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Compared with the classical structure with only one controller in software-defined networking (SDN), multi-controller topology
structure in SDN provides a new type of cross-domain forwarding network architecture with multiple centralized controllers and
distributed forwarding devices. However, when the network includes multiple domains, lack of trust among the controllers
remains a challenge how to verify the correctness of cross-domain forwarding behaviors in different domains. In this paper, we
propose a novel secure multi-controller rule enforcement verification (BlockREV) mechanism in SDN to guarantee the cor-
rectness of cross-domain forwarding.We first adopt blockchain technology to provide the immutability and privacy protection for
forwarding behaviors. Furthermore, we present an address-based aggregate signature scheme with appropriate cryptographic
primitives, which is provably secure in the random oracle model. Moreover, we design a verification algorithm based on hash
values of forwarding paths to check the consistency of forwarding order. Finally, experimental results demonstrate that the
proposed BlockREV mechanism is effective and suitable for multi-controller scenarios in SDN.

1. Introduction

Software-defined networking (SDN) is more agile by means
of network programming [1]. With the development of edge
computing and artificial intelligence (AI) technology, AI-
enabled SDN provides users with a variety of applications
[2]. Compared with the classical SDN network with only one
controller, multi-controller framework can provide a new
type of cross-domain forwarding network architecture with
multiple centralized controllers and distributed forwarding
devices and has more benefits of flexibility and scalability. It
can overcome some drawbacks of classical SDN, such as
weak computing power, limited scalability, and high load of
the single controller. Clearly, it is very important to verify the
correctness of cross-domain forwarding rule execution by
using cryptology primitives or statistical knowledge, which is
referred to as rule enforcement verification. It ensures the
validity of cross-domain forwarding behaviors and main-
tains perfect network status, so as to offer better service-level

agreements (SLAs) for clients and meet the needs of
customized services.

However, multi-controller rule enforcement verification
technology still faces some security challenges. First, it lacks
the trust among controllers. Forwarding verification in each
domain is managed by its own controller. If the controller is
compromised, the entire network will be subject to single-
point failure attack. Adversaries can issue false messages to
deceive the controllers in other domains [3]. Second, it has
less privacy protection for entities on the forwarding path.
For example, the public identities of switches are easy to be
selected and determined as attack targets (e.g. middle-man
attack). Lack of index value protection for a forwarding path
can lead to the disclosure of the switches' forwarding order
[4], and the path deviation attack [5].,ird, controllers need
to collect outcomes of rule enforcement generated by
switches in its domain and maintain traceability, which
require more storage space [6].,ese operations cause heavy
load and high communication consumption to controllers
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[7]. Execution result of cross-domain forwarding func-
tionality in SDN is a critical factor determining the quality of
service (QoS), which motivates us to study multi-controller
rule enforcement verification in SDN in this paper.

Recently, some verification schemes in SDN have been
proposed in [8–10]. ,ese schemes mainly focused on the
verification algorithms to verify dynamic flow policies and
analyze service vulnerabilities. Every change of forwarding
behaviors will be checked in the real-time verification process,
which increases network computing overhead. Many cryp-
tographic techniques are used in authentication schemes
[3, 5, 11, 12], such as message authentication code, hash
function, and Merkle hash tree. However, these schemes
increase the relative latency of the network and the overhead
between switches and controllers. Moreover, they are based
on the assumption that the controller is trustworthy, which is
not practical in the multi-controller network.

Blockchain technology provides a decentralized and
distributed network, in which nodes that do not trust each
other can still interact successfully [13, 14]. Many schemes
[15–17] have applied blockchain technology into SDN, such
as Cochain-SC scheme adopting smart contract technology in
multi-domain SDN to resist against DDoS attacks. Although
the existing studies in [18–20] resorted to the blockchain
technology to record all network events, the design of multi-
controller rule enforcement verification models still has some
challenges when we combine SDN with cryptography and
blockchain technology: (i) how to improve the synergistic
effect between centralization in SDN and decentralization on
blockchain network to optimize network efficiency and se-
curity; (ii) how to design the verification scheme to be more
efficient and accurate; and (iii) how to protect the privacy of
entities and flows on the forwarding path.

To address the above challenges, we propose a novel
secure multi-controller rule enforcement verification
(BlockREV) mechanism in SDN to guarantee the correct-
ness of cross-domain forwarding. We first leverage block-
chain technology to reduce controllers’ load and provide
privacy protection for controllers and switches by broad-
casting transactions with their addresses rather than real
identities. Moreover, we use tags as flows’ pseudonyms so
that the real information of flows can be hidden. A provably
secure aggregate signature scheme is designed by cryptog-
raphy primitive technology to guarantee the effective veri-
fication accuracy of multi-controller rule executions.
Furthermore, we present a verification algorithm to ensure
the correct index of forwarding nodes in each domain
through checking the address sequence of switches. ,e
nested hash method of forward paths is used to verify the
correct order of operations among domains.

,e main contributions are summarized below.

(i) We propose a novel blockchain-enabled multi-
controller rule enforcement verification mechanism
in SDN, named BlockREV. We adopt the consor-
tium blockchain technology to provide traceability
and privacy protection for forwarding operations

and solve the problem of mistrust among
controllers.

(ii) We provide an address-based aggregate signature
scheme on cryptography primitives which is
provably secure in the random oracle model. Only
designated verifiers can verify signatures signed by
switches on the path, so as to provide protection of
entities’ privacy and index privacy.

(iii) We present a verification algorithm based on for-
warding path hash values to check the consistency
of forwarding order by means of comparing index
values of switches in actual path with that in the
configured path.

(iv) ,e security analysis shows that BlockREV is secure
and can resist many kinds of attacks. Performance
evaluation demonstrates that our proposed scheme
is effective and suitable for multi-controller sce-
narios in SDN.

,e rest of this paper is organized as follows. Section 2
presents some related works on rrule enforcement verifi-
cation schemes and aggregate signature algorithm. In Sec-
tion 3, we describe the problem statement. ,e construction
of BlockREV is shown in Section 4, and security analysis is
given in Section 5. Section 6 provides the performance
evaluation and result analysis. Section 7 concludes this
paper.

2. Related Work

In this section, we review the related works, which can be
summarized into the following three aspects: rule enforce-
ment verification schemes in SDN, rule enforcement veri-
fication schemes on blockchain, and applications of
aggregate signature algorithm.

