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Distributed denial of service (DDoS) is a fundamental security problem in the ISP layer of the internet of things. However, most
existing DDoS detection methods are based on NetFlow data, which cannot handle the huge detection delay of flow generation
andmassive network traffic. Besides, it is extremely hard to obtain the real DDoS attack traffic to construct a traditional supervised
binary classification model. To solve these problems, this paper proposes a novel all-packets-based DDoS attack detection method
(APDD). Firstly, a new probabilistic storage model square sketch is designed, which has structural characteristics of paralle-
lization, accumulation, and recompression. (e model and its characteristics are conducive to fast and efficient traffic storage and
compression. All network packets are mapped into square sketch, and the compressed square sketch is obtained. Secondly, in
order to overcome the problem of poor real DDoS attack samples, only according to the recompressed square sketch of the normal
network, a one-class classifier is constructed by generative adversarial networks to form a DDoS attack detection model. (e
likelihood score of a recompressed square sketch is obtained to judge this square sketch whether or not it belongs to a normal
network state. Finally, two real network traffic data sets of the high-throughput network are utilized to evaluate the proposed
method. Compared with several existing methods, the experimental results show that the APDDmethod has good time efficiency
and detection performance.

1. Introduction

(e internet of things (IoT) is a huge association between
computing devices, mechanical devices, digital devices, and
human entities. (ese entities cooperate with each other by
manufacturing, collecting, and processing data to provide
users with an intelligent adaptive environment, such as
smart home environment, intelligent transportation system,
intelligent security network, and so on. (ere will be more
than 21 billion internet of things devices by 2025. Unfor-
tunately, the security of internet of things devices cannot
keep up with the rapid development of internet of things
applications. Now more and more vulnerabilities are de-
tected regularly, which result in security threats and privacy
problems. For example, such compromised devices can be
used to perform distributed denial of service (DDoS) attacks

[1, 2]. (e Mirai botnet triggered the largest number of
DDoS attacks since 2016. (is special botnet infects many
internet of things devices (mainly older routers and IP
cameras). And the data transmission rate exceeds 600Gbps.
Mirai botnet destroyed many popular websites such as Etsy,
Netflix, Shopify, SoundCloud, and Twitter by injecting traffic
into DNS providers. In March 2018, GitHub, a well-known
code-hosting website, suffered from the most serious DDoS
attack ever with 1.35 Tbps peak traffic. (is attack suddenly
interrupted network services to cause huge economic losses.
DDoS attacks are regarded as the most critical threat to the
operation of individual enterprises and organizations and
the stability of the whole Internet. From the development of
DDoS attacks, the TB level of DDoS attacks will gradually
become normal, and the serious consequences are immea-
surable [3]. (ere are many kinds of occurrences and
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expressions of DDoS attacks [4]. From the perspective of
occurrence way, DDoS attacks can be generated by botnet,
proxy, or spoofing IP [5]. From the perspective of expression
way, DDoS attacks are divided into high- and low-rate DDoS
attacks [6]. Focusing on this attack, it is difficult to effectively
and quickly detect and defend against DDoS attacks [7].

(e convenience provided by the internet of things has
led to the extensive deployment of various sensors, such as
thermostats, security cameras, and smart lights. (e number
of the internet of things devices is growing exponentially,
and the transmitted network traffic is also growing expo-
nentially [8]. (erefore, the high-throughput network en-
vironment brings great challenges to DDoS attack detection.
In the 100Gbps network, the number of network flows
simultaneously reaches 50 million [9]. (erefore, it is im-
possible to collect, store, and process the whole network
traffic. To solve this problem, some commercial tools, such as
NetFlow and CFlow, are designed to reduce data storage
space by integrating packets into flows. (ese tools are
currently deployed on some routers and switches [10].
However, the integration mechanism increases the inter-
mediate steps of network traffic processing and results in the
delay of network anomaly detections [11]. Besides, there
exists an effective alternative strategy to only collect and
process the packet header [12]. However, the volume of
packet headers is still very huge. For example, the packet
header of ethernet at least is 224 bits. When there are 1
million packets per second, the daily storage of packet
header information will exceed 1 T. (ough based on packet
headers or NetFlow data, many traditional detection
methods bring great challenges to the performance of
memory and CPU by frequently accessing and calculating a
large amount of data. It is also impossible to achieve online
detection [13].(e attack detections have to be carried out in
an offline way after a few minutes or even hours.(is kind of
detection delay is fatal for system security when DDoS at-
tacks occur [14]. In addition, due to a high sampling ratio
(e.g., the sampling ratio is 1:1,000) of NetFlow or CFlow
tools, low-rate attacks are easily evaded [15]. Hence, it is
more difficult to detect low-rate DDoS attacks. And the high
sampling ratio results in a high false-negative rate.

