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Software-Defined Networking (SDN) actualizes the separation of control and forwarding and innovates network functionalities with
a logically centralized controller. Contemporary SDN infrastructure exposes the potential bottlenecks which are prone to engage in
distributed denial of service attack (DDoS) thus posing an ever-increasing threat. 'is paper adopts the idea of “cross-plane
collaboration” accomplishing DDoS attack defense and incorporates a two-phase project deploying the lightweight detection
mechanism in data layer and the fine-grained filtering model in control layer. 'e coadjutant detection mechanism introduces a
novel three-dimensional entropy consisting of five flow table features performing real-time feature detection; the defense strategy
schedules an attack classification algorithm based on neural network bymeans of extracting four flow rule features designed to locate
compromised interfaces occupied by malicious traffic. Extensive experiments are implemented to demonstrate the method we
proposed brings excellent superiority. 'e detection rate of the classification filtering model is 99.4%, and it is real-time, with a
detection time of 0.51s. In addition, the method of cross-layer defense reduces the CPU utilization of the controller.

1. Introduction

Software-Defined Networking (SDN) is a brand-new net-
work canonical form with a centralized controller gov-
erning the whole network, which decouples the control
plane and data plane, and breaks the dilemma of “relative
closure” of traditional networks. However, emerging
technologies bring new security concerns and new threats
that do not exist in current traditional networks; DDoS
attacks [1] with highly concealed and destructive traits
comprise attack host groups by initiating massive zombie
hosts or virtual machines. 'e attacker governs the attack
host groups to send continuously a large number of forged
data packets to the victims. At one time, generous men-
dacious data packets swarm into the victim server, con-
suming the server’s memory, CPU, link bandwidth, and
other resources; this severely damages the server and
prevents the service reaching legitimate users.

DDoS attacks in traditional networks are primarily di-
vided into resource exhausted DDoS attacks and bandwidth
exhausted DDoS attacks. 'e former primarily depletes

resources of the victims by sending abundant data packets,
including CPU computation, memory, and TCP connection.
'e routine SYN Flood attack sends a large amount of SYN
messages to the server. After receiving the SYN message, the
server returns a confirmation message to the client, but it
never receives a response from the client. 'en the server
keeps sending confirmation messages until it crashes.
Bandwidth exhausted attack is communication link-
s–oriented. Immeasurably, the server can scarcely offer
reliable service if the bandwidth of the communication link
is completely consumed, typically concentrating on ARP
flooding attack and UDP flooding attack. When an attacker
initiates an ARP flooding attack, the attacker first sends
substantial ARPmessages to the target link and subsequently
transmits numerous ARP responses, thus occupying link
bandwidth until link congestion [2].

'e controller emblematizes the most critical sector of
the SDN. 'e attacker counterfeits a large volume of data
packets with false IP addresses to trigger malicious requests,
which overloads the centralized controller, resulting in
single point failure of controller and network paralysis.
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DDoS attacks against SDN data layer primarily focus on
Openflow switch. According to Openflow southbound
protocol, whenever data packets arrive at the switch, the
switch initially queries whether there are matching for-
warding rules. If the switch has no way to handle these
packets conversely sending encapsulated packet-in messages
to the controller, the controller sends packet-out messages to
instruct flow rules installation. All flow rules in the switch
forming flow table are stored in the ternary content ad-
dressable memory (TCAM). Due to cost and power con-
sumption, the TCAM space of Openflow switch is
considerably limited can merely store a certain amount of
flow rules [3–5]. 'erefore, exhausting TCAM resources has
become the main target of DDoS attacks against the data
layer. 'e DDoS attacks against the data layer in SDN are
shown in Figure 1.

'e attacker inculcates the elaborate data packets peri-
odically, and each distinctive data packet evokes the con-
troller dispatching flow rules. 'e periodically sent data
packets prevent attack flow rules from being deleted due to
triggering of the timeout mechanism. When the flow table is
gradually completely filled with the malicious flow rules, the
switch barely provides additional resources to install flow
rules for the legitimate requests, and ultimately the attacker
accomplishes the purpose of denial of service.

DDoS attacks against the control layer require ex-
traordinarily extensive botnet; the attack characteristics are
relatively obvious with lower concealment [6–8]. By com-
parison, the DDoS attack on the data layer owns lower attack
rate and more powerful concealment, which can be quite
challenging to detect, getting focal point in recent research
[9–11].

Attackers utilize the security vulnerabilities of SDN to
launch DDoS attacks, which tremendously threatens the
security of SDN [12–14]. 'e scale of attack is piecemeal
escalating and the means of attack are evolving in a steady
stream, which leads to the emergence of new problems
ceaselessly. 'erefore, how to deal with DDoS attacks under
SDN has always been a research hotspot, and it is of certain
significance to study the corresponding defense methods.
However, current detection solutions suffer from high false
positive rate in the flash crowd scene; meanwhile, the de-
tection method now available based on single entropy in-
tersperse serious boundedness and scarcely counteract
diversified patterns of attacks; besides, the existing defense
methods insufficiently engage efficacious filtering
mechanisms.

By exploiting the vulnerability that the current SDN
switches supporting OpenFlow universally have restricted
TCAM space and can only conserve flow rules with the
preset capacity, we constructed DDoS attacks with forged
source IP addresses and forged source ports in this paper.
'ese fake IP addresses and port numbers quickly swarm
into the victim to occupy the TCAM capacity and consume
flow table resources, which brings nonnegligible destruc-
tiveness for normal users. Giving top priority to researching
the characteristics of DDoS attacks in SDN, this paper
presents a cross-plane cooperatively DDoS attack defense
architecture based on the characteristics of SDN switch flow

table, which consists of a coarse-grained detection on the
data layer and a fine-grained defense on the control layer.
'e data layer has certain programming ability. Existing
OpenFlow switches have one or more central processing
units, which have powerful computing power and abundant
unused resources, making it possible to deploy detection
methods in the data layer. We deploy the coarse-grained
entropy detection in the data layer and the flow rule filtering
based on neural networks in the control layer, which not
only ensures that the attack flow rules can be filtered out
timely and accurately after the attack is detected but also
reduces the communication overhead on the basis of en-
suring the real-time detection. 'e detection method is
directly deployed in the data layer, so that the switch can
directly extract and process data from the flow table, which
reduces the detection delay to the minimum, and reduces the
southbound link blocking and controller load caused by
controller polling. In the detection stage, the switch per-
forms lightweight real-time detection based on three-di-
mensional entropy. If there are abnormalities, the controller
receives the alarm information reported by the switch; the
machine learning classification algorithm deployed in the
control layer will extract four flow features for sophisticated
classification and filter attack flow rules to ensure the access
requirements of normal users. 'e cross-plane defense ar-
chitecture proposed ensures real-time detection and avoids
frequent polling between the controller and the switch, so
that the defense architecture can complete effective defense
with low resource overhead.

In conclusion, the contributions of this paper are as
follows:

(1) For distributed denial of service attacks under SDN,
a cross layer defense method based on flow table
characteristics is proposed according to the idea of
“cross layer cooperation,” which can effectively de-
fend attacks and reduce the amount of computation.