2.1. Rule Enforcement Verification Schemes in SDN. Rule
enforcement verification process is an important stage to
confirm on the correctness of the rule execution and
guarantee the quality of the forwarding service in SDN.
Accordingly, there are many works on the rule enforcement
verification. A forwarding path verification mechanism was
proposed to flag forwarding path by the controller with a
custom probe packet [12]. In [10], a validation scheme,
named TrustTopo, was used to analyze service vulnerabil-
ities. Furthermore, it adopted the technology of asynchro-
nous rollback to verify a host location and the chaotic model
for link verification. In [9], the layer design between con-
troller and network devices, called VeriFlow, achieved the
real-time verification of potential violation of key network
invariants with a novel incremental algorithm to verify
dynamic flow policies. In [3], a multi-controller architecture
was proposed with distributed rule store for SDNs with
Merkle hash tree to detect rule modifications. However,
these schemes increase the relative latency and overhead of
controllers. In particular, checking each change of
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forwarding behaviors in real time results in a large amount
of network computation overhead.

2.2. Rule Enforcement Verification Schemes on Blockchain.
Blockchain is a decentralized and distributed peer-to-peer
network. ,ere are some research studies which integrate
blockchain technology and SDN. In [7], the authors in-
troduced a distributed cloud architecture based on block-
chain and SDN to provide secure and low-cost computing
infrastructure in IoT, in which end-to-end delay is mini-
mized between computing resources and IoT devices. In
[21], a new authentication approach was proposed using
blockchain and SDN techniques to remove unnecessary re-
authentications in repeated handover which is appropriate
for 5G network among heterogeneous cells. In [22], a new
model, called SDIoBoT, was presented leveraging SDN ar-
chitecture and the blockchain technology in 5G network, in
which an elliptic curve digital signature algorithm was
designed to ensure non-repudiation and integrity of the
communications in the model. In [17], a blockchain-enabled
architecture of controllers was proposed with an efficient
authentication method to eliminate the overheads of the
traditional blockchain, in which the cluster structure with a
new routing protocol was designed to optimize energy
consumption and enhance security in IoT. However, these
existing research studies do not fully consider energy con-
sumption issues; furthermore, the security proof of cryp-
tographic primitive algorithms needs to be supplemented.

2.3. Applications of Aggregate Signature Algorithm. An ag-
gregate signature scheme compacts a signature set into one
short signature to reduce the overhead of verifiers. In [23],
an aggregate signature scheme based on bilinear maps was
proposed firstly to reduce the size of certificate chains and
message size. In the literatures on the improvements of
aggregate signature schemes, there are two types: certificate-
based schemes [24–26] and certificateless schemes [27–30].
In [31], the authors proposed a certificate-based sequential
aggregate signature scheme, in which each node aggregates
the previous node’s signature and its own information to
obtain a new signature. Aggregate signature is aggregated by
signers in the specified order, and the order of signers is the
key factor for validation. In [32], an aggregate signature
scheme based on bilinear pairings with only one designated
verifier was proposed to provide privacy protection for
signers, which is a certificateless scheme that does not need
certificate storage and public key verification. However,
sequential aggregate signature scheme is not suitable for the
scenario with multiple controllers because it will expose the
information of all the previous forwarding nodes and the
index value of the paths. Furthermore, we need more des-
ignated verifiers in the process of cross-domain forwarding.

3. Problem Statement

In this section, we outline the system model, adversary
model, and security assumption. For convenience, some

important notations used in the paper are summarized in
Table 1.

3.1. System Model. Traditional cross-domain verification
solutions may result in single-point failure, high-level
overhead, and high maintenance cost. Our new verification
model has the following characteristics: unforgeability
(compromised entities cannot cheat others by means of
blockchain technology), anonymity (entities publish trans-
actions using pseudonymous address), security (the scheme
is robust for various attacks), and efficiency (compared with
related verification methods, it is more effective).

In this paper, our proposed verification mechanism is
inspired by Bitcoin system [33] and the aggregate signature
scheme with only one specified verifier [32]. We consider
that basic multi-controller architecture is flat, in which each
domain decorates only one controller and some switches for
its local network. Controllers in different domains inter-
communicate through east-west interface, and they are
managed by administrator which serves as the master
controller. Our proposed decentralized verification system
model consists of four parts which are divided into appli-
cation plane, block-controller plane, data plane, and man-
agement layer, as illustrated in Figure 1. Participants
involved in the model will be elaborated as follows.

(i) Switches: switches in the data plane are controlled
only by the controller in its domain. ,ey are
lightweight nodes with finite computing power
which are responsible for forwarding flows and
publishing forwarding transactions with their sig-
natures on the blockchain. Switches are semitrusted

Table 1: List of notations.

Notation Definition
GA Cyclic additive group
GM Cyclic multiplicative group
q Prime order of GA and GM
􏽢P Generator of GA

e Bilinear pairing: GA × GA⟶ GM

H1(·), H2(·) Hash functions: 0, 1{ }∗ ⟶ GA

H3 Hash function: 0, 1{ }∗ ⟶ Z∗q
H4 Hash function: 0, 1{ }∗ ⟶ 0, 1{ }∗

x Master key of the system
Y Public key of the system
i Domain serial number
j Index value in the domain Domi

IDij Identity of the switch sij

Tij Registration timestamp of the switch sij

Bij Partial private key of the switch sij

Uij Public key of the switch sij

Addrij Address of the switch sij

Tagf tag value of flow f

Pathi Forwarding rules in the domain Domi

txij Forwarding transaction published by the switch sij

outputAddrij Output address in txij

σij Individual signature generated by the switch sij

􏽥σi Aggregate signature generated by the controller ci

Message concatenation operation
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nodes, which may be compromised by adversaries
to do malicious behaviors.

(ii) Controllers: distributed controllers in block-con-
troller plane undertake the function of maintaining
the local network in their own domains. ,ey are
the core of the architecture linking applications and
network hardware equipment. Every controller
manages switches bymeans of standard southbound
APIs (e.g., OpenFlow [34]) and communicates with
application layer through standard northbound
APIs. ,ey act as simplified payment verification
(SPV) notes on the blockchain just like that in the
Bitcoin network and validate transactions published
by switches in their own domains without caring for
that in others.

(iii) Administrator: administrator node in the man-
agement layer is the manager of the block-control
plane. It can obtain global information of multi-
controller network and customize cross-domain
forwarding rules for flows. Administrator node also
provides a service of registration for entities and
flows in the blockchain network. In addition, it is
responsible for verifying the correctness of cross-
domain forwarding behaviors, which is the key
factor to guarantee the QoS of multi-controller
network.

(iv) Verichain: Verichain is a consortium blockchain
network, which stores forwarding transaction in-
formation and verifies the correctness of the en-
forcement of forwarding rules. It has the following
functions. Rule execution message stor-
age—Verichain stores rule enforcement messages
broadcasted by entity notes. It is responsible for
recording and forwarding transactions generated by
switches and confirming forwarding transactions
generated by controllers and the administrator. Rule

execution verification—administrator and control-
lers are qualified to verify the correctness of rule
execution results on the basis of distributed ledgers.
A special design of signature algorithm in this paper
ensures the validity of the verification authority.
Ledger update—Verichain expands its distributed
ledger with blocks and reaches consensus to record
the network status of SDN in real time. By updating
the ledger to record the operation behaviors of
entities, the execution of flow rules in the network
can be monitored.