Focusing on the above problems, the probabilistic data
structure, as effective data compression and storage tech-
nology, has been applied to handle large-scale network
traffic.(is technology has been widely applied in the field of
network anomaly detection. (e sketch is the most popular
probabilistic data structure, which effectively compresses
data through hash functions to reduce data storage and
analysis consumption [16, 17]. For example, the sketch has
the ability to compress thousands of megabits of data into
tens of megabits. Wang et al. [18] utilized sketch and an
improved Hellinger distance to detect application-layer
DDoS attacks. Jing et al. [19] proposed a reversible sketch
based on the Chinese remainder theorem to map network
traffic. And the mutation of one-to-one mapping between
request and response packets was monitored to identify
amplification attacks. (erefore, the probabilistic data
structure is an effective way to deal with massive network
traffic. It is possible to use the probabilistic data structure to

manage all network packets and avoid the detection error
caused by the high ratio sampling.

Another important challenge is the obtention of DDoS
attack traffic in the real network environment [20]. Normal
network traffic is common and easy to obtain. Hence, it is
very difficult to build a binary supervised model to detect
DDoS attacks. As mentioned above, one kind of data is easy
to obtain, while negative class data is difficult to obtain and
label. (is situation promotes the development of one-class
classification (OCC) model that can well distinguish the
target class and nontarget class [21]. At present, OCC
methods are widely applied to outlier detections, image
denoising, and image anomaly detections [22]. To our
knowledge, OCC methods are rarely applied to DDoS attack
detections. (erefore, in the absence of DDoS attack traffic,
it is necessary to introduce the OCCmodel to build an attack
detection model.

Facing these challenges, this paper proposes a light-
weight DDoS attack detection method based on all packets,
which realizes a fast and efficient DDoS attack detection in a
high-throughput network. Different from the previous flow-
based solutions, the whole packets are processed without
sampling. For all packets, instead of the traditional sketch
structure, a new sketch structure square sketch is proposed.
(e update rule and two independent hash functions with
keys of the IP pair are defined. Furthermore, the structure
characteristics (parallelization, accumulation, and recom-
pression) of the square sketch are fully revealed, which is
helpful to achieve faster compression and smaller storage.
(en, an adversarial one-class learning model is designed, in
which the convolution layer is the learning unit. A com-
pressed square sketch is intuitively a two-dimensional
matrix and similar to the image form. Hence, it has good
adaptability to be the input of the adversarial one-class
learning model. (e designed adversarial one-class learning
model can realize effective DDoS attack detection. (e main
contributions of this paper are as follows:

(1) (is paper proposes an all-packets-based DDoS at-
tack detection model in the high-throughput net-
work to detect high- and low-rate DDoS attacks. (e
method not only realizes the real-time detection
requirements but also meets the detection accuracy
requirements of different rates of DDoS attacks.

(2) An all-packets data mapping method based on a
square sketch is built, which avoids the intermediate
steps of network traffic handling and the negative
impact of sampling. By analyzing the structural
characteristics of a square sketch, the faster data
compression and smaller data representation are
obtained. (e processing is helpful for quick attack
detections.

(3) (e viewpoint of one-class learning model is in-
troduced. And an adversarial one-class classification
model is constructed by an automatic encoder and a
discriminator. (e model is perfectly combined with
the square sketch to realize effective DDoS attack
detections.
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(e organization of this paper is as follows. Second 2
introduces the related DDoS attack detection methods.
Section 3 describes the overall description and detailed
process of the proposed DDoS attack detection method.
Section 4 shows the experimental setup and performance
evaluation. Section 5 is the summary of this work.