(2) Aiming at the problems now available in the existing
DDoS attack detection methods under SDN, a three-
dimensional entropy detection based on the char-
acteristics of switch flow table is proposed, consisting
of five flow table features: source/destination IP
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Figure 1: DDoS attack on SDN data plane.
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address entropy, source/destination port entropy,
and packet size entropy, which alleviates the problem
of high false alarm rate in flash scene and reduces the
detection time.

(3) To be directed against the problems in the existing
DDoS attack defense methods under SDN, we ex-
ploit neural network classification mechanism
extracting four flow features of the switch, consti-
tuted by packet interval variance, number of
matching packets, flow duration, and the relative
dispersion of matching bytes, so that the neural
network can locate the specific attack flow rules
according to the detection features. At the same time,
the proposed classification model is improved to
enhance the efficiency of the model.

'e rest of this article is organized as follows: Section 2
presents the related work, summarizes the current research
status and subsistent bottlenecks, and presents the moti-
vation for this paper. Section 3 expounds the architecture of
our proposed framework. Section 4 covers the experiments
to verify the proposed defense architecture and conducts a
comparison with others methods. Section 5 draws the
conclusion and indicates the future work prospect.

2. Related Work

DDoS attack has shown a great ability to cause damage, which
is one of the biggest menaces to large networks and infor-
mation systems in the period of cloud computing, 5G, and big
data environment, and the security is the most prominent
issue in the Internet of 'ings (IoT) [15]. 'e emerging
technology creates new security concerns and new threats
that do not exist in the current traditional networks. Giving a
high-performance solution to defend DDoS attacks has al-
ways been a puzzle. A lot of researches have been devoted to
revealing new vulnerabilities or designing effective anti-DDoS
countermeasures. Liming Fang et al. [16] introduced the
smart contracts to analyze malicious behavior of users and
execute punishment measures in the 5G scenario, which can
launch counterattacks before attacks occur, thus increasing
the cost of attacks. AI module was embedded in smart
contracts to accurately detect the attack.'ey also introduced
a game mechanism while maintaining efficiency of com-
munication, and constructed a mapping relationship between
the smart contract account and network location so that
external attacks cannot avoid the audit of the smart contracts.
Zhou et al. [17] established a mechanism of hybrid active
defense combined with Moving Target Defense (MTD)
technology to confuse attackers by spreading camouflaging
information through network spoofing in IoT networks.

SDN has a broad development prospect due to its flexible
deployment rules and global view of the controller. How-
ever, given that SDN is still in the development stage, it
readily grabs attention from multifarious attacks, especially
of DDoS attacks. 'is section summarizes the existing types
of DDoS attacks and analyzes the problems in the detection
of and defense against DDoS attacks in SDN and proposes
solutions to the existing problems.

2.1. Types of DDoS Attacks. DDoS attacks derive numerous
variants such as the classic SYN Flood and UDP Flood,
ICMP Flood, HTTP Flood [18], DDoS Amplification At-
tacks, Link Flooding Attack (LFA), etc. 'e SYN-Flood
attack exploits a vulnerability in TCP and sends a large
number of SYN packets with false source addresses to the
target host. Shin et al. [19] introduced connection migration
and actuating triggers into the SDN architecture to cope with
the challenge when encountering the SYN Flood attack.
Recently, a new type of DDoS attack, known as LFA, has
emerged and shows tremendous collapsing force, and is
already being used by attackers to flood and congest network
critical links [20]. Hong et al. [21] proposed an SDN-assisted
SlowHTTPDDoS attack defensemethod that can detect and
mitigate Slowloris and Slow HTTP POST attacks in SDN.

In Reference [22], Yue et al. proposed M-DoS attack and
S-DoS attack, respectively, representing the DoS attack with
multiple flow entries (M-DoS) to exhaust the Ternary
Content-Addressable Memory resource of the switch and
DoS attack with a single well-designed entry (S-DoS) to
overwhelm the target link then further impacting the con-
troller. For these two kinds of attacks, they extracted six
characteristics of the flow table, and used BP neural network
to construct a classifier to distinguish the attack flow from
normal flow.

2.2. Methods for Detecting DDoS Attacks. DDoS attack de-
tection is principally divided into two aspects: threshold-
and feature-based detection. 'reshold-based detection
mainly detects whether some specific indexes, such as en-
tropy, exceed the threshold to determine whether the net-
work is under attack. 'is detection method is ordinary and
effortless to implement and owns supernal real-time per-
formance. However, the detection rate of this method is
tremendously affected by the dynamic changes of the net-
work. How to find a suitable detection index is the master
key to threshold-based detection. Yu et al. [23] believed that
attacks are cyclic and periodic; thus, they raised a detection
method based on “time to live” (TTL). For each switch loop,
the number of data packets in the TTL is counted, and the
data packets in the switch are observed as to whether they
have periodicity through frequency domain transformation.
Although this detection method allows for faster detection
performance, it is affected with little hindrance in flash
crowd scenes. Chou et al. [24] proposed a detection method
based on correlation in SDN. 'e controller uses Spearman
rank correlation and the round-trip time of each link layer
discovery protocol frame to judge whether the network is
under attack. Liu et al. [25] exploited a detection method
combining generalized entropy and neural networks. 'e
switch is determined whether there is an exception by
detecting its generalized entropy value. For abnormal
switches, a neural network extracts features further dis-
tinguishing whether DDoS attacks have occurred. Experi-
ments showed that the method reduces the central
processing unit (CPU) load of the controller and improves
detection ability while ensuring detection accuracy. Feature-
based detection methods generally extract and train the
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features of normal traffic and attack traffic to classify un-
known traffic through machine learning methods. Dalati
[26] et al. proposed a real-timemonitoring method, in which
the controller periodically requests the switch to report
information, and analyzes the traffic characteristics to de-
termine whether it is malicious traffic. However, this method
may bring great load pressure to the controller. Berezinski
et al. [27] proposed the network anomaly detection tech-
nology primarily based on correlation entropy. Entropy
metric is acceptable for detecting contemporary botnet
malware mainly based on association anomaly patterns in
the network.