All entities in SDN are the nodes on Verichain. ,e
administrator is a full node and keeps the whole blockchain
information. Although controllers and switches are light-
weight nodes, their functions are different. Controllers
validate forwarding behavior information of switches in its
domain, while switches only publish forwarding transac-
tions and are not responsible for the validation.

3.2. Adversary Model. ,e adversary A aims to destroy rule
execution behaviors and pass the verification with attacks as
follows.

Type 1 (Single-Point Failure Attack). ,e controller is a
key component of the centralized domain, the compromise
of which will cause serious interference in forwarding ac-
tivities and reduce the availability and reliability of services.

Type 2 (Middle-Man Attack). Anonymity easily leads to a
middle-man attack in which the adversary may pretend to be
a legitimate controller or switch to perform malicious
operations.

Type 3 (Path Deviation Attack). Malicious behaviors of
attackers make the flows unable to be forwarded according
to forwarding rules in many ways, e.g. switch bypass, path
detour, and out-of-order traversal [11].

In this paper, we make the following assumptions:
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Figure 1: ,e architecture of BlockREV.
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(i) ,e communication channels among entities are
secure, and hash functions are one-way and colli-
sion resistant.

(ii) Administrator is an honest node managing the
entire network. Controllers and switches are rela-
tively credible, which might be compromised in a
minority. Additionally, no collusion exists between
controllers and switchers.

(iii) Adversary A cannot obtain the master key of the
system but can replace the addresses of legal
switches.

4. Construction of BlockREV

In this section, we present the construction of BlockREV
mechanism. We first briefly overview the designed mech-
anism. ,en, we present system initialization stages and
forwarding process in BlockREV, respectively. At last, based
on the nested hash value method and aggregate signature
theory, we design the verification scheme of cross-domain
forwarding.

4.1. Overview. Controllers and switches register through
administrator to gain authority for the admittance of
consortium blockchain network. ,ey obtain their ad-
dresses and partial private keys in the registration pro-
cess. ,ese entities communicate anonymously with each
other using their addresses without revealing their real
identity information on Verichain. ,is anonymous
approach provides better privacy protection. After the
system initialization phase is completed, flows are for-
warded by the relevant switches in the domain. When the
destination node receives these flows, it sends a request
to the controller for forwarding out of the domain. ,en,
the controller confirms whether forwarding rules of flows
have been executed correctly in its domain; if so, it
submits the cross-domain forwarding request to the
controller in the subsequent domain. After two con-
trollers communicate with each other, they issue for-
warding instructions to the related switches, and a new
round of forwarding by switches begins in the subse-
quent domain. In order to ensure the correctness of
forwarding behaviors, the controllers and the adminis-
trator are responsible for verifying the forwarding be-
haviors in the intra-domain and the cross-domain,
respectively.

In our system, we suppose that flows will be forwarded
between two domains Dom1 and Dom2. Forwarding
among more domains can be inferred in the same way.
When the flow f proposes a cross-domain forwarding
requirement, Admin customizes forwarding rules for f

which will be sent to relative controllers and switches.
Verichain network stores every forwarding message in the
form of transaction, and the correct forwarding actions are
guaranteed by verification schemes with cryptography
technology.

4.2. System Initialization. ,e system initialization process
in BlockREV comprises three stages: system parameter
setting, entity registration, and flow registration.

(i) System Parameter Setting. ,e administrator node
Admin generates system parameters. Let additive
groupGA andmultiplicative groupGM be two cyclic
groups with the prime order q, and 􏽢P is the gen-
erator of GA. ,e bilinear pairing is
e: GA × GA⟶ GM. ,e collision-resistant cryp-
tographic hash functions are H1, H2: 0, 1{ }∗

⟶ GA, H3: 0, 1{ }∗ ⟶ Z∗q , and H4: 0, 1{ }∗ ⟶
0, 1{ }∗. Admin chooses a random number x ∈ Z∗q ,
and let Y � x􏽢P be the public key and x denote the
master key. ,e system parameter is
Params � 〈GA,GM, 􏽢P, q, e, Y, H1, H2, H3, H4〉.

(ii) Entity Registration. ,e SDN structure in this paper
includes multiple domains, and the i-th domain
Domi includes one controller ci and several switches
sij, where i is the domain serial number and j is the
index of the switch in the i-th domain. Entities
including controllers and switches register on
Verichain through administrator node Admin.,ey
are configured with unique partial private key for
signing. Specific steps of registration of a switch are
shown in Algorithm 1, in which the function
Addr(·) is a wallet address generation algorithm
which is the same used in Bitcoin network. After
that, Admin sends the information
(IDij, Uij, Tij, i, j,Addrij, Bij) to ci, where IDij is
the identity of switch sij, Uij is the public key of sij,
Tij is the registration timestamp of sij, Addrij is the
address of sij on Verichain, and Bij is the partial
private key of sij generated by Admin. ,en, the
controller ci stores and sends this information to
switch sij. ,e registration process of ci is similar to
that of switches, except for replacing ij with i0, and
Admin saves (IDi0, Ui0, Ti0, i, 0,Addri0, Bi0) into its
entity registration list ERList, where IDi0 is the
identity of ci, Ui0 is the public key of ci, Ti0 is the
registration timestamp of ci, Addri0 is the address of
ci on Verichain, and Bi0 is the partial private key of
ci generated by Admin.

(iii) Flow Registration. ,ere are two types of flows,
single flow and multiflow, which will be configured
cross-domain forwarding rules by the administrator
node after registering on Verichain. Suppose that
source host sends the flow f to switch s11 in domain
Dom1. Switch s11 searches its forwarding list and
does not find the flow f’s forwarding rules; then, it
sends a cross-domain forwarding requirement to
controller c1. After controller c1 has received this
requirement, it sends the information vector Vf �

(headerf,Addr10, Addr11, Tf), to the administrator
node Admin, where Tf is the registration timestamp
of f. After accepting Vf, administrator node Admin
computes the hash value βf � H1(Vf) and gets the
tag value Tagf � xβf and then saves (Vf,Tagf) in
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its flow registration list. According to the global
network status, administrator node Admin for-
mulates cross-domain forwarding rules with an
ordered set of addresses Pathf � ∪Pathi, where
Pathi denotes the forwarding rule with an ordered
set of switches’ addresses on the forwarding path in
Domi.

