perfor-
mance of other labels is no change. +e Median basically
cannot reflect the correct test set label. +is defense algo-
rithm is obviously not successful in dealing with sybil
attacks.

We show the details of several algorithms for defending
against sybil attacks (see Table 1), where the accuracy rate
represents the ratio of the source-target 2 (4) still predicted
to be 2 (4). +e false alarm represents the ratio of the source-
target 2 (4) is predicted to be 6 (8). Among them, the
probability that the HMFL and Fool Golds recognize label 2
as label 2 is similar to the global model accuracy, which
further shows that the algorithm successfully defended
against sybil attacks.+eMedian andMulti-Krum show that
they are unable to defend against sybil attacks, and more
than 95% of the source tag 2 (4) is successfully predicted to
be the target tag 6 (8).

In summary, we can conclude that HMFL is similar to
the current optimal Fool Golds algorithm and can effectively
defend against the influence of sybil attacks. In the next
section, we will test Fed-Fi to deal with the scenario of
collusive sybil attacks.

5.3. Algorithm Analysis Based on Feature Importance. In a
real attack scenario, the sybil may know the server’s de-
fense strategy in advance, and the defense algorithm based
on similarity is often easy to breakthrough by collusion.
Figure 6(a) shows the influence of collusive sybil attacks in
federated learning. When the sybils added perturbation
item δ to the 1%, 10%, and 100% features in the model, the
accuracy rate dropped rapidly to 78.42%, 79.56%, and
77.42%. +at is to say, almost all source labels were
identified as target labels in the test set. Figure 6(a) in-
dicates that none of the previous malicious model de-
tection algorithms can effectively resist collusive sybil
attacks.

Figure 6(b) shows the performance of the Fed-Fi under
the collusive sybil attacks. Firstly, it shows that the attack rate
is inversely proportional to the accuracy. Secondly, with the
adjustment of parameter p in the Fed-Fi (proportion of
selection of important features), when p< 50%, the impact of
the collusive sybil attacks is rapidly reduced, only 2%–4%;
when p> 50%, the performance of Fed-Fi is the same as that
of traditional malicious model detection algorithm. In
summary, we can see that the collusive sybil attacks can
significantly affect the accuracy of the global model. +e
existing malicious model detection algorithm cannot effec-
tively defend against this attack. Fed-Fi can achieve high
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Figure 5: Accuracy of malicious detection algorithm under sybil attacks.
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Figure 6: Fed-Fi algorithm performance. (a) Influence of sybils with varying degrees of disturbance p. (b) Influence of different percentages
of important characteristics.

Table 1: Performance index of malicious detection algorithm under sybil attacks.

Malicious detection algorithm Source: 2, target: 6 (%) Source: 4, target: 8 (%)

Median Accuracy 0 0
False alarm 98.87 99.79

Multi-Krum Accuracy 0 0
False alarm 94.57 98.47

Fool Golds Accuracy 88.27 91.95
False alarm 0.48 0.92

HMFL Accuracy 91.57 92.32
False alarm 0.2 0.31
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defense capability through important feature screening, but
this also depends on the selection of parameter p. We believe
that set different p for multiple sets of learning is a better
solution to malicious attacks. If the accuracy of global model
with varying values of p is considerable, it shows that the
federated learning being attacked by the collusive sybils. If the
impact of different p values on accuracy are limited, it shows
that there is no collusive sybil attacks or it has been filtered.

Table 2 shows the comparison of accuracy and attack rate
between Fed-Fi and other algorithms. From the table, it can
be seen that the accuracy of Fed-Fi under collusive sybil
attacks is 90.45%, while Fool Golds algorithm and HMFL
algorithm are bare unable to resist this attack. Its attack rate
is as high as 91.17% and 90.56%. Experimental results have
shown that Fed-Fi is an effective malicious model detection
algorithm.

6. Conclusions

With the rise of people’s awareness of privacy and the
restrictions of data security laws, the traditional pattern
could be adapted to some new data security exchange
scenarios. As a result, more and more users refuse to share
private data in their region due to privacy security con-
cerns. As a new paradigm in data security exchange,
federated learning can realize cross-domain collaborative
analysis without multiparty data aggregation. It is con-
sidered to be the most promising direction for data se-
curity exchange. Aiming at the collusive sybil attacks
scenario, we propose Fed-Fi based on the importance of
features. In this paper, we show the effectiveness of this
detection method. Firstly, we screen important features
through feature importance reasoning method based on
LRP. +en, we compare the similarity based on Hamming
distance between important features and adjust the model
learning rate adaptively.

On the other hand, the Fed-Fi still has some short-
comings. For example, the server needs to set a reasonable
detection threshold p. If the threshold is set unreasonably,
the detection efficiency of the server will decrease. In this
regard, we believe that multiple sets of detection thresholds p
can enhance the credibility of the detection algorithm. In the
future, we will also evaluate more malicious model detection
algorithms and further expand sybil’s attack capabilities and
attack scenarios and explore more efficient malicious de-
tection algorithms.
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