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Power analysis attack is an attack method to obtain the key in cryptographic chip by analyzing the power information of the
cryptographic chip. Machine learning has been widely used in power analysis attacks in recent years. Machine learning can
effectively establish the model between the power traces and the SBOX output value or the HM (Hamming) weight of the SBOX
output value so that the SBOX output value or the HMweight of the SBOX output value can be obtained through the power traces.
HM weight model is widely used because it has less classification of nine and can achieve better machine learning accuracy.
However, in the HMweight model, the key cannot be obtained directly by obtaining themedianHMweight; instead, the key needs
to be deduced by brute force cracking of the median HM weight. Usually, the brute force cracking of a byte key requires 51
enumeration times on average. *e HM weight distribution of the SBOX output value is unbalanced, so the power analysis attack
based on the HM weight model without brute force cracking is proposed in this paper. Based on the HM weight of the SBOX
output value, the method selects the best plaintext for the next power analysis attack, and Euclidean distance is chosen as the
optimal plaintext selection judgment algorithm. It makes the HMweight distribution of the SBOX output value more evenly, thus
reducing the possible key space and confirming the key more easily. *is scheme does not require brute force cracking. It only
needs to input 3.332 plaintexts on average and up to 4 plaintexts to determine the unique key, which effectively improves the
efficiency of the power analysis attack. In this paper, the authors test the DPA competition V4 data set and Kizhvatov’s data set
with random defense. Experiments show that this scheme enjoys the high accuracy of the HM weight model in machine learning.
Compared with the Whole Byte scheme, the accuracy based on this scheme can be increased by about 360%. Compared with the
brute force cracking HM weight scheme, the guessing entropy can be decreased by about 1700%.

1. Introduction

Power analysis attack is one of the most powerful means in
side-channel attack, which has the advantages of simple
equipment and easy implementation. Power analysis attack
is a method of attacking the power consumption in-
formation consumed by the cipher chip, which has a certain
correlation with the key information during the operation of
the cipher chip.

In 1999, Paul Kocher proposed the DPA (Differential
Power Analysis) to recover the key of DES [1]. In 2003, Chari
S [2] collected many power traces to establish statistical
information and used TA (template attack) to obtain the key.
In 2003, Eric Brier [3] proposed a method of using corre-
lation power analysis.

1.1. Related Work. In recent years, with the continuous
development of machine learning, more and more scholars
have applied machine learning to power analysis attacks. In
2011, Hospodar et al. applied machine learning techniques
to the power analysis attacks of side-channel attack for the
first time. For the data set with obvious HM weight leakage,
they successfully attacked some software implementation of
the AES (Advanced Encryption Standard) by using LS-SVM
(Least Squares Support Vector Machine) [4]. In 2012, He
et al. used SVM to attack the DES (Data Encryption Stan-
dard) algorithm running on 8-bit smart cards [5]. In [6–8],
relevant scholars used machine learning to attack un-
protected cryptographic algorithms. In 2014, machine
learning was first introduced to attack the AES imple-
mentation with mask countermeasure. In 2017, Eleonora
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Cagli [9] and others used machine learning and data en-
hancement technology to attack chips with delay protection.
In 2018, Benadjila et al. [10] used CNN (Convolutional
Neural Networks) to attack the algorithm implementation
on a single-chip computer with mask and disturbance de-
fense. Timon B proposed a side-channel attack based on
deep learning in the Non-Profiled scenario [11]. *is
method maps the Whole Byte classification of the in-
termediate value or the HM weight model of the in-
termediate value to the assumed power consumption value
as the label and uses the accuracy and loss value as the key
discriminator. AES algorithm key can be obtained suc-
cessfully after the training and the prediction by using MLP
(Multilayer Perceptron) algorithm and CNN algorithm. In
2019 Kim et al. proposed a new Convolutional Neural
Network to analyze side-channel [12],and Mathieu et al.
used deep learning to evaluate secure RSA implementation
[13]. In 2020, Xiaoyi Duan and others used data enhance-
ment to solve the imbalance problem of the HM weight of
SBOX output value in machine learning [14].