We assume that the forwarding rules are s11 − s12 − · · · −

s1m in Dom1 and s21 − s22 − · · · − s2n in Dom2, and the
corresponding set of addresses is Pathf � Path1 ∪ Path2,
where Path1 � Addr11, . . . ,Addr1m􏼈 􏼉 and Path2 � Addr21,􏼈

. . . ,Addr2n}, m, n ∈ Z+. s11 and s21 are source switches, and
s1m and s2n are destination switches in their domains. Ad-
ministrator node Admin computes h1

path � H4(Path1),

h2
path � H4(Path2), and h

f

path � H4(h2
path, H4(h1

path)). It up-
dates its forwarding list by Vf,Tagf, Pathf, h1

path,􏽮

h2
path, h

f

path}. Finally, administrator node Admin sends
Tagf, Path1, h1

path􏽮 􏽯 to c1, and Tagf, Path2, h2
path􏽮 􏽯 to c2,

respectively. Controllers c1 and c2 then install flow rules at
related switches in their own domains through a standard
control channel.

When there are l flows to be forwarded with the same
forwarding rules at the same time, administrator node
Admin will compress their tags into a single node Tag􏽥f

�

􏽐
l
i�1 Tagf in the registration process, and then multiple

flows will be forwarded in batch processing.

4.3. Forwarding Process in BlockREV. As shown in Figure 2,
the forwarding process in BlockREV includes three phases:
intra-domain forwarding, cross-domain forwarding, and
forwarding to destination host. Specific phases are described
as follows.

4.3.1. Intra-Domain Forwarding. In this phase, the flow f

will be forwarded from source switch s11 to destination
switch s1m in domain Dom1 or from source switch s21 to
destination switch s2n in domain Dom2. After forwarding
rule configuration of the flow f by the controller, the
related switches start forwarding. After completing the
forwarding, switch sij generates a forwarding transaction
txij with its signature and publishes it on Verichain. An
illustration of block data structure and transaction infor-
mation is shown in Figure 3. ,e specific verification al-
gorithm of forwarding order and aggregate signature
scheme will be described in Section 4.4. When the flow f

reaches switch s1m, cross-domain forwarding phase will
start. After the flow f reaches switch s2n, it will be for-
warded to the destination host in the last phase.

4.3.2. Cross-Domain Forwarding. In this phase, the flow f

will be forwarded in cross-domain manner from switch
s1m to switch s21 between domain Dom1 and domain
Dom2. When the flow f arrives at switch s1m in domain
Dom1, switch s1m sends an out-domain forwarding re-
quest to controller c1. As a domain manager, controller c1

checks whether the flow f has been forwarded correctly in
its domain or not. It firstly verifies whether the order of
switches in Path1 is correct in Dom1 or not. ,en, con-
troller c1 checks the validity of signatures signed in for-
warding transactions by switches on the forwarding path.
,e specific validation process will be explained later. If
the verification is passed, controller c1 aggregates m

signatures made by switches in Path1 into one signature
and sends it to administrator node Admin for the whole
path verification. ,e specific verification scheme will be
described later. Controller c1 publishes a confirmed for-
warding transaction tx10 on Verichain; after that, c1 sends
the cross-domain forwarding request of the flow f to
controller c2.

When controller c2 receives the request from controller
c1, it searches its forwarding list to find forwarding rules of
Tagf. If it makes, controller c2 checks transactions published
by controller c1 on Verichain to confirmwhether forwarding
behaviors in domain Dom1 have been verified by controller
c1. If the confirm information in tx10 is Yes, controller c2
gives an affirmative response to controller c1 with the ad-
dress information of source note s21 and dispenses the
forwarding instruction to s21. Otherwise, c2 rejects and
communicates the situation to Admin. If c1 receives the
affirmative response from c2, it responds to s1m that f should
be forwarded to s21. ,en, s21 receives f and begins a new
round of forwarding. ,e specific cross-domain commu-
nication process is shown in Figure 4.

4.3.3. Forwarding to Destination Host. In this phase, f will
be forwarded from s2n to the destination host. When f

reaches s2n, s2n sends an out-domain forwarding request to
c2. As a domain manager, c2 verifies rule enforcement just
like c1 has done. After receiving the aggregate signatures sent
by c1 and c2, Admin will verify whether the cross-domain
forwarding rules have been implemented correctly or not. It
first checks the correctness of the forwarding node order and
then verifies the validity of two aggregate signatures, re-
spectively, to guarantee the quality of forwarding service.
,e specific validation process is described later. After that,
Admin publishes a confirmed forwarding transaction on
Verichain. When the source host or the destination host
wants to estimate the correctness of forwarding behaviors in
SDN to ensure the security of f in the process of trans-
mission, he may look up the confirmed forwarding trans-
action about Tagf published by Admin through any full
node on Verichain.

4.4. Validation Process in BlockREV. In this section, we
design appropriate forwarding verification schemes for
controllers and administrator based on the nested hash value
method and aggregate signature theory. ,e technology of
cryptography and blockchain is combined with SDN to
ensure the correctness and effectiveness of the verification
scheme. We will describe the verification process in two
scenarios: intra-domain verification and cross-domain
verification.
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4.4.1. Intra-Domain Validation. In the intra-domain for-
warding phase, controller ci traces forwarding transactions
about Tagf on Verichain, which have been published by
switches in its domain. First, ci verifies whether the for-
warding order of switches is consistent with that in its
memory. It calculates the hash value of the public key in the
subsequent transaction in order to compare the result with
the output address in the current transaction. If they are

equal, it concatenates the output address into Pathi. After
making sure that the order of switches in all adjacent
transactions is correct, ci calculates the hash value
H4(Pathi). By comparing it with the hash value hi

path, ci can
confirm whether the forwarding order of switches in its
domain is correct or not. Specific steps are shown in Al-
gorithm 2. Second, ci checks individual signatures signed by
switches in Domi and then aggregates all signatures into a
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Figure 2: Forwarding process of BlockREV.

Input: IDij: identity of sij;
i: domain serial number, i ∈ Z+;
j: index value of the switch in Do mi, j ∈ Z+;
x: master key of the system;
Tij: registration timestamp of sij;
ERList: entity registration list;
Output: Bij: partial private key of sij;

(1) sij selects a random number aij ∈ RZ∗q as a secret value and computes its public key
Uij←aij

􏽢P and address Addrij←Addr(Uij).
(2) sij sends (IDij, Uij, Tij, i, j,Addrij) to A dm in;
(3) Admin checks
(4) if IDij ∈ ERList or Uij ∈ ERList or Addrij ∈ ERList then
(5) return fails;
(6) else
(7) Admin computes: Dij←H1(Addrij); Bij←xDij; Admin saves (IDij, Uij, Tij, i, j,Addrij, Bij) into ERList.
(8) end if
(9) return Bij;

ALGORITHM 1: Registration of a switch.
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single one which will be sent to Admin for cross-domain
validation. ,e specific steps of individual signatures veri-
fication will be explained in the aggregation signature
scheme later.