2. Related Work

(is section will describe the existing DDoS attack de-
tection methods in the ISP layer. However, the related
researches are less. Gupta et al. [23] proposed a DDoS
attack countermeasure scheme at the ISP layer to monitor
the propagation of traffic mutations. Using two statistical
metrics of volume and flow as parameters, Six Sigma and
variable tolerance factor methods were used to accurately
and dynamically identify the thresholds of various sta-
tistical metrics. (e inaccurate threshold results in a large
number of false-positive and false-negative rates. (e NS-2
network simulator on the Linux platform was utilized as
the simulation testbed to validate the effectiveness of this
method. Different attack scenarios were achieved by
changing the zombie number and attack strength. Com-
pared with volume-based approaches, this proposed
scheme has a good performance.

Hinze et al. [24] utilized a passive measurement method
to analyze malicious traffic on the national ISP and large
regional internet exchange points. According to the MAWI
data set on the ISP layer, the method identified DDoS attacks
by analyzing the statistical rules of IP address, transport layer
type, source port, TCP flag, and so on. (e experiment
results displayed that the false alarm rate of this method is
about 20%∼70%. (erefore, this method needs to be im-
proved to find DDoS attacks well. However, this paper il-
lustrated that the MAWI data set is a basis data set to analyze
DDoS attacks on the ISP layer.

Liu et al. [25] developed a multi-layer defense archi-
tecture to defend against various DDoS attacks. In particular,
the flood throttling layer stops amplification-based DDoS
attacks. (e user-specific layer allowed DDoS victims to
enforce self-desired traffic control policies. Based on Linux
implementation, the method was capable to deal with large-
scale attacks involving millions of attack flows. Furthermore,
the physical testbed experiments and large-scale simulations
proved that the method is effective to mitigate various DDoS
attacks.

Gong et al. [26] proposed a DDoS attack detectionmodel
based on a quantum genetic optimized BP neural network
(DQGA-BP). Firstly, aiming at the problem of insufficient
search ability of quantum genetic algorithm (QGA), an
improved QGA method was proposed, which dynamically
changes the rotation angle of a quantum revolving gate.
Next, the improved QGA was combined with BP neural
network to detect DDoS attacks on the KDD cup 1999 data
set. (e experimental results showed that the improved
QGA has a faster convergence speed and a stronger opti-
mization ability. (e average detection rate of DQGA-BP is
0.51491% higher than that of the original quantum genetic
optimized BP neural network.

Ko et al. [27, 28] pointed out that the existing detection
mechanisms are not instant. In ISP networking, the ac-
quisition of NetFlow data is hierarchical and will take a lot of
time. For implementing a fast mitigation mechanism after a
few minutes of DDoS attacks, a stacked self-organizing map
model was proposed to combat new DDoS attacks based on
NetFlow data. (is model utilized the Apache Spark
framework to achieve a fast and simple calculation.
Meanwhile, a dynamic network traffic management
(DNTM) system was constructed, including an attack de-
tector, an IP prioritizer, a traffic manager, and a NetFlow
classifier. (e traffic manager utilized the existing ISP
mechanisms (including entry and exit filtering, rate limiting,
black hole, and normal routing) to take different mitigation
measures.

3. The Proposed Method APDD

(e overall framework of the multi-rate DDoS attack
detection method based on all packets in the ISP layer is
shown in Figure 1. (is method mainly includes three
stages: data preprocessing, all packets mapping model
based on the square sketch, and DDoS attack detection
model based on adversarial one-class classifier. In the data
preprocessing stage, the Wireshark tool is used to analyze
network packets. (e basic packet characteristics in-
cluding timestamp, source IP address, and destination IP
address are obtained. According to the timestamp in-
formation, the network packets of a unit period are input
into the all-packets mapping model based on the square
sketch. (e square sketch of one period is obtained by
hash mapping through n threads. (en, according to the
compression unit c, the square sketch is compressed to get
a compressed square sketch (CSS). Next, the historical
normal CSSs are the input of the adversarial one-class
classification (AOCC). Via these CSSs, the AOCCmodel is
trained to obtain the optimal DDoS attack detection
model. Finally, the CSS of the current time period is input
into the trained AOCC model, and the current detection
result is obtained. It is worth noting that the AOCC model
is not fixed, but it is trained and updated periodically
according to historical CSSs data, which is more suitable
for the fluctuation of network traffic.

3.1. All-Packets Data Mapping Model via Square Sketch.
In this section, the square sketch structure and the process
of all packets processing are described in detail. Firstly, the
new structure and update rule of the proposed sketch are
described. (en the structural characteristics of the square
sketch are analyzed, and finally, the mapping process of all
packets based on the square sketch is shown.

Definition 1. Square sketch. (e square sketch is a K∗K

matrix SS{ }K∗K. Different from the traditional sketch, the
keys of the square sketch are composed of a key pair
(k1, k2). (e keys k1 and k2 correspond to two independent
hash functions f1 and f2, respectively. (e
f1(k1) ∈ (1, 2, . . . , K) and f2(k2) ∈ (1, 2, . . . , K)
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determine the corresponding position of the key values k1
and k2 in the square sketch.

3.1.1. Square Sketch Update. �e update process of the
square sketch is i : � f1(k1), j : � f2(k2), SS(i, j) :� SS(i,
j) + v, where v is the corresponding update value.�e square
sketch structure and update process are shown in Figure 2.

3.1.2. Con�ict Rate of Square Sketch. When two or more
packets are mapped to the same bucket, the con�ict occurs.
Although the sketch structure itself allows certain errors,
when the error is large, the accuracy of the square sketch is
seriously a�ected. Suppose the data amount is H, and each
data is randomly mapped into a bucket by hash functions.
Given an arbitrary bucket and arbitrary data, the probability
that the data is mapped to the bucket is 1/K2. �erefore, for
any bucket,H data are mapped into the bucket Z times, and
the Z value obeys the binomial distribution B(H, 1/K2).
WhenH is large and 1/K2 is small, and Z obeys the Poisson
distribution π(H/K2), then

Pr Z � i{ } � e−H/K2 H/K2( )
i

i!
. (1)

For a bucket g, ifZ≥ 2, there is a con�ict in the bucket g.
Hence, the con�ict rate is

Pcr � 1 − Pr Z � 0{ } − Pr Z � 1{ } � 1 −
H

K2 + 1( )e−H/K2
.

(2)

WhenH/K2 is 0.1 or 0.01, the con�ict rate is 0.0046 and
0.00005, respectively. In order to illustrate the setting of K
value in a real network environment, three di�erent network
environments are set, in which the number of active hosts is
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500, 4,000, and 20,000. In the most random communication,
the number of different IP addresses is twice the number of
active hosts; then H � 1,000, 8,000, and 40,000. When the
conflict rate is 0.0046 and 0.00005, the results of K value are
shown in Table 1.

Square sketch has the following characteristics: paral-
lelization, accumulation, and recompression. (is structure
is conducive to achieving a faster and lighter network traffic
monitoring and detection in a higher speed network.

3.1.3. Parallelization. Different from the traditional network
traffic processing and measurement methods (e.g., infor-
mation entropy) that cannot achieve parallel processing in a
single time period. (e square sketch can compress network
packets in a single time period by parallel processing. Fig-
ure 3 shows the execution ways of the single thread and
multiple threads of the packets mapping process.

3.1.4. Accumulation. (e accumulation characteristic of the
square sketch can achieve to easily adjust detection periods.
(is characteristic has a good application in the large-scale
network, which can deal with problems of excessive memory
consumption and even memory overflow caused by massive
network traffic over a long time. (e square sketch data of
different time periods can be obtained by accumulating. (e
accumulation formula is as follows:

SSn � 
n

i�1
SSi, (3)

where n is the number of time periods. (e accumulation
process is shown in Figure 4.

3.1.5. Recompression. In a high-speed network environ-
ment, in order to make the mapping conflict of network
traffic as small as possible, the square sketch should keep a
certain large size. (e larger the size of the sketch structure
is, the larger the size of internal storage is, and the larger the
memory and time consuming of the network state dis-
crimination is. (is is very unfavorable for monitoring high-
speed networks. (erefore, it is necessary to compress the
square sketch again to reduce the memory consumption and
improve the efficiency of network monitoring. Compression
square sketch mainly includes two main steps: grouping and
merging.

In order to realize the grouping operation, a compres-
sion rate c is defined. For the sake of brevity, c is best divisible
by K. (e grouping process is as follows. (1) A K∗K square

sketch A is equally divided into w � K/c parts in rows and
columns and get w2 groups. (e size of each group is c2. (2)
A new square sketch B is constructed with the size of w∗w.
(3) (e data of each group
Amn

ij , m, n ∈ [1, 2, · · · , w], i, j ∈ [1, 2, · · · , c] are merged into
the corresponding bucket of B and obtain
Bmn � OPc

i,j�1 Amn
ij . In the process of merging operation,

two merging methods are proposed: SUM operation and
MAX operation. SUM operation refers to the add operation
of data