Machine learning has been widely used in power analysis
attacks in recent years. Machine learning can effectively
establish the model between the power traces and the SBOX
output value or the HM weight of the SBOX output value,
which is respectively called the Whole Byte model and HM
model in this paper so that the SBOX output value or the
HM weight of the SBOX output value can be obtained
through the power traces. HM model is widely used because
it has less classification of nine and can achieve better
machine learning accuracy. However, in the HM model, the
key cannot be obtained directly by obtaining themedian HM
weight; instead, the key needs to be deduced by brute force
cracking of the median HM weight. *is cracking method is
called the Force-HM scheme in this paper. Usually, the brute
force cracking of a byte key requires 51 enumeration times
on average, which is not very efficient.

1.2. Our Contribution. *e SBOX output HM weight value
distribution is unbalanced, so the power analysis attack
based on the HM model without brute force cracking is
proposed in this paper, which is called the Non-Force-HM
scheme. Based on the HMmodel, the scheme selects the best
plaintext in the power analysis attack of the next attack, and
Euclidean distance is chosen as the optimal plaintext se-
lection judgment algorithm. It makes the SBOX output HM
weight value distribution more evenly, thus reducing the
possibility of determining the key space and key uniqueness.
*is scheme does not require brute force cracking. It only
needs to input 3.332 plaintexts on average and up to 4
plaintexts to determine the unique key, which effectively
improves the efficiency of the power analysis attack. Ex-
periments show that this scheme enjoys the high accuracy of
the HM model in machine learning. Compared with the
Whole Byte scheme, the accuracy based on this scheme can
be increased greatly. Compared with the brute force cracking
HM weight scheme, the guessing entropy can be decreased
substantially. *e comparison of the Force-HM scheme and
the Non-Force-HM scheme is shown in Figure 1.

1.3. Structure of %is Paper. *e structure of this paper is as
follows: In Section II, the power analysis attack based on
machine learning and its related computation are in-
troduced. In Section III, the Non-Force-HM scheme pro-
posed in this paper is introduced. *e principle of Euclidean
distance is introduced, which can be applied to choose the
optimal plaintext. *e mapping table of plaintext, HM
weight value of SBOX output, and key is given. In Section IV,
experimental verification and discussion are carried out. In
Section V, conclusion and future work are presented.

2. Power Analysis Attack

2.1. Power Analysis Attack Based on Machine Learning.
Power analysis attack is a kind of attack method which uses
the correlation between the power traces of the cipher chip
and the key when executing the cryptographic algorithm. It
is one of the powerful attack means in the side-channel
attack, which has the advantages of simple implementation
equipment and easy implementation. In recent years, with
the development of artificial intelligence, the combination of
machine learning and power analysis attack has become
more and more, which greatly improves the success rate and
attack efficiency of attacks.

*e power analysis attack based onmachine learning can
be expressed as establishing a possible template for every
possible class c ∈ 1, . . . , C{ }, in which the number of class C
depends on the assumed leakage model. Assuming that, for
each class c ∈ 1, . . . , C{ }, the attacker obtains the power
consumption trace vector lic 

Nc

i�1 , in which Nc is the number
of power consumption trace vectors of class C. Since the
template attack depends on the multivariate Gaussian noise
model, the power trace vector is considered to be drawn
from the multivariate distribution. Formulas (1) and (2) give
more precise expressions.
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*ese templates are built based on the estimation of
expectations μc and covariance matrix Σc. *e key recovery
in the attack phase is performed by maximum likelihood
estimation or equivalent log-likelihood rule as shown in the
following formula:

log Lk∗ ≡ log

N2

i�1
P li|c(  � 

N2

i�1
log N li|μc,Σc( , (3)

where class C is calculated according to the leakage model
based on given key guess k∗ and input.

High additional computational complexity is required to
recover the entire key. *ere are various methods to reduce
the computational complexity of key recovery. *e first
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method is to extend the leakage model to the HM weight
leakage model. HMweight leakage model assumes the whole
middle value instead of just a few bits of the middle value.
*e second method is to extend the attack to multiple power
traces. Logarithmic maximum likelihood estimation for
every possible key k∗ is shown in the following formula:

log Lk∗ ≡ log
N

i�1
P li|c(  � 

N

i�1
log P li|c( . (4)

Select the key to maximize the possibility as shown in the
following formula:

argmax
k∗

log LK∗ . (5)

2.2.HMWeightModel. HMweight [15] refers to the number
of nonzero elements in a string. For a common binary string,
it is the number of “1” in the string. In power analysis at-
tacks, the HMmodel is generally used to represent the power
consumption model of the running chip [16].

2.3. HM Weight Characteristics of AES SBOX Output.
Due to the high nonlinearity of SBOX in AES, for power
analysis attack, this is the best attack point. *erefore, in the
power analysis attack, the output value of SBOX is often used
as an attack point. When using the HM model, the HM
weight of the SBOX output value is generally attacked.

For each byte of plaintext input, the output values of
SBOX are in the interval of [0,255] and are not equal. HM
weight refers to the number of “1” in a binary value, so there
are 9 cases of HM weight of the SBOX output [17]. *e “01”
balance of SBOX output leads to the imbalance of its HM
weight.*eHMweight values of AES SBOX output conform

to normal distribution. After each byte of plaintext passes
through SBOX, the HMweight distribution of output and its
distribution probability are shown in Table 1.

2.4. Power Analysis Attack Based on HM Weight Model.
When usingmachine learning and theHMmodel for the power
analysis attack, the general attack process is shown in
Figure 1(a). First, a 9-classmodel is trained according to theHM
weight values.When the power trace is input, the HMweight of
the SBOX output value can be obtained through machine
learning, and then the enumeration attack can be started.

When the HM weight of the SBOX output value is
known, the average number of attempts required to obtain
a one-byte key can be estimated using formula (6), which is
expressed as θ.

θ � 
8

i�0
pi × Gi. (6)

In the formula, Gi refers to the HM weight distribution
value output by SBOX, and pi refers to its corresponding
distribution probability.

According to Table 1 and (6), we can calculate the
number of times needed to enumerate a byte, as shown in the
following formula:

θ �
1
256

× 1 +
8
256

× 8 +
28
256

× 28 +
56
256

× 56 +
70
256

× 70 +
56
256

× 56 +
28
256

× 28 +
8
256

× 8 +
1
256

× 1 � 50.27344.

(7)

start

end

Enter a randomly generated
plaintext to perform correlation
operations to obtain an energy

curve

Using a machine learning
algorithm, get the Hamming

weight of its SBOX output

Whether the key can
be obtained?

yes

no

(a)

start

end

Input several selected plaintexts (up
to four) in sequence to perform
related calculation operations to

obtain the energy curve.

The obtained energy curve is passed
through the machine learning
algorithm in turn, and get the

hamming weight of the SBOX output
value in turn.

Enter the corresponding plaintext and
Hamming weight into the established

mapping table in sequence to
uniquely determine the key.

(b)

Figure 1: *e comparison of (a) the Force-HM scheme and (b) the Non-Force-HM scheme.

Security and Communication Networks 3



*erefore, when obtaining the HM weight of the SBOX
output value, the brute force cracking of a one-byte key
requires 51 enumeration times on average.

3. Power Analysis Attack Based on HM Weight
Model without Brute Force Cracking

*e HM weight distribution of the SBOX output value is
unbalanced, so the Non-Force-HM scheme is proposed in
this paper. Based on the HM model, the scheme selects the
best plaintext in the power analysis attack of the next attack,
and Euclidean distance is chosen as the optimal plaintext
selection judgment algorithm. It makes the HM weight
distribution of the SBOX output value more evenly, thus
reducing the possible key space and confirming the key more
easily.

3.1. Euclidean Distance. Euclidean distance measures the
absolute distance between two points in multidimensional
space. It can also be understood as the true distance between
two points in multidimensional space or the natural length
of the vector. *e Euclidean distance in two-dimensional
and three-dimensional space is the actual distance between
two points [18]. *e schematic diagram of the Euclidean
distance between point A and point B is shown in Figure 2.

*e Euclidean distance between point A(x1, y1) and
point B(x2, y2) in the two-dimensional plane is shown in the
following formula:

dist(A, B) �
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2



. (8)

*e Euclidean distance between point A(x1, y1, z1) and
point B(x2, y2, z2) in the three-dimensional plane is shown
in the following formula:

dist(A, B) �
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*e Euclidean distance between points
A(x11, x12, . . . , x1n) and B(x21, x22, . . . , x2n) in the n-di-
mensional space is shown in the following formula:

dist(A, B) �
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. (10)

3.2. How to Select Best Plaintext. Suppose that the key set is
[0,255]. As shown in Table 2, when a plaintext is an input for
calculation, the HM weight of the SBOX output value can be
obtained. Each HM weight can correspond to multiple keys,
which form the key subset K. Assuming that the number of
keys in subset K is t, traversing plaintext mi(0≤ i≤ 255),
a mapping as shown in formula (11) can be defined for each
plaintext mi.

ψmi
: (Y, K)↦Y yij ∈ Y|yij � HM Sbox mi ⊕ kj  , kj ∈ K , 0≤ i≤ 255, 0≤ j≤ t. (11)

*at is, each plaintextmi is executed with each key kj in the
key subset K, and 256 × t yij � HM[Sbox(mi⊕kj)], (0≤ i≤
255, 0≤ j≤ t)(0≤yij ≤ 8) can be obtained as shown in Table 2.

Define count set Zi � zi0, zi1, zi2, zi3, zi4, zi5, zi6, zi7,

zi8|0≤ i≤ 255}, Zi is the number of times that HM weight
values 0, 1, . . ., 8 appear in line i. Define the ideal count set of
key subset T � t/9, t/9, t/9, t/9, t/9, t/9, t/9, t/9, t/9{ }.

*e Euclidean distance between each Zi and the ideal
count set T can be calculated. Zi corresponding to the
minimal Euclidean distance is the ideal counting set, and
the corresponding mi is the best plaintext. According to
this idea, the key can be determined by the least plaintext.

*e average number of the power traces required to attack
a byte key is shown in the following formula:

p �


255
i�0xi

256
, (12)

where xi represents the number of the power traces required
to determine any possible key ki ∈ 0, 1, . . . , 254, 255{ }.

3.3. Plaintext Selection for AES Cipher Algorithm.
According to the method in 3.2, calculate the chosen
plaintext of the AES cipher algorithm. Figure 3 shows the

X

Y

Z

B

A

dist (A, B)

Figure 2: Schematic diagram of Euclidean distance.

Table 1: Corresponding table of HM weight values and number.

HM weight 0 1 2 3 4 5 6 7 8
Number 1 8 28 56 70 56 28 8 1
Pi 1/256 8/256 28/256 56/256 70/256 56/256 28/256 8/256 1/256

4 Security and Communication Networks



key pool reduction diagram for the plaintext selection
process.

*e pseudocode based on the chosen plaintext algorithm
in this paper is shown in Figure 4.

Table 3 is the mapping table of partial plaintext, the HM
weight of the SBOX output value, and key calculated by the
method in this paper. *e complete mapping table is shown
in the Supplementary Materials (available here).

Substitute the experimental results in the attachment
mapping table into formula (12), and get the average number
of power traces needed to attack one byte key, as shown in
the following formula:

p ≈ 3.32. (13)

Using the Non-Force-HM scheme proposed in this
paper, only at least one plaintext input, up to four plaintext
inputs, with an average of 3.332 plaintext inputs, can
complete a successful attack.

4. Experimental Results and Analysis

In order to better verify the advantages of the solution
proposed in this paper, two machine learning models are
established, that is, HM model and Whole Byte model. *is
paper analyzes these two models. Compared with the Whole
Byte scheme, the HM model scheme has greater advantages
in accuracy and guessing entropy.

*is experiment selected two data sets: one is a data set
without delay, and the other is a data set with random delay
protection. In the experiment, the nondelay data set is from
the DPA contest V4 [19], named DS1. A total of 10000 power
traces were obtained, including 9000 for training and 1000
for testing. *is experiment used MLP, SVM, RF (Random
Forest), and CNN to attack the set.*e data set with random
delay was running in 8-bit AVR in [20], named DS2. *ere
are 10000 traces, 9000 for training and 1000 for testing.

4.1. Evaluation Indicator. In this paper, three different in-
dicators are used to evaluate the performance of the model:
accuracy, NGE (new guessing entropy), and computational
complexity. Accuracy reflects the accuracy of classification,
that is, the probability of successful attack. *is paper will
not elaborate on it, but the NGE and computational
complexity defined in this paper will be explained,
respectively.

4.1.1. NGE. Guessing entropy is a common index to
evaluate attack performance in SCA (side-channel attacks)
[2]. *e definition is as follows: g is the decreasing order of

the probabilities of all possible keys in each experiment, and i

is the index of the correct key. *rough s experiments,
a matrix [g1, g2, . . . , gs] and the corresponding vector
[i1, i2, . . . , is] are obtained. *e guessing entropy is the av-
erage position of the correct key, as shown in the following
formula:

GE �
1
s



s

x�1
ix. (14)

In other words, the guessing entropy describes the
average number of guesses required to recover the actual
key.

However, in practice, the success rate of attack is difficult
to reach 100%. When the HM model is used to attack, the
HM weight of the SBOX output value will be obtained. In
order to obtain the key, an enumeration attack is still re-
quired. *e traditional guessing entropy does not take into
account the fact that the HM weight cannot directly attack
the key, and it cannot express the actual number of attacks.
*erefore, this paper defines a new guessing entropy, which
is calculated by the following formula:

NGE � n × GE. (15)

Among them, n represents the number of attacks that
still need to be enumerated after obtaining the HMweight of
the SBOX output value. *e chosen plaintext attack scheme
proposed in this paper needs an average of 3.32 attacks to
achieve 100% attack success rate. When we input selected
plaintext, through the machine learning algorithm, we will
obtain the average guess times required for the attack, that is,
the traditional guessing entropy GE. *erefore, the NGE

based on Non-Force-HM scheme is NGE � 3.32 × GE. *e
NGE based on Force-HM scheme is NGE � 51 × GE, when
selecting the Whole Byte model, the attack is successful
when the Whole Byte of SBOX output is obtained, and there
is no need to enumerate. *erefore, the NGE based on the
Force-HM scheme is NGE � GE.

4.1.2. Computational Complexity. Computational com-
plexity is a mathematical method to quantitatively analyze
the consumption of various resources required in the cal-
culation. In order to highlight the advantages of the Non-
Force-HM scheme in computational complexity, it is
compared with the Force-HM scheme and the Whole Byte
scheme. We define the computational complexity of the AES
16-byte key attacked by three schemes as follows:

(1) Suppose that the computational complexity of an
energy analysis attack is Pa. Define that the guessing
entropy of the Force-HM energy attack is HM GE

and the guessing entropy of the Whole Byte energy
attack is Whole byte GE.

(2) According to Section 3.3, the Non-Force-HM energy
attack scheme proposed in this paper needs an av-
erage of 3.32 attacks to achieve 100% attack success
rate. *erefore, the computational complexity based
on this scheme is

Table 2: Subset table.

k1 . . . kj . . . kt

m0 y01 . . . y0j . . . y0t

. . . . . . . . . . . . . . . . . .

mi yi1 . . . yij yit

. . . . . . . . . . . . . . . . . .

m255 y255 1 . . . y255j . . . y255t
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Pa × HM GE × 3.32 × 16. (16)

(3) As can be seen from Section 2.4, the Force-HM
energy analysis attack requires 51 attack curves.
*erefore, the computational complexity based on
this scheme is

Pa × HM GE × 51 × 16. (17)

(4) *e computational complexity of the Whole Byte
model is

Pa × Whole byte GE × 16. (18)

4.2. Voltage Characteristics of Data. Using the HM model,
the relationship between the voltage value of the trace and
the HM value can be plotted in Figure 5 [14]. At the same
time, if the Whole Byte model is adopted, the relationship
between the voltage value of the trace and the classification
value of theWhole Byte can be plotted in Figure 6.*ese two
figures show that there is an obvious linear relationship
between the HM weight and the voltage value; that is, the
voltage is proportional to the HM weight, but there is no
obvious linear relationship between the Whole Byte

classification value and the voltage. Because HM weight is
proportional to voltage, it is easier to classify by machine
learning.

4.3. Attacks on DS1. With the help of artificial intelligence
algorithms such as SVM, RF, CNN, andMLP, this paper uses
the Whole Byte scheme, HM scheme, and Non-Force-HM
scheme to attack the nondelay data sets, and the results were
compared from the guessing entropy and accuracy. *e
experimental results show that the two indexes of the Non-
Force-HM scheme are fine. *e accuracy comparison be-
tween the HM model and the Whole Byte model with
different machine learning algorithms is shown in Figure 7.
*e HM model has only 9 categories, and the Whole Byte
model has 256 categories, so the voltage value of the HM
weight is more differentiated and has better accuracy than
the Whole Byte model in learning algorithms.

For DS1, the guessing entropy of the Non-Force-HM
scheme, the Force-HM scheme, and the Whole Byte scheme
is shown in Figure 8. Compared with the Force-HM scheme,
the guessing entropy of the Non-Force-HM scheme is much
smaller.

*e computational complexity of the three attack
schemes is shown in Table 4.

Key:0, 1, 2, …, 255

Key:0, 2, 3, 7, 13 …. 238,
246, 248,2 49, 254

Selected plaintext: 0

Key:56, 78, ...215,
243Key:251 ...

Key:4, 43, ... 225,
252 Key:23

HM=0 HM=1 HM=4 HM=7 HM=8

...

... ...

Key:215

Selected plaintext: 1

HM=2

...Key:56, 203 Key:243

HM=3 ... HM=7

Selected plaintext: 83

Key:56

HM=4

Key:203

HM=6

Key:252

Selected plaintext: 1

HM=0

... Key:4, 160 Key:43

HM=4... HM=6

Selected plaintext: 7

Key:4 Key:160

...

...

HM=3 HM=5

Selected plaintext: 167

Key:53, ...
212

Key:0, 13, 16, ...
170.183.197 Key:176... ...

... ...HM=1 HM=4 HM=8

Key:212 Key:57...

...HM=1 HM=5

Key:183 Key:167, 170 Key:148... ...

... ...HM=1 HM=4 HM=7

Selected plaintext: 3 Selected plaintext: 68

Key:167 Key:170

HM=4 HM=5

Selected plaintext: 1

Figure 3: Key pool reduction diagram for the plaintext selection process.
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Figure 4: Pseudocode of the algorithm.
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As can be seen from Table 4, when the 16-byte AES
algorithm is attacked simultaneously, the advantages of
the Non-Force-HM scheme are more prominent. Com-
pared with the Force-HM scheme, this scheme has a very
low order of magnitude of computational complexity. *e
computational complexity of this scheme is almost the
same as that of the Whole Byte model and better than the
Force-HM model.

*is paper compares the attack success rate of the
Whole Byte model and HM model with different machine
learning algorithms under different number of training
traces, as shown in Figures 9 and 10. As can be seen from
Figure 9, during the training stage, as the number of
power traces increases, the attack success rate of the
Whole Byte model increases slowly until it reaches the
maximum. *e attack success rate of the four machine
learning algorithms is about 0.15 when the number of
training traces is about 1000, and the attack success rate is
the highest 0.557 when the number of training traces is
9,000. As can be seen from Figure 10, in the HM model,

Table 4: Comparison of computational complexity of the three schemes for DS1.

Scheme Non-force-HM Force-HM Whole byte
Computational complexity 48.512 × Pa 843.776 × Pa 46.752 × Pa

Table 3: Mapping table of partial plaintext, the HM weight of SBOX output value, and key.

First round Second round *ird round Fourth round Result
Key
subset

Selected
plaintext

HM
weight

Key
subset

Selected
plaintext

HM
weight

Key
subset

Selected
plaintext

HM
weight

Key
subset

Selected
plaintext

HM
weight

*e
key

0

0

0 251 251
1

1

56

83

2 215 215
2 78 3 56 1 4 56 56
3 115 203 6 203 203
4 146 4 115 1 4 158 158
5 158 158 5 115 115
6 203 5 78 78
7 215 6 146 146
8 243 7 243 243
9

2

6

237

0 22 22
10 11 1 163 2 1 213 213
11 22 213 5 163 163
12 27 2 11 1 3 11 11
13 37 230 5 230 230
14 54

3

95

5

1 206 206
15 61 135 3 135 135
16 64 180 4 95 95
17 68 206 5 180 180
18 95

4

27

12

2 234 234
19 101 64 3 64 64
20 110 182 5 222 222
21 129 222 7 182 182
22 132 234 8 27 27
23 135

5

6

121

2 68 68
24 163 54 3 165 165
25 165 68 4 54 1 3 101
26 180 101 101 4 54
27 182 110 5 204 204
28 195 165 6 6 6
29 204 195 7 195 195
30 206 204 8 110 110

55

50

45

40

35

30

25

20

vo
lta

ge
 (m

v)

15
0 1 2 3 4 5 6 7 8 9 10

HM

HM0
HM1
HM2
HM3
HM4

HM5
HM6
HM7
HM8

Figure 5: HM-two-dimensional distribution of power consumption.
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with the increase of the number of power traces, the
success rate of the attack will increase sharply until it
reaches the maximum. When the CNN algorithm is se-
lected, the success rate of the attack reaches 0.941 when
the number of training traces is about 1000. When the
MLP algorithm is selected, the attack success rate is as
high as 0.996 when the number of training traces is 9000.

4.4. Attacks against DS2. With the help of artificial in-
telligence algorithms such as SVM, RF, CNN, and MLP,
this paper uses Whole Byte scheme, HM scheme, and
Non-Force-HM scheme to attack the data sets with
delay, and the results were compared from the guessing
entropy and accuracy. Since the data set with delay adds
delay protection, the attack on such data sets becomes
more difficult. As Figure 11 shows, the accuracy of the four
algorithms is reduced, but the reduction of the HM model
is relatively low compared with the Whole Byte model.

For DS2, the guessing entropy of the Non-Force-HM
scheme, the Force-HM scheme, and the Whole Byte scheme
is shown in Figure 12. Compared with the Force-HM
scheme, the guessing entropy of the Non-Force-HM scheme
is much smaller.

*e computational complexity of the three attack
schemes is shown in Table 5.

As can be seen from Table 4, when the 16-byte AES
algorithm is attacked simultaneously, the advantages of the
Non-Force-HM scheme are more prominent. Compared to
the Force-HM scheme, this scheme has a very low order of
magnitude of computational complexity. Its computational
complexity is significantly lower than that of the Whole Byte
scheme too.

For DS2, this paper compares the attack success rate of
the Whole Byte model and HM model with different ma-
chine learning algorithms under different number of
training traces, as shown in Figures 13 and 14, respectively.
*e success rate of 9 attacks is recorded successively with
power traces ranging from 1000 to 9000. As can be seen from
Figures 13 and 14, in the training stage, as the number of
power traces increases, the attack success rate of the two
models gradually increases and steadily reaches the maxi-
mum. If the Whole Byte model is used as the classification
label, when the number of training traces is about 4000, the
attack success rate reaches the maximum and stabilizes at
about 0.004. By contrast, if the HM model is used as the
classification label when the number of training traces is
about 1000, the attack success rate reaches the maximum
and stabilizes at about 0.25. *erefore, compared with the
Whole Byte model, the HM model has a higher attack
success rate and requires fewer training power traces
numbers.

Table 5: Comparison of computational complexity of the three
schemes for DS2.

Scheme Non-Force-HM Force-HM Whole byte
Computational
complexity 101.9 × Pa 1566.72 × Pa 232.84 × Pa

0.9928 0.9859
0.936 0.968

0.5333
0.586

0.259

0.483

MLP CNN SVM RF
algorithm

0

0.2

0.4

0.6

0.8

1

1.2

ac
cu

ra
cy

HM model
Whole byte model

Figure 7: Accuracy of the HM model and Whole Byte model with
different algorithms for DS1.
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Figure 8: Guessing entropy of the three schemes with different
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5. Summary

*is paper proposes a power analysis attack method of the
None-Force-HM scheme that uses the HMmodel and does not
require brute force cracking. Based on the HM weight of the
SBOX output value, themethod selects the best plaintext for the

next power analysis attack, and Euclidean distance is chosen as
the optimal plaintext selection judgment algorithm. Itmakes the
HMweight distribution of the SBOX output value more evenly,
thus reducing the possible key space and confirming the key
more easily. *is scheme does not require brute force cracking.
It only needs to input 3.332 plaintexts on average and up to 4
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Figure 11: Accuracy of the HMmodel andWhole Byte model with
different algorithms for DS2.
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Figure 12: Guessing entropy of the three schemes with different
algorithms for DS2.
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Figure 13: Accuracy of different algorithms with Whole Byte
model for DS2.
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Figure 14: Accuracy of different algorithms with HM model for
DS2.
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plaintexts to determine the unique key, which effectively im-
proves the efficiency of the power analysis attack.

*e Non-Force-HM scheme is based on the HM model,
and it has the following characteristics:

(1) It still uses the HM model, so there are 9 classes when
using machine learning for classification. Compared
with the 256 classes of theWhole Bytemodel, themodel
is easier to train successfully and has better accuracy.

(2) Since the average number of traces required for
a successful attack is 3.332 and the maximum is 4, it
also has an advantage in guessing entropy compared
with the Whole Byte model.

Non-Force-HM scheme is based on the attack of
selecting plaintext. In view of this, the following research
points can be considered in the future [17]:

(1) How to select and attack the plaintext for the al-
gorithm with mask defense.

(2) How to carry out plaintext selection and attack for
the algorithm with disturbance defense.
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