4.4.2. Cross-Domain Validation. In the process of for-
warding to destination host phase, Admin looks over the
information on Verichain and obtains all forwarding
transactions associated with Tagf published by switches in
different domains. First, Admin judges whether the cross-

domain forwarding order of switches is correct. It verifies the
forwarding order in Dom1 and Dom2, respectively, and then
it verifies whether the equation outputaddr1m � Addr(U21)

holds or not according to the information in tx1m and tx21. If
it holds, Admin calculates the nested hash value
H4(h2

path, H4(h1
path)). By comparing it with the hash value

h
f

path, Admin can confirm whether the forwarding order of
switches in multiple domains is correct or not. Specific steps
are shown in Algorithm 3. Second, Admin verifies aggregate
signatures from c1 and c2 to effectively ensure the validity of
the multi-controller rule enforcement verification.

block

block header

transactions

block header

transactions

transactions
confirmed forwarding
transaction txio

forwarding transaction txij

InputAddr: Addrij

outputAddr: Addrij+1

pub key: Uij

Tag: Tagf

confirm: none

sign: σij

Timestamp: tij

other contents

inputAddr: Addrio

outputAddr: none

pub key: Uio

Tag: Tagf

confirm: Yes/No

sign: σio

Timestamp: tio

other contents

tx 1

tx 2

tx 3

Other txs

block header

transactions

block block

Figure 3: ,e structure of Verichain.

S1m C1 C2 S21Admin

1.out-domain
forwarding reguest 2.aggregate

 signature

2.cross-domain forwarding request

2.confirmed forwarding transaction

3.cross-domain forwarding instruction 3.instruction on
 forwarding f

4.instruction on
 forwarding to S21

Switch Controller Administrator Verichain

Verichain

Figure 4: Cross-domain communication process between c1 and c2.
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Our proposed aggregation signature scheme is de-
fined by six polynomial-time bounded algorithms: Setup,
Key-Gen, Individual-Sign, Individual-Verify, Aggregate-
Sign, and Aggregate-Verify. Specific steps are described
as follows:

(i) Setup. Admin inputs the security parameter λ and
outputs the system parameter Params � 〈GA,GM,
􏽢P, q, e, Y, H1, H2, H3, H4〉, where Y � x􏽢P is the
public key and x∈RZ∗q is the master key.

(ii) Key-Gen. In the entity registration process, sij ob-
tains its partial secret key Bij, and ci obtains its
partial secret key Bi0.

(iii) Individual-Sign. For txij, let mij � Uij,Tagf, T
f
ij􏽮 􏽯.

sij chooses a random number rij ∈ Z∗q and com-
putes Rij � rij

􏽢P, Hij � H2(aijUi0Y), hij � H3(mij,

Uij), and Wij � (rij + aij)Hij + hijBij. ,en sij’s
individual signature is σij � (Rij, Wij).

(iv) Individual-Verify. ci is responsible for verifying
signatures in its domain. For k signatures
σij � (Rij, Wij), 1≤ j≤ k, k ∈ m, n{ }, ci performs the
following steps:

(a) Tracing on Verichain for all operating trans-
actions associated with Tagf in Domi and
judging whether the order of addresses is the
same with that in Pathi, as shown in
Algorithm 2.

(b) Verifying the signature of sij on Pathi. ci cal-
culates Hij � H2(ai0UijY), hij � H3(mij, Uij),
and Dij � H1(Addrij). Checking whether the
equation

e Wij,
􏽢P􏼐 􏼑 � e hijDij, Y􏼐 􏼑 · e Hij, Rij􏼐 􏼑 · e Hij, Uij􏼐 􏼑

(1)

holds or not. If it holds, ci accepts σij.

(v) Aggregate-Sign. For k accepted individual signatures
σij � (Rij, Wij) given by distinct switches on Pathi,
where i � 1, k � m or i � 2, k � n, ci calculates 􏽥Wi �

􏽐
k
j�1 Wij and generates the aggregate signature

􏽥σi � (Ri1, Ri2, . . . , Rik, 􏽥Wi).
(vi) Aggregate-Verify. A dm in completes the verification

of aggregate signatures which are generated by c1 and
c2, respectively. When A dm in receives 􏽥σi �

(Ri1, Ri2, . . . , Rik, 􏽥Wi), it performs the following steps:

(a) Tracing all the operating transactions associated
with Tagf on Verichain and judging whether
the order of transactions is the same with Pathf,
in order to ensure that the sequence of for-
warding nodes is correct. ,e trace process is
similar to that in Individual-Verify step, except
for the extra validations pubkeyhash1m �

Addr(U21) and h
f

path � H4(h2
path, H4(h1

path))

needed to be done, as shown in Algorithm 3.
(b) Computing Hij � H2(xUijUi0), hij � H3

(mij, Uij) and Dij � H1(Addrij) and checking
whether the equation

e 􏽥Wi,
􏽢P􏼐 􏼑 � e 􏽘

k

j�1
hijDij, Y⎛⎝ ⎞⎠ · 􏽙

k

j�1
e Hij, Rij􏼐 􏼑

􏽙

k

j�1
e Hij, Uij􏼐 􏼑

(2)

Input: txij: forwarding transaction published by sij;
Uij: public key of sij;
outputAddrij: output address in txij;
m, n: m, n ∈ Z+;
i, k: i � 1, k � m or i � 2, k � n;
hi
path: hash value of Pathi;

Output: valid, invalid;
(1) ci traces back all txij about Tagf published by switches in Domi;
(2) Pathi←Addri1;
(3) for each j ∈ [1, k − 1] do
(4) if Addri1 �� Addr(Ui1) and outputAddrij �� Addr(Uij+1) then
(5) j←j + 1;
(6) Pathi←Pathi

�����Addrij+1;
(7) end if
(8) end for
(9) if hi

path �� H4(Pathi) then
(10) return valid
(11) else
(12) return invalid
(13) end if

ALGORITHM 2: Verification of the order of switches in Domi.
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holds or not. If it holds, Admin accepts the
aggregate signatures 􏽥σi.

Because of the properties of bilinear pairings, we can
conclude that the aggregate signature scheme mentioned
above is correct.

e 􏽥Wi,
􏽢P􏼐 􏼑 � e 􏽘

k

j�1
Wij,

􏽢P⎛⎝ ⎞⎠ � e 􏽘
k

j�1
rij + aij􏼐 􏼑Hij + hijBij,

􏽢P⎛⎝ ⎞⎠

� e 􏽘
k

j�1
xhijDij,

􏽢P⎛⎝ ⎞⎠ · 􏽙
k

j�1
e rijHij,

􏽢P􏼐 􏼑 · 􏽙
k

j�1
e aijHij,

􏽢P􏼐 􏼑

� e 􏽘
k

j�1
hijDij, Y⎛⎝ ⎞⎠ · 􏽙

k

j�1
e Hij, Rij􏼐 􏼑 · 􏽙

k

j�1
e Hij, Uij􏼐 􏼑.

(3)

If multiple flows are assigned with the same forwarding
rules simultaneously, the batch verification technique is
adopted to improve the efficiency of validation operations in
our mechanism. ,e tag of batch flows is Tag􏽥f

, which will
replace Tagf in the above scheme to perform batch
verification.

5. Security Analysis

We adopt the adaptive chosen-message security model to
prove our algorithm. In this model, given a designated
address, the adversary A wants to obtain the existential
forgery of an aggregate signature.

Definition 1. Bilinear map: let GA and GM be an additive
cyclic group and a multiplicative cyclic group, respectively,
with the same prime order q, and 􏽢P is a generator ofGA. Let e

be a bilinear map such that e: GA × GA⟶ GM which has
the following properties:

(1) Bilinear: for all 􏽢P1, 􏽢P2 ∈ GA and a, b ∈ RZ∗q ,
e(a 􏽢P1, b 􏽢P2) � e( 􏽢P1,

􏽢P2)
ab

(2) Non-degenerate: e(􏽢P, 􏽢P)≠ 1, where 􏽢P is the gener-
ator of GA.

(3) Computable: for all 􏽢P1,
􏽢P2 ∈ GA, e( 􏽢P1,

􏽢P2) is effi-
ciently computable.

Definition 2. Computational Diffie–Hellman (CDH) prob-
lem: Given 􏽢P, a􏽢P, b􏽢P ∈ GA as input, compute ab􏽢P ∈ GA for
unknown a, b ∈ RZ∗q .

We say that CDH problem is (t, ε)-hard if there is no
algorithm that can solve the problem with probability no
more than ε in time at most t.

Definition 3. An aggregate signature scheme 􏽢Π is existen-
tially unforgeable under an adaptive chosen-message model,
if for all probabilistic polynomial-time adversaries A, there
is a negligible function 􏽢N for the advantage AdvA such that

AdvA � Pr AggSigForge
A,􏽢Π

� 1􏼔 􏼕≤ 􏽢N. (4)

A wins if his advantage, AdvA, is non-negligible. His
aggregate signature is valid and non-trivial, i.e., A does not
inquire about the signatures of at least one message under
the designated address.

Definition 4. A forger A is (t, ε, qH1
, qH2

,

qH3
, qpsk, qfsk, \\qar, qs, k) − breaks an aggregate signature

scheme in BlockREV with the adaptive chosen-message model
if: A makes at most qH1

, qH2
and qH3

queries to the hash
function, at most qpsk queries to the partial secret key oracle, at
most qfsk queries to the full secret key oracle, at most qar queries
to the address replacement oracle, at most qs queries to the
signing oracle, runs in time at most t with at most k users, and
AdvA is at least ε.

Definition 5. An aggregate signature scheme in BlockREV is
(t, ε, qH1

, qH2
, qH3

, qpsk, qfsk, qar, qs, k) − secure against exis-
tential forgery if there is no adversary
(t, ε, qH1

, qH2
, qH3

, qpsk, qfsk, qar, qs, k) − breaks it in the
adaptive chosen-message model.

Theorem 1. If there exists a forger A that can
(t, ε, qH1

, qH2
, qH3

, \\qpsk, qfsk, qar, qs, k) − break the aggregate
signature scheme in BlockREV by non-negligible probability ε,
an algorithm C can solve an instance of CDH problem in
polynomial time t′ ≤ t + (qH1

+ qH2
+ qpsk + 3qs +3k − 1)tsm+

tinv with non-negligible probability ε′ ≥ ε/qH1
·

e(1− k− qs− qfsk)/qH1 . Here tsm is the time of a scalar multipli-
cation in GA, tinv is the time to compute an inverse in Zq, and
e is the natural logarithm base.

Proof. Algorithm C simulates a challenger. Assume that C
is given an CDH problem instance (q, 􏽢P, a􏽢P, b􏽢P) and will
interact withA as follows to compute ab􏽢P. Let Addr∗ be the
target victim, and the detailed process is as follows.

Setup: C sets the system parameter-
s—Params � 〈GA,GM, 􏽢P, q, e, Y, H1, H2, H3〉, public key
Y � a􏽢P. H1, H2, H3 are three random oracles controlled by
C. ,en, C sends Params to A.

Queries: C maintains empty list LH1
, LH2

, LH3
, Lpsk,

Lfsk, Lar, Ls, and A simulates the oracle queries in the
following types.

(i) H1 − query: upon receiving the entry Addrij, C
performs the following:

(a) C checks whether existing
(Addrij, coinij, θij, Dij)\\ ∈LH1

or not. If so,C
sends Dij to A.

(b) Otherwise, C generates a random coin
coinij ∈ 0, 1{ } so that Pr[coinij � 0] � 1/qH1

.
C randomly selects θij ∈ Z∗q . If coinij � 0 holds,
C computes Dij � θijb

􏽢P. If coinij � 1 holds, C
computes Dij � θij

􏽢P.C responds toA with Dij

and saves (Addrij, coinij, θij, Dij) into the hash
list LH1

.

(ii) H2 − query: upon receiving the entry (Uij, Ui0), C
checks whether existing (Uij, Ui0, ηij, Hij) ∈LH2
or not. If so, C sends Hij to A; otherwise, C
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randomly selects ηij ∈ Z∗q , computes Hij � ηij
􏽢P,

sends Hij toA, and saves (Uij, Ui0, ηij, Hij) into the
hash list LH2

.
(iii) H3 − query: upon receiving the entry (mij, Uij), C

checks whether existing (mij, Uij, hij) ∈LH3
or

not. If so, C sends hij toA; otherwise, C randomly
selects hij ∈ Z∗q , sends hij to A, and saves
(mij, Uij, hij) into the hash list LH3

.
(iv) PartialSecretKey − query: upon receiving the entry

Addrij, C performs the following:

(a) C checks whether existing
(Addrij, coinij, Bij) ∈LHpsk

or not. If so, C

sends Bij to A.
(b) Otherwise, C makes H1 − query on Addrij. If

coinij � 0 holds, C computes Bij � θijbY. If
coinij � 1 holds, C computes Bij � θijY. C

responses Bij to A and saves
(Addrij, coinij, Bij) into the partial secret key
list Lpsk.

(v) FullSecretKey − query: upon receiving the address
Addrij, C performs the following:

(a) C checks whether existing
(Addrij, aij, Bij) ∈Lfsk or not. If so, C sends
(aij, Bij) to A.

(b) Otherwise, C makes H1 − query on Addrij. If
coinij � 0 holds, C aborts and outputs ⊥. If
coinij � 1 holds, C randomly selects aij ∈ Z∗q
and makes PartialSecretKey − query on Addrij.

,en, C responses (aij, Bij) to A and saves
(Addrij, aij, Bij) into the full secret key listLfsk.

(vi) AddressePlacement − query: A randomly selects
a∗ij ∈ Z

∗
q , computes U∗ij � a∗ij

􏽢P and
A dd r∗ij � A dd r(U∗ij), and sends (A dd r∗ij, U∗ij)

to C for the replacement of any original legitimate
address. C saves (Addr∗ij, U∗ij) into the list Lar.

(vii) Sign − query: upon receiving the entry
(Addrij, Uij, Ui0, mij), C performs the following:

(a) C checks whether existing (Addrij, Uij,

Ui0, mij, rij, Wij) ∈Ls or not. If so, C com-
putes Rij � rij

􏽢P and sends (Rij, Wij) to A.
(b) Otherwise, C randomly selects rij ∈ Z∗q and

computes Rij � rij
􏽢P and Wij � (Rij+ Uij)ηij

+hijθijY. C responds to A with (Rij, Wij) and
saves (Addrij, Uij, Ui0, mij, rij, Wij) into the
sign list Ls.

Forge. After adaptive queries, A outputs the aggregate
signature 􏽥σ∗i � (R∗i1, R∗i2, . . . , R∗ik, 􏽥W

∗
i ) on Addr∗i1, . . . ,Addr∗ik

and m∗i1, . . . , m∗ik, in which the messages are all distinct, and
at least one address A dd r∗ij does not perform the full secret
key query; furthermore, m∗ij does not make sign-query.

If Addr∗ ∉ Addr∗i1,Addr
∗
i2, . . . ,Addr∗ik􏼈 􏼉, C outputs

failure and halts. Otherwise, let Addr∗ � Addr∗i1, and C

proceeds only if coini1 � 0 and for 2≤ j≤ k, coinij � 1. Since
the aggregate signature 􏽥σ∗i is valid, it must satisfy verification
equation (2), and we can get

Input: txij: forwarding transaction published by sij;
Uij: public key of sij;
outputAddrij: output address in txij;
m, n: m, n ∈ Z+;
hi
path: hash value of Pathi;

h
f

path: forwarding path hash value of f;
Output: valid, invalid;

(1) Admin traces back all txij about Tagf;
(2) i←1; k←m;
(3) if the result of executing Algorithm 2 is “valid” then
(4) h1

path←H4(Path1);
(5) end if
(6) i←2; k←n;
(7) if the result of executing Algorithm 2 is “valid” then
(8) h2

path←H4(Path2);
(9) end if
(10) if outputAddr1m �� Addr(U21) and h

f

path �� H4(h2
path, H4(h1

path)) then
(11) return valid
(12) else
(13) return invalid
(14) end if

ALGORITHM 3: Verification of the cross-domain forwarding order of switches.
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e 􏽥Wi,
􏽢P􏼐 􏼑 � e Wi1,

􏽢P􏼐 􏼑e 􏽘

k

j�2
Wij,

􏽢P⎛⎝ ⎞⎠ � e ri1 + ai1( 􏼁Hi1 + hi1Bi1,
􏽢P􏼐 􏼑 · e 􏽘

k

j�2
Rij + Uij􏼐 􏼑ηij + hijθijY, 􏽢P⎛⎝ ⎞⎠

� e ηi1
􏽢P, Ri1􏼐 􏼑 · e ηi1

􏽢P, Ui1􏼐 􏼑 · e hi1θi1b
􏽢P, Y􏼐 􏼑 · 􏽙

k

j�2
e ηij

􏽢P, Rij􏼐 􏼑 · 􏽙
k

j�2
e ηij

􏽢P, Uij􏼐 􏼑 · 􏽙
k

j�2
e hijθij

􏽢P, Y􏼐 􏼑.

(5)

,en, C outputs ab􏽢P � (hi1θi1 )− 1 · ( 􏽥Wi − ηi1Ri1−

ηi1Ui1 − 􏽐
k
j�2(ηijRij + ηijUij + hijθijY)) as the solution of

CDH problem.
Suppose that

(1) Event Ei1 represents that C does not output ⊥ at
FullSecretKey − query and Sign − query stages.

(2) Event Ei2 represents that A generates a valid ag-
gregate signature forgery.

(3) Event Ei3 represents that C does not abort at the
forge stage.

,e probabilities of solving the CDH problem by C are
as follows:

Pr Ei1􏼂 􏼃≥ 1 −
1

qH1

􏼠 􏼡

qfsk+qs

,Pr Ei2|Ei1􏼂 􏼃≥ ε,Pr Ei3|Ei1Ei2􏼂 􏼃≥
1

qH1

1 −
1

qH1

􏼠 􏼡

k− 1

. (6)

,erefore,

Pr Ei1Ei2Ei3􏼂 􏼃 � Pr Ei1􏼂 􏼃 · Pr Ei2|Ei1􏼂 􏼃 · Pr Ei3|Ei1Ei2􏼂 􏼃≥
ε

qH1

1 −
1

qH1

􏼠 􏼡

qfsk+qs+k− 1

. (7)

When three events have all happened, algorithm C can
successfully solve the CDH problem with a non-negligible
probability

ε′ ≥Pr Ei1Ei2Ei3􏼂 􏼃≥
ε

qH1

· e
1− k− qs− qfsk( )/qH1 . (8)

C’s extra time cost includes that for computing at most
one scalar multiplication in GA on each H1 − query,
H2 − query, and PartialSecretKey − query and three scalar
multiplications on each sign − query. After the forgery
operation is completed, the time cost should be plus at most
the time for computing (3k − 1) scalar multiplication in GA

and an inverse computation inZq. ,erefore,C can solve an
instance of CDH problem in polynomial time t′ ≤ t + (qH1

+

qH2
+ qpsk + 3qs +3k − 1)tsm + tinv.
We have the conclusion that assuming the CDHproblem

is hard, the proposed aggregate signature scheme in
BlockREV is existentially unforgeable against adaptive
chosen-message attacks in the oracle model.

We next show security properties of BlockREV mech-
anism in the context of typical attacks.

(i) Resistance to single-point failure attack: the
information on blockchain is transparent and
tamper resistant. When a controller is compro-
mised, the administrator can still verify the
forwarding behaviors by tracing the transactions
on the blockchain and determine the reliability of
the controller.

(ii) Resistance to middle-man attack: due to the cryp-
tography theory, transactions published by mali-
cious switches cannot pass signature verification.
Because the controller can only verify signatures of
switches in its domain, a malicious controller
cannot obtain the information about path index and
switches’ identities in other domains.

(iii) Resistance to path deviation attack: based on public
forwarding address information in transactions, the
order of forwarding nodes is verified by controllers
to ensure the correct execution of forwarding.
,rough nesting method of forwarding path hash
values, the administrator guarantees the correct
index of different domains. In addition, our novel
aggregate signature scheme provides the security in
cryptography technology. □

6. Performance and Evaluation

In this section, we evaluate the performance of our algo-
rithms in terms of computation cost and communication
cost compared with other existing schemes.

6.1. Analysis of Computation Cost. We compare the per-
formance of the aggregate signature scheme in BlockREV
with two related aggregate signature schemes [27, 35] and
adopt the computation evaluation method proposed in [30]
using the MIRACL cryptographic library [36], in which the
experimental platform is an Intel I7-4770 processor
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(3.40GHz) with 4GB RAM, and the operating system is
Windows 7. ,e aggregate signature scheme in BlockREV is
simulated on the elliptic curve y2 � x3 + xmodp, where p

and q are 512 bit and 160 bit prime numbers, respectively.
Some notations about cryptographic operation execu-

tion time are listed as follows.

(i) tbp denotes the time for a bilinear pairing operation
e( 􏽢P1,

􏽢P2), where 􏽢P1,
􏽢P2 ∈ GA, tbp � 4.2110ms.

(ii) tsm denotes the time for a scale multiplication
operation r · 􏽢P in the bilinear pair, where r ∈ Z∗q
and 􏽢P ∈ GA, tsm � 1.7090ms.

(iii) tpa denotes the time for a point addition operation
􏽢P + 􏽢Q in the bilinear pair, where 􏽢P, 􏽢Q ∈ GA,
tsm � 0.0071ms.

(iv) thtp denotes the time for a hash-to-point operation
in the bilinear pair, which maps a string to a point
of GA, thtp � 4.4060ms.

(v) th denotes the time for a general hash function
operation, th � 0.0001ms.

(vi) n is the number of individual signatures.
(vii) lG denotes the length of a group element in G, lG �

128 bytes.
(viii) lZ∗q denotes the length of Z∗q element. lZ∗q � 20

bytes.

,e comparison of computational costs is performed
between the related aggregate signature schemes [27, 35] and
our scheme in three aspects: Individual-Sign, Individual-
Verify, and Aggregate-Verify. ,e specific comparison re-
sults are presented in Table 2.

As shown in Figure 5, for the computation cost of the
individual signature algorithm, we can conclude that both
Gao et al.’s scheme [35] and Gong et al.’s CAS 2 scheme [27]
pay more running time than ours. For the total execution
time, the percentage improvement of our algorithm over
Gao et al.’s scheme and Gong et al.’s scheme (CAS 2) is about
(17.3783 − 10.2492)/17.3783 ≈ 41.02% and (13.9532
− 10.2492)/13.9532 ≈ 26.55%, respectively. Our individual
signature algorithm reduces one hash-to-point operation in
the bilinear pair compared with the above two schemes,
which takes more than 4ms to run. Due to the low cost of
computing in the individual signing process, BlockREV is
feasible for SDN environments in which switches as signers
have limited computational ability.

For the execution of the individual verification algo-
rithm, Figure 6 shows that as the number of signatures
increases, the computation cost of ours is smaller than that
in Gao et al.’s scheme and Gong et al.’s scheme (CAS 2). In

Table 2: ,e comparison of computation cost.

Scheme Individual-Sign Individual-Verify Aggregate-Verify

Gao et al. [35] 5tsm + 2thtp + 3tpa 5tbp + 3thtp (n + 4)tbp + (2n + 1)thtp + 3(n − 1)tpa

≈17.3783ms ≈34.273ms ≈13.0443n + 21.2429ms

Gong et al. (CAS 2) [27] 3tsm + 2thtp + 2tpa 3tbp + tsm + 3thtp + tpa (n + 2)tbp + ntsm + 2nthtp + ntpa

≈13.9532ms ≈27.5670ms ≈14.7391n + 8.422ms

Gong et al. (CAS 1) [27] 2tsm + thtp + tpa 3tbp + thtp (2n + 1)tbp + 2nthtp

≈7.8311ms ≈17.039ms ≈17.2340n + 4.2110ms

Our proposed scheme 4tsm + thtp + tpa + th 4tbp + 2thtp + th (2n + 2)tbp + 2nthtp + (n − 1)tpa + nth

≈10.2492ms ≈25.6460ms ≈17.2412n + 8.4149ms
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the aspect of individual verification algorithm design, Gao
et al.’s scheme has one more bilinear pairing operation and
one more hash-to-point operation than our scheme, which
results in an additional 2.1210ms for each signature veri-
fication. ,erefore, BlockREV is more efficient in individual
signature verification and will be better suited to the con-
troller which consumes a huge computation cost to manage
its domain.

As shown in Table 2, for the execution of the aggregate
verification algorithm, the computation cost of our scheme
is close to that of Gong et al.’s scheme (CAS 1) [27]. ,e
reason for the above result is that in the process of verifying
aggregate signatures in our scheme, the administrator is the
only legal verifier with the authority to verify aggregate
signatures of different domains. Each signature contains the
information about the public key of the administrator, which
leads to higher computational overhead. As a manager of the
whole network, the administrator has strong computing
power and can bear such computing overhead.

Figure 7 shows a comparison between non-aggregate
signature and aggregate signature. With the increase of the
number of switches, the time of verifying the signature one
by one increases rapidly which results in high computation
cost. When the number of switches increases to 20, non-
aggregate signature verification takes 159.6811msmore than
aggregate signature verification. ,e aggregate signature
scheme can reduce a lot of computing overhead for the
verifier; therefore, it is suitable for the administrator node in
the case that the cross-domain forwarding path contains a
large number of switches.

6.2. Analysis of Communication Cost. Table 3 shows the
communication cost of the aggregate signature scheme and
related aggregate signature schemes [35, 37]. We can see that
the aggregate signature length of all schemes is increased
with the number of individual signatures. ,e length of the
aggregate signature in our scheme is (2n − 1)lG less than that
in Shim’s scheme and nlG less than that in Gao et al.’s
scheme.

As shown in Figure 8, the communication cost of our
scheme is obviously smaller than that of the above two
schemes; therefore, our proposed aggregate signature
scheme can effectively improve the communication
efficiency.

7. Conclusion

In this paper, we propose a blockchain-enabled multi-
controller rule enforcement verification mechanism in
SDN, called BlockREV. ,e mechanism adopts an ad-
dress-based aggregation signature scheme with the
cryptography technology and can securely store and
share forwarding information with the blockchain
technology. We also present the implementation results
and prove the security in the random oracle model. ,e
BlockREV mechanism can be used in many scenarios in
which nodes have limited computation power, such as
Internet of things and smart grid. In our future work, we
will find more efficient aggregation signature construc-
tions requiring less computation cost and design zero-
knowledge proof schemes for forwarding rule verifica-
tion with perfect privacy protection.

Data Availability

,e experimental data used to support the findings of this
study are included within the article.
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Table 3: ,e comparison of communication cost.

Scheme Aggregate signature length
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