More superior detection performance can be achieved in
feature-based detection methods. However, they are obliged
to perform feature extraction and train a large amount of
data, leading to large detection calculations and a certain
delay in feature extraction and classification. In view of the
possibility of a single point of failure of the controller,
Kirutika et al. [28] proposed an external monitoring system
by using the random forest algorithm to monitor the be-
havior of the controller and calculate the probability of the
controller being attacked; they also proposed some metrics
to improve the accuracy of the detection process. Long
Short-Term Memory (LSTM) and Support Vector Machine
(SVM) can achieve the higher detection rate [29, 30]. Beny
et al. [31] proposed a hybrid convolutional neural net-
work—long short-term memory model (CNN-LSTM) to
detect slow DDoS attacks. 'ey also established six char-
acteristics for training (e.g., average number of packets per
flow, average packet size per flow, packet change rate, flow
change rate, average number of packets per second, and
average number of bytes per second). According to the
model classification results to determine whether the net-
work is under attack, the hybrid CNN-LSTMmodel is better
than standard learning models, such as multilayer percep-
tron (MLP) and support vector machine (SVM). In response
to DDoS attacks in SDN, Pérez-Dı́az et al. [32] proposed a
flexible structure which executes six machine learning al-
gorithms, including random forest, MLP, random tree, J48,
REP tree, and SVM, to train the intrusion detection system
in the architecture. 'ey also used the DoS dataset of the
Canadian Institute of Cybersecurity to evaluate their per-
formance. 'e assessment results show that the system ef-
fectively mitigates attacks. Chonka et al. [33] proposed a
method based on chaos theory to detect normal traffic from
the attack traffic according to flow similarity. In this paper,
the system based on neural network is used to detect ab-
normal traffic. Johnson et al. [34] proposed a fresh vic-
timization detection system—artificial neural network. 'is
paper is dedicated to studying two formula multilayer
perceptron (MLP) and genetic algorithm (GA). DDoS de-
tection adopts MLP formula and genetic algorithm as
learning formula. Projection technology will provide higher
accuracy and sensitivity than normal system. Said ElSayed
et al. [35] utilized the Information Gain (IG) and Random
Forest (RF) in order to analyze the most comprehensive
relevant features of DDoS attacks in SDN. Cao et al. [36]
proposed a detection method based on Spatial-Temporal
Graph Convolutional Network (ST-GCN). It can sense the

state of switches and input the network state into the spa-
tiotemporal graph convolution network detection model by
in-band sampling network telemetry (INT), and finally find
the switch through which DDoS attack flow passes.

'reshold- and feature-based detection have their re-
spective charm and deficiency. 'e dominating problem in
detection is that the method based on entropy cannot si-
multaneously detect DDoS attacks against IP addresses and
ports. By contrast, flash crowd is also a potential interference
factor. Flash crowd refers to numerous legitimate requests
for access under normal conditions, such as the Spring
Festival travel and World Cup live broadcasts. We call this
kind of vast legitimate requests in a short period of time as a
flash crowd scene. Legal burst traffic is frailly judged as a
DDoS attack because it comes into being semblable behavior
pattern like an attack.

2.3. Methods for Defending DDoS Attacks. DDoS attack
defense methods in SDN are mainly divided into two types,
the intermediate network resource control method and the
source-side restriction method. 'e intermediate network
resource control method is that when the network sustains
attack, the controller firstly uses global view to pull the traffic
of the victim switch to the neighboring switch to keep the
link unobstructed. At the same time, the method detects the
data packets and forwards the legitimate data packets firstly.
'e resource control method can avoid the filter of legiti-
mate flow rules due to detection errors, but as the attack
traffic increases, adjacent switches will also face the danger of
resource exhaustion. Using the idea of intermediate network
resource control, Wang et al. [37] proposed an attack
mitigation method called BWManager, which is based on
bandwidth prediction using an adaptive condition score
time-series model to predict the broadband utilization of
each user. 'e model predicts on the basis of the user’s
historical data, and the system determines the priority of
resource allocation on the basis of the difference between its
actual usage rate and the predicted value. In terms of attack
filtering, BWManager extracts features and uses neural
network classifiers to determine which switch is under at-
tack. Shang Gao et al. [38] proposed a defense architecture
called FloodDefender to mitigate and filter malicious traffic.
'e architecture detects the attacks through frequency
characteristics and has a low false-positive rate. Once an
attack is detected, the defense method bypasses the victim
switch to protect the link and then filters the attack traffic. At
the same time, the switch flow table is cached to protect
TCAM resources. Biao Han et al. [39] developed a collab-
orative DDoS attack detection mechanism, which consists of
a coarse-grained flow monitoring algorithm on the data
plane and a fine-grained attack classification algorithm on
the control plane. A novel defense policy offloading
mechanism is proposed, in which defense applications are
dynamically deployed between controllers and switches to
achieve fast attack response and accurate botnet location.

'e source-side restriction method is to detect the flow
through indicators such as the number of flow requests, and
take measures such as restricting access to data packets that
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are considered to be attacks to protect the security of the
switch flow table. Although the source-side restriction
method can effectively filter attack traffic, the false positive
rate is comparatively high, and legitimate requests will be
restricted. Aimed at the source-side restriction method,
Muhammad Imran [40] proposed a system called DAISY for
detecting and mitigating attacks. In terms of detection,
DAISY sets thresholds for the number of flow requests,
thresholds for the number of warnings, and thresholds for
the number of blockings. A judgment is made that the flow
considered suspicious is blocked and blocked for a longer
time when considered a malicious flow. 'e blocking time
interval gradually increases or decreases in accordance with
the malicious communication behavior. In order to prevent
the nodes in the network from being attacked by DDoS
attack, the literature [41] proposed a defense mechanism
based on hybrid entropy. 'e hybrid entropy-based defense
mechanism first judges whether the node is abnormal by
detecting the changes in the source IP address entropy value,
destination IP address entropy value, and time interval of the
node, and adopts corresponding restriction measures
according to the malicious degree of the node. If there is
obscure incorrect behavior, the forwarding is restricted.
When the node has distinct inaccurate behavior, it will be
banned immediately. Kandoi et al. [42] analyzed low-rate
DDoS attacks on the control plane and data plane, and
proposed a method to mitigate DDoS attacks by limiting
data transmission rate.

Considering comprehensively, source-side restriction is
the most effective and direct method, but it is necessary to
ensure extremely high detection accuracy to prevent legal
flow rules from being filtered. 'e main problem in the
contemporary defense method is the lack of effective attack
filtering mechanisms. Most of the existing features are for the
flow table as a whole and cannot distinguish specific attack
flow rules. Moreover, the combination of detection and fil-
tering should be more reasonable and functional to reduce
CPU consumption while filtering out attack flow in time.

To solve the problems of the existing detectionmethods, we
propose a three-dimensional entropy detection method based
on the features of the switch flow table, which avoids the
trouble of flash crowd scenes and can be capable of detecting
multiple patterns of attacks. In response to the problems in the
attack defense method, we propose a neural network-based
flow rule filtering method to complete the precise positioning
and filtering of attack flow rules. Lastly, we combine light-
weight detection based on flow table features in the data plane
and fine-grained filtering based on neural network in the
control plane to form a cross-plane DDoS attack defense ar-
chitecture, which not only ensures efficient filtering of attack
flow rules but also reduces resource consumption.

3. Defense Architecture Description

To solve the problems of detection and defense methods, we
propose a cross-plane DDoS attack defense architecture.
'is section principally describes the defense architecture
across three aspects: defense architecture design, detection
methods, and defense methods.

3.1. Defense Architecture Design. Several defense methods
and defense architectures exist in the existing research.
However, most of them are deployed in the control plane
with a global view, leading the controller to access the data of
switch for each detection. To ensure real-time detection, the
controller needs to poll the switch frequently, bringing about
huge communication overhead between the switch and the
controller, even the southbound interface link is blocked. In
addition, the controller firstly accesses the switch infor-
mation and then performs detection function, which renders
a high detection delay. To ensure real-time detection and
reduce the communication overhead of the southbound
interface, we deploy coarse-grained detection in the data
plane with the purpose of separating detection and defense
mechanism. Once the data plane detects the attack, the
control plane initiates the defense procedure. Literature [43]
pointed out that the existing OpenFlow switches have one or
more CPUs. 'ese processors have vigoroso computing
power and abundant unused resources, making it possible to
deploy detectionmethods in the data plane. On this basis, we
design a cross-plane DDoS attack defense architecture. 'e
architecture is mainly composed of data plane detection and
control plane defense. Deploying coarse-grained entropy
detection in the data plane guarantees real-time detection
and reduces communication overhead. Fine-grained flow
rule filtering based on neural network is deployed in the
control plane to ensure that the attack flow rules can be
filtered out in time and accurately after an attack is detected.
'e workflow of the defense architecture is shown in
Figure 2.

Figure 2 illustrates that, in the face of a new forwarding
request, the switch encapsulates packet-in message to the
controller aiming to request flow rules installation, and the
controller issues packet-out message to install flow rules
which are stored in the flow table. In our defense archi-
tecture, the switch can directly perform real-time entropy
detection on the flow table, thus reducing detection delay
and communication overhead. Once the switch discovers
that the entropy value of the flow table is abnormal, it sends
an alarm message to the controller; then the controller
accesses the flow table information of the switch and extracts
fine-grained features, transmitting them to the neural net-
work classifier consequently. In accordance with the output
result of the classifier, the specific attack flow rule is located.
'e controller sends a Flow-Mod message to delete the
attack flow rule and no longer installs the flow rule for the
data packets from the host and port. At this point, the
defense architecture has completed attack filtering,
guaranteeing the smooth operation of switches and net-
works. 'e next subsection describes our defense archi-
tecture in detail through two aspects: detection method in
the data plane and defense method in the control plane.

3.2. Detection Method in Data Plane

3.2.1. Entropy Detection. Detection methods for DDoS at-
tacks in SDN are mainly divided into threshold- and feature-
based detection. Considering the advantages and

Security and Communication Networks 5



disadvantages of the two detection methods we analyzed in
the Related Work section, we propose a three-dimensional
entropy detection method. Entropy value is a measure of the
degree of randomness and an index used to measure the
maximum amount of information that the system can
transmit. 'e higher the degree of randomness of a system
and the more dispersed the information distribution, the
higher the entropy value. 'e lower the degree of ran-
domness, the lower the entropy value [44, 45].When a DDoS
attack is encountered, numerous data packets are sent to the
victim, and several data packets with the same destination
address cause a sudden drop in the entropy value; thus, the
entropy value can well reflect the state of the network.
However, detection based on a single entropy value has great
limitations. For example, a detection method based on the
entropy value of the IP address hardly detects DDoS attacks
on the destination port. In addition, how to avoid the high
false positive rate in the flash crowd scene is key to the
detection method. To detect simultaneous DDoS attacks
against IP addresses and ports and incidentally avert flash
crowd scenarios, we compose the five table features of
destination/source IP address entropy, destination/source
port entropy, and packet size entropy. 'e three-dimen-
sional entropy is used for attack detection, and the detection
method is shown in Figure 3.

Figure 3 shows that our detection method is divided into
three dimensions. By using these three dimensions, un-
known traffic can be divided into attack traffic, normal
traffic, and flash crowd.Hx represents the source/destination
IP address entropy, and the formula of Hx is

x � 􏽘
k

i�0
Px1ilog2px1i − 􏽘

k

i�0
Px2ilog2px2i. (1)

In equation (1), Px1i � x1i/n corresponds to the proba-
bility of the i-th source IP address in the flow table, and
Px2i � x2i/n corresponds to the probability of the i-th des-
tination IP address in the flow table. When a DDoS attack
against an IP address occurs, numerous data packets with
forged source IP addresses flood into the same destination

address, leading to a sudden increase in the entropy value of
the source IP address and a sudden drop in the entropy value
of the destination IP address. In turn, it leads to an increase
in the Hx entropy value. Hy represents the entropy value of
the destination/source port. 'e formula of Hy is

Hy � 􏽘
k

i�0
Py1ilog2py1i − 􏽘

k

i�0
Py2ilog2py2i. (2)

In equation (2), Py1i � y1i/n corresponds to the proba-
bility of the i-th source port in the flow table, and Py2i � y2i/n
corresponds to the probability of the i-th destination port in
the flow table. In addition to forging the source IP address,
DDoS attacks can guide the controller to install flow rules by
changing the port number. When a DDoS attack against a
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port occurs, numerous data packets with forged source ports
flood into the switch and attack the same port of the host,
thus consuming flow table resources. 'is occurrence leads
to a sudden increase in the entropy value of the source port
and a sudden drop in the entropy value of the destination
port, subsequently increasing the Hy entropy value.

'e combination of the entropy of Hx and Hy can si-
multaneously detect DDoS attacks against IP addresses and
ports. However, how to avoid the false detection of a flash
crowd traffic as an attack is one of the difficulties of this
detection method. To this end, we propose packet size en-
tropy Hz, whose formula is as follows:

Hz � − 􏽘
k

i�0
Pzilog2pzi. (3)

In equation (3), Pzi � zi/n corresponds to the probability
that the matching packet size is i in the flow table. Although
flash crowd traffic and DDoS attacks are similar in behavior,
they both increase numerous requests in a short period.
Nevertheless, legitimate requests in a flash crowd scene have
actual meaning; thus, the packet size of each data packet is
different. On the contrary, to occupy numerous flow rules
for a long time, DDoS attacks have to send several repeated,
forged, andmeaningless data packets, causing the packet size
entropy Hz to drop sharply when a DDoS attack occurs.
Hence, it is not significantly changed in a flash crowd scene.

'rough the combination of the three dimensions ofHx,
Hy, and Hz, the three-dimensional entropy value can si-
multaneously detect DDoS attacks against IP addresses and
ports. At the same time, it can distinguish between attack
traffic and legal burst traffic, thus efficaciously reducing the
false positive rate in flash crowd scenes.

3.2.2. Adaptive *reshold. 'reshold is a key parameter that
directly affects false positive rate, false negative rate, and
detection rate. In actual networks, network conditions are
constantly changing, and it is difficult to adapt to various
types of network traffic using fixed thresholds. If the network
traffic is stable but the detector’s threshold is high, then the
false negative rate increases. If the network traffic is flexible
but the threshold is low, the detection rate becomes low. To
prevent the excessively high false negative rate and false
positive rate due to improper threshold setting and to ac-
commodate the dynamically changing network preferably,
this paper adopts an adaptive threshold method to detect the
entropy value. We define a sliding window with a size of T
and a step size of β. 'e threshold H(i) corresponding to the
i-th detection window is

H(i) � μ(i) + 3σ(i). (4)

In equation (4), μ(i) represents the mean value of en-
tropy in the i-th detection window, and σ(i) represents the
standard deviation. In the network, normal data obey the
normal distribution. According to statistical theory, the
mean plus or minus three standard deviations contains 99%
of the distribution, and the detection method regards the
values exceeding this interval as outliers [46]. 'e high

confidence interval composed of the mean and standard
deviation can effectively reduce the false negative rate and
false positive rate.'e small step size β of the sliding window
ensures that the threshold can adapt to a dynamically
changing network, and the larger window size Tprevents the
threshold from becoming volatile with network changes.
Once the detected entropy value exceeds the threshold, that
is, when the switch is under DDoS attack, the update of the
threshold is stopped, thus avoiding the formation of an
excessively high threshold due to the appearance of attack
traffic.

In summary, this section proposes a detection method
based on three-dimensional entropy, which can detect DDoS
attacks with forged IP addresses and ports without being
affected by flash crowd scenes.

An adaptive threshold is also designed to adapt to a
dynamically changing network. In addition, the switch can
directly use the information in the flow table to process and
calculate the entropy value, thereby reducing communica-
tion consumption and improving the real-time performance
of detection. Moreover, detection based on the entropy value
is easy to implement and thus is suitable for attack detection.

3.3. Defense Method in Control Plane

3.3.1. Defense Features. Whether an attack can be accurately
detected in real-time is the first step of the defense archi-
tecture. How to effectively filter out attack traffic and ensure
the smooth operation of the network is pivotal. Most existing
defense methods lack an efficient filtering mechanism. Some
methods detect an attack but fail to delete the flow rule, and
some methods delete attack flow rules while deleting le-
gitimate flow rules. To this end, we present a DDoS defense
method based on flow features, propose four fine-grained
flow features, and use neural networks to learn and train the
extracted features through classification results to position
the attack flow rule. Lastly, we filter out the flow rules
considered as malicious to complete the attack defense.

At present, there is much literature focusing on the
defense against DDoS attacks through feature extraction.
For example, literature [37] used features extraction mostly
for short flow, proportional growth rate, and entropy value,
which are only used for the overall flow table of the switch.
'ese features are not designed for a single flow rule and
cannot make the classifier distinguish which flow rules
belong to attack flow rules. 'us, through the study of DDoS
attack traffic, we propose four features for a single flow rule:
duration time of the flow rule, number of packets matched
by the flow rule n_packet, and the relative dispersion of
matching bytes and idle_age. 'e content and meaning of
the four features are described below.

(1) Duration. On the basis of the existing literature analysis,
we found that 0.1% of the traffic duration can reach 200 s,
and about 80% traffic duration is about 10 s [47]. However,
in order to exhaust the flow table resources, the DDoS attack
in data plane will uninterruptedly send attack data packets to
ensure that the attack flow rules are not deleted. 'erefore,

Security and Communication Networks 7



duration can be one of the characteristics of distinguishing
flow rules. When a DDoS attack occurs, the duration of the
attack flow rule will aggrandize continuingly, whereas the
normal flow rule stabilizes at 10 s and below.

(2) n_packet. In order to occupy the flow rules with minimal
resource consumption, DDoS attackers will periodically
send packets to the victim, and the interval between packets
is slightly shorter than the timeout period. Timeout is a way
of switch resource management. 'e timeout is divided into
hard timeout and soft timeout. When the flow rule exceeds
the soft timeout and does not match the data packet, the
switch will send a request to delete the flow rule to the
controller. When the flow rule exceeds the hard timeout and
no packet is matched, the switch directly deletes the flow
rule. However, normal traffic is random and sends nu-
merous packets constantly; thus, the number of packets
matched by the flow rule n_packet can be used as an ap-
parent detection feature. When a DDoS attack occurs, the
n_packet under the attack scene is diminutive and fixed at a
certain number, whereas the n_packet under a normal scene
is prodigious and unstable.

(3) *e Relative Dispersion of Matching Bytes. In addition to
the number of packets, the size of the packets under an attack
scene is significantly different from the normal scene. To
occupy the flow table resources with the minimum re-
sources, the attacker sends plenty of packets, which have no
practical meaning and have no changes. However, the size of
packets sent by a normal user varies in accordance with the
practical needs of the user. 'erefore, we propose packet
variance as one of the features that can commendably de-
scribe the degree of dispersion of the packet size (RDMB).
'e calculation formula for RDMB is

RDMB �
􏽐

N
i�1 Xi − μ( 􏼁

2

N
. (5)

In equation (5), N is the number of packets matched by
the flow rule, Xi i � 1, . . . , N{ } is the size of each packet, and
μ is the mean value of the packet size in the detection
window. When a DDoS attack occurs, the attacker peri-
odically sends forged packets of the same size to occupy the
flow table resources.'us, the RDMB of the attack flow rules
always remains low, whereas that of the normal flow rule
maintains a higher value.

(4) *e Relative Dispersion of idle_age. We call the time
between two data packets in the traffic the idle time or the
packet sending interval idle_age.'rough our analysis of the
attack traffic, we find that to use the smallest resource to
occupy the largest flow table space, the sending interval
idle_age of the attack packet is periodic and slightly less than
the timeout period. 'e idle_age of the normal packet varies
in accordance with the practical needs of users. Under
normal scenes, multiple packets can be sent in a short time,
or any packet cannot be sent for a long time. 'erefore, we
design the relative dispersion of idle_age (RDIA) as our
classification feature. RDIA is calculated as follows:

RDIA �
􏽐

M
i�1 Ti − λ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

M
. (6)

In equation (6), M represents the number of idle_age in
the window function, Ti i � 1, . . . , M{ } represents the time of
each idle_age, and λ represents the mean value of idle_age.
When sending a DDoS attack, the packets are periodic and
single, and their RDIA is always kept low; in contrast,
packets under normal scenes have practical meaning and
randomness, and their RDIA will remain a higher value.

3.3.2. Improved Neural Network Model. After the neural
network has used the above four features for learning, the
flow rules in the flow table can be divided into attack and
normal flow rules. However, there are considerable classi-
fiers, each with its own set of strengths and weaknesses. We
need to select a suitable classifier according to the actual
situation. 'e naive Bayes algorithm is one of the most
widely used classification algorithms, and it demonstrates
exceptional accuracy when the attributes of the dataset are
independent of each other. However, the algorithm itself is
relatively ordinary. 'e classification effect is poor when the
attributes of the dataset are related to each other. K-nearest
neighbor can effectively reduce training costs, but its
computational complexity is large; thus, the effect on sample
classification must be eliminated in advance. SVM is a
commonly used supervised learning method with high
classification efficiency. However, it is sensitive to missing
data and is hardly implemented in the face of a large-scale
training dataset. Random forest uses an ensemble algorithm,
which has a satisfactory classification effect on most data.
However, when the number of decision trees is large, it
consumes considerable calculation time and space, while
appearing tremendous noise it readily falls into overfitting.
Backpropagation (BP) neural networks are currently the
most usual forms of neural networks because they have
strong nonlinear mapping ability. XGBoost is an optimized
distributed gradient enhancement library designed to bring
efficient, flexible, and portable performance, but XGBoost
algorithm is complicated to adjust parameters, and it is not
suitable for processing ultra-high dimensional feature data.
Adaboost is an iterative algorithm whose core idea is to train
different classifiers (weak classifiers) for the same training
set, and then combine these weak classifiers to form a
stronger final classifier (strong classifier). However, it is
sensitive to abnormal samples, and abnormal samples will
get a higher weight, which will affect the final performance.

BP neural networks can work normally even when the
system is locally damaged and have strong fault tolerance
and generalization performance [31, 48]. A comparison of
the false negative rate, false positive rate, and detection
accuracy of the above five classification algorithms reveals
that the performance of the BP neural network best fits our
experiments.'e results are shown in Table1.'us, we select
circumspectly the BP neural network to train our attribute
sets. 'e BP neural network model is shown in Figure 4.

In Figure 4, the four features we proposed correspond to
four input layer neurons (v0, v1, v2, v3). 'e classifier results
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correspond to the two output layer neurons (m0, m1), which
represent normal traffic and DDoS attack traffic, respec-
tively. 'e Ramp function will make a minority of neurons
and may never be activated, resulting in the corresponding
parameters never being updated. 'e zero point of the
'reshold function is not differentiable, and the derivatives
of other parts are all 0. 'e Sigmoid activation function was
chosen for the following reasons: the Sigmoid function has
an output range of 0 to 1, it normalizes the output of each
neuron and takes the predicted probability as the output.
Since the probability ranges from 0 to 1, the Sigmoid
function is suitable, the function is differentiable which
means that we can find the slope of the Sigmoid curve at any
two points. In terms of the activation function, we found that
compared with the Ramp function and the 'reshold
function, the detection accuracy is the best when we use the
Sigmoid function.

In the experiment, we also found certain shortcomings of
the BP neural network (e.g., long training time, easily falls
into local minima). 'ese shortcomings are mainly due to
the fact that the convergence speed will decrease with the
increase of training times, and the learning rate setting is
unreasonable.'e back propagation neural network uses the
gradient descent method to adjust the weight parameters
and reduce the training error. However, when the objective
function is complex, the gradient descent method will cause
“sawtooth phenomenon” and reduce the efficiency of the BP
algorithm. 'erefore, the momentum term is introduced to
comprehensively adjust the weight. 'e back propagation
neural network looks for the extreme point according to the
maximum gradient direction of error decline. Every time it
searches for the low point, the neural network will adjust the
parameters and continue to search along the gradient until

the lowest point is found.'e distance to go in each search is
the step size, also known as the learning rate. However, when
the local lowest point appears in the network and the
learning rate is too low, all solutions in the local search range
of the neural network point to the local lowest point, and the
neural network falls into the local minimum. To solve these
problems, we partially optimized the BP algorithm by in-
creasing the momentum term to enhance the convergence
speed and by adaptively adjusting the learning rate to avoid
the problem of minuscule learning rate.

(1) Increase Momentum Term. 'e slow learning speed of BP
neural networks is mainly due to the explicit occurrence
oscillation phenomenon when using the gradient descent
method to adjust the weight. To this end, we introduce a
momentum term to adjust the weights comprehensively,
thereby accelerating the convergence of the neural network.
'e weight adjustment formula is

⎧⎨

⎩

ΔM(t + 1) � (1 − φ)ηδX + φΔM(t),

Δβ(t + 1) � (1 − φ)ηδ + φΔβ(t).
(7)

In equation (7), M is the weight coefficient matrix of a
certain layer, t is the number of training, φ ∈ (0, 1) is the
momentum coefficient, η is the learning rate, δ is the output
error of a certain layer,X is the input vector of a certain layer,
and β is the certain layer of the threshold coefficient matrix.
'rough the above formula, we introduce a momentum
term and comprehensively adjust the weight and threshold
in accordance with the fluctuation of the error surface to
reduce the effect of oscillation and accelerate the conver-
gence of the neural network.

(2) Adaptive Learning Rate. 'e learning rate is used to
control the learning progress of the model and determine
whether the objective function can converge to the mini-
mum at an appropriate time. Learning rate is a key pa-
rameter of the BP neural network and is also known as the
step size. 'e fixed step length likely causes problems, such
as slow convergence speed, excessive training time, and
overadjustment, in the later stage. For this reason, we adopt
an adaptive adjustment method to adjust the step length η.
'e adjustment formula is as follows:

η(t + 1) �

η(t)

λ
, E(t + 1)<E(t),

λη(t), E(t + 1)>E(t).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

As shown in equation (8), we introduce a scale factor
λ ∈ (0, 1) to adjust the step size, where η(t+ 1) and η(t)
represent the learning rate at time t+ 1 and time t, and
E(t+ 1) and E(t), respectively, represent the mean square
error at time t+ 1 and time t. When the error increases, the
learning rate is reduced, and the weight is corrected. When
the error decreases, the learning rate is increased to accel-
erate the convergence.

In this section, to locate and filter the attack flow rules
accurately, we propose four fine-grained features for a single

Table 1: Comparison of classification models.

Model PD (%) PFN (%) PFP (%) TN (epochs)

SVM 97.7 2.5 3.2 101
Random forest 98.3 2.2 2.3 298
Naı̈ve Bayesian 97.7 5.9 5.8 119
KNN 98.1 3.1 3.3 223
XGBoost 98.7 1.8 2.3 98
Adaboost 98.9 2.1 1.9 65
IBP 99.4 0.5 1.4 15

Input Layer Hidden Layer Output Layer

m0

m1

v0

v1

v2

v3

Figure 4: BP classification model.
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flow rule. At the same time, we optimize the neural network
to improve the convergence effect. After learning and
classification by the classifier, the flow rules in the flow table
can be classified once a DDoS attack is detected. 'e attack
flow rules are filtered out and no longer installed.

4. Experiment and Analysis

In this section, we test our cross-plane defense architecture
through hardware test-bed and compare it with other
methods.

4.1. Experimental Environment. 'e experiment topology is
composed of five hosts, three switches, and a controller. 'e
host system is Ubuntu 19.1 and has a 4G running memory,
and its processor is Intel Xeon E 2224 @ 3.5GHz.'e switch
model is Centec V350-48T4X, which supports OpenFlow 1.3
protocol and high-speed forwarding. 'e controller is Ryu
version 4.31, and the host system running the Ryu controller
is Ubuntu 19.1, which has 32G of running memory. Its
processor is Intel Xeon E 2224 @ 3.5GHz. 'e topology is
shown in Figure 5.

In our experiments, host h1 acts as an attacker and sends
attack traffic to host h4, and switch sw1 is the attack target,
which can store up to 1500 flow rules [3–5], h2 and h3 send
background traffic, including flash crowd to h5. To simulate
the actual situation as much as possible, we replay the dataset
collected in the real network on the host to simulate the real
networks. 'is experimental method has been commonly
used to replay datasets on the basis of simple hardware
topology [12, 31, 49].

'e background traffic is mainly composed of the FIFA
World Cup dataset and the CAIDA dataset. 'e FIFA World
Cup dataset can generate a flash crowd scene, which contains
all applications received by the venues during the World
Cup [50]. 'e CAIDA dataset collects and analyzes global
Internet data, including the flow of various data types. 'e
CAIDA dataset [51] is used to generate normal scenes.

DDoS attacks are mainly generated by the CICIDS2017
dataset and theHogzillaIDS dataset.'eCICIDS2017 dataset
[52] contains anonymous traffic tracking for approximately
five days from July 2nd to July 7th, 2017. Attacks include
brute force DDoS, web attacks, and FTP attacks. 'e
HogzillaIDS dataset is an intrusion detection system for
network anomaly detection, supported by HBase, GrayLog,
libnDPI, and Snort [53]. 'e main protocols of DDoS attack
traffic are the TCP and ICMP protocols, of which the ICMP
protocol accounts for 92%, and TCP data packets account
for 7%.

4.2. Attack Effect. To verify the effect of the DDoS attack on
the SDN data plane, we took the switch sw1 as the attack
target and sent a DDoS attack to the host h4 through the host
h1 to occupy the TCAM resources of the switch sw1. At the
same time, hosts h2 and h3 send background traffic to h5. To
validate the efficiency of the attack, we test the number of
flow rules of switch sw1 and the connection success rate of
host h5. 'rough these two indicators, we can observe the

occupancy of the flow table and the effect of the attack on the
network. In the experiment, we set the window size to 30 s,
and the attack is launched after 10 s.'e experimental results
of the number of flow rules and connection success rate are
shown in Figures 6 and 7.

Figure 6 reveals that the number of flow rules in the
switch is maintained at approximately 400 under normal
circumstances. 'e DDoS attack is launched after 10 s, and
numerous attack packets guide the controller to install flow
rules. 'e number of flow rules in the flow table increases
rapidly until it reaches the peak of the flow table capacity,
which is 1500. When the flow table capacity of switch sw1 is
full, sw1 will have no resources to install flow rules for other
legitimate requests.

Figure 7 shows that under normal circumstances, the
connection success rate of messages that hosts h2 and h3
send to host h5 through switch sw1 is 100%. 'e DDoS
attack is launched after 10 s. After 15 s, the flow table is
gradually filled, and the connection success rate of host h5
begins to drop. After 18 s, the flow table of sw1 is basically
full, and the connection success rate of h5 remains at a low
value because some legal flow rules exist before the flow table
is full; thus, communication can still be performed. When
normal forwarding is completed, these legal flow rules
without subsequent data packets will be deleted due to the
SDN timeout mechanism, and new legal flow requests
cannot be installed because the flow table is filled up,
resulting in the h5 connection success rate gradually re-
ducing to 0; moreover, the attacker achieves the purpose of
denial of service.

'rough the number of flow rules in sw1 and the
connection success rate of h5, we can see that DDoS attacks
on the data plane have significant attack effects and
destructiveness.

4.3. Detection Effect. To verify the performance of the de-
tection method, we collect 200 three-dimensional entropy
values of the flow table, of which 50 are collected under
normal conditions, 50 are collected in a flash crowd scene, 50
are collected from DDoS attacks against IP addresses, and 50
are collected from DDoS attacks against port numbers. 'e
three-dimensional entropy of 200 times is shown in Figure 8.

Ryu Controller

sw2

sw3
h5

sw1

h2

h3

h4h1

Figure 5: Experiment topology.
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Figure 8 reveals that the Hx and Hy of samples under
normal flow are maintained at a low state (between 0.3 and
0.7), whereas Hz is maintained at a high value (between 4
and 5). 'e Hx,Hy, andHz of the flash crowd scene are kept
at a high value (Hx andHy are kept between 2 and 4, andHz
is kept between 3 and 4). For the samples under the DDoS
attack against the IP address, its Hx value is high (between 3
and 4), whereas the Hy and Hz entropy values are low (both
below 1). Similarly, for the samples under the DDoS attack
against the port number, its Hy entropy value is high (be-
tween 2.9 and 4), whereas the Hx and Hz entropy values are
low (both below 0.6). 'e three-dimensional entropy value
has a commendable distinction between the two modes of
DDoS attacks and flash crowd scene.

To reflect the detection effect of the three-dimensional
entropy value, we test the accurate detection probability
(PD), false negative probability (PFN), false positive proba-
bility (PFP), and detection time. In addition, we prove the
superiorities of our proposed method by comparing with

other methods. We implement and compare four other
existing methods under the same experimental conditions
[25, 28, 31, 54]. 'e results are shown in Table 2.

Table 2 demonstrates that the naive Bayesian and gen-
eralized entropy algorithms are relatively simple with low
detection accuracy, high false positive rate, and false negative
rate; however, it has short detection time. 'e CNN-LSTM
model extracts features and uses a hybrid convolution model
for classification. Its detection accuracy is higher, and the
false positive and false negative rates are lower. Random
forest is a type of deep learning with supernal detection
accuracy and potency. Given that CNN-LSTM and random
forest use machine learning methods, the algorithm com-
plexity is high, and the detection time is long. After com-
parison, we find that the detection method of the three-
dimensional entropy value can ensure high detection ac-
curacy, extremely low false positive rate and false negative
rate; the detection time is only 0.51 s. At the same time, the
switch can straightforwardly exploit the flow table for de-
tection because the detection method is deployed in the data
plane. 'us, communication consumption and delay are
reduced, and low detection time is maintained, making the
switch suitable for the detection part of the defense
architecture.

4.4. Defense Effect. First, we evaluate the performance of
different classification models, including improved back
propagation (IBP). We select 1000 groups of features as the
training set and 400 groups of features as the test set in
normal as well as attack scenarios. 'e maximum number of
training target, iterations, and learning rate are set to 0.0001,
10000, and 0.001. We test the accuracy, false positive rate,
false negative rate, and training times under the same
conditions. 'e test results are shown in Table 1.

Table 1 shows that the improved IBP classification al-
gorithm is appropriate for ourmethod; it can be seen that the
accuracy, false positive rate, and false negative rate of IBP
classification model achieve a favorable consequence. At the

4 62 8 10 12 14 16 18 20 22 24 26 28 300
Sampling points

300

450

600

750

900

1050

1200

1350

1500

Fl
ow

 ru
le

s

Normal
DDoS

Figure 6: Number of flow rules.

4 62 8 10 12 14 16 18 20 22 24 26 28 300
Sampling points

0

20

40

60

80

100

Su
cc

es
s r

at
io

 (%
)

Normal
DDoS

Figure 7: Connection success rate.

0
0.5

4

1

3.5

1.5
2

3 4

2.5H
z

3

3.52.5

3.5

3
Hy

4

2 2.5

4.5

Hx

1.5

5

21.51 10.5 0.50 0
Normal
Flash crowd
DDoS attack

Figure 8: 'ree-dimensional entropy value.

Security and Communication Networks 11



same time, the improved IBP algorithm has the least number
of iterations and the fastest convergence speed.

When a DDoS attack occurs in the switch, the switch
sends an alarm message to the controller, and the controller
immediately filters the flow table in the attacked switch. 'e
filtering effect of the attack flow rules mainly depends on the
selection of features. To verify the classification effects of the
four features mentioned in the defense method, we conduct
experiments on the four proposed features.

We collect the duration of 50 sets of flow rules in normal
and attack scenes with a window size of 20 s. 'e experi-
mental results are shown in Figure 9.

Figure 9 shows that within 20 s, the duration of the
normal flow rule is maintained at 10 s and below; the du-
ration of each flow rule is random because every forwarding
rule of its normal traffic has practical significance. When the
forwarding is completed, the corresponding flow rules are
deleted through timeout mechanism. 'e duration of the
flow rule of the attack traffic is kept at 20 s, indicating that the
flow rule always exists, and its duration is not random. As
shown in Figure 9, the duration of the flow rule can dis-
tinguish attack traffic from normal traffic. With the same
window size, we collect 50 sets of n_packet under attack and
normal scenes. 'e experimental results are shown in
Figure 10.

Figure 10shows that the n_packet under normal scene is
between 10 and 30, and it has great randomness. Meanwhile,
the n_packet under attack scene remains at two, and no
quantitative change occurs between different flow rules. 'is
result also verifies that attackers often use the least con-
sumption to occupy the largest resources (the timeout period
is 10 s, and sending two packets in 20 s just to ensure that the
flow rules continue to exist). As shown in Figure 10, the
n_packet can distinguish normal traffic from attack traffic.

With the same window size, we collect 50 sets of RDMB
of flow rules under normal and attack scenes. 'e experi-
mental results are shown in Figure 11.

Figure 11 shows that in a normal scene, the RDMB
maintains a high value (between 190 and 240) because the size
of the matching packet under normal circumstances depends
on the user’s access needs; thus, it has substantial randomness.
'e DDoS attacker only sends forged data packets to fill the
flow table. 'ese data packets have an identical size and are of
no practical significance. As a result, the RDMB of the attack
flow rule in the figure is maintained below 1. As shown in
Figure 11, the degree of dispersion of the packet size can
distinguish normal traffic from attack traffic.

Lastly, we collect 50 sets of RDIA in normal and attack
scenes with a 20 s window. 'e experimental results are
shown in Figure 12.

Figure 12 shows that under normal circumstances, the
RDIA of the flow rule maintains a high value (between 12
and 18) because the idle_age of the legal flow rule depends on
the specific access requirements of the users, which have
high randomness. 'us, the RDIA becomes larger. To fill the
flow table with minimal consumption, the idle_age of attack
packets are fixed and a bit smaller than the timeout period.
'erefore, the RDIA under the attack scene is maintained
below 0.3. As shown in Figure 12, RDIA can distinguish legal
flow rules from attack flow rules.

Table 2: Comparison of detection methods.

Approach PD (%) PFN (%) PFP (%) Detection
time

Generalized entropy [25] 96.2 6.2 6.3 0.91
Random forest [28] 97.7 1.1 3.3 3.22
CNN-LSTM [31] 97.1 5.9 5.8 1.89
Naı̈ve Bayesian [54] 96.1 7.5 7.2 1.11
Our approach 98.9 0.5 1.4 0.51
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4.5. Whole Architecture Defense Effect. To verify the defense
effect of our proposed defense architecture, we test the
occupancy of the flow table, the success rate of the host
connection, and the CPU occupancy of this architecture.'e
architecture is also compared with other defense methods
that have appeared in recent years (mentioned in Section 2).
In the experiment, we launch the attack in 10 s. 'e ex-
perimental results are shown in Figure 13.

Figure 13shows that without any defensive measures,
the number of flow rules in the flow table gradually in-
creases with the launch of the attack until it reaches the
upper limit of the flow table (1500). When a BWManager is
deployed, detecting attacks takes a long time (the number
of flow rules has reached 1100) probably due to the use of

predictive models for detection; moreover, there will be a
certain delay. When an attack is detected, the BWManager
performs feature detection and filtering on the entire table,
which may reduce the filtering speed. When a Flood-
Defender is deployed, the frequency characteristics are
used for detection, and the attack is judged on the basis of
the changes in the frequency of matching flow rules,
leading to a certain delay in detection. DAISY is based on
threshold detection. Once a suspicious flow rule is found,
it is blocked within a short period, leading to a shorter
response time and faster filtering speed. Our method is
also based on threshold detection. 'e data plane detects
the changes of the three-dimensional entropy in real-
time to ensure a fast response speed. Once an attack is
found, the controller deletes the flow rules that the
classifier considers to be malicious so that the flow table
can quickly return to normal.

From the connection success rate in Figure 14, we can
see that when no measures are taken, the host connection
success rate decreases as the flow table is full until it
cannot be connected. After deploying our method, the
smooth connection of the host is ensured because the
attack flow rules can be cleared in time when the flow
table is first attacked; moreover, the flash crowd scene is
considered to avoid the problem of excessive false pos-
itive rate. 'e other three methods do not consider the
flash crowd scene too much, leading to the accidental
deletion of legal burst traffic, eventually resulting in a
decrease in the connection success rate; especially in
DAISY, once suspicious traffic is found, it is immediately
blocked, leading to a high false positive rate.

From the CPU occupancy in Figure 15, we can see
that our cross-plane defense architecture only consumes
the computing resources of the switch during detection,
and the amount of calculation for entropy detection is
small. When the switch detects an attack, the controller
combines with the neural network for traffic filtering.
After filtering, it continues to enter the state of entropy
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detection; thus, the CPU usage is small (below 12%).
DAISY also applies threshold detection, but once an
attack occurs, it will perform the function of blocking
and defense. If the attack is detected again, the blocking
time is extended, resulting in a longer CPU usage time.
BWManager and FloodDefender have slightly higher
CPU usage due to the complexity of their detection and
defense methods. We summarized the response time,
host connection success rate, and CPU usage of the four
methods, as shown in Table 3.

As can be concluded from Table 3, the response time of
the cross-plane defense method is reduced by 1 to 2.3 s
compared with the existing method, the host connection
success rate is increased by 10% to 30%, and the average
CPU usage is increased by 5% to 15%. Our method has
certain advantages in terms of reaction time, defense effect,
and CPU occupancy.

5. Conclusion and Future Prospect

In this paper, we present a cross-plane DDoS attack defense
architecture in SDN. We design a detection mechanism
which takes advantage of three-dimensional entropy and
implements a defense procedure by extracting flow feature
for traffic filtering; the formed entropy value can simulta-
neously detect DDoS attacks against IP addresses and ports
under a flash crowd scene. Extensive experiments show that
this method has certain outstanding properties in terms of
effectiveness, promptness, and resource conservation.

In future research, we will focus on the combination of
traffic filtering and resource management strategies. We will
also adjust the amplitude of flow table filtering through the
occupancy of the flow table, use the idle resources of the
other switches to mitigate the victim switch, and strive to
minimize the time that the flow table is occupied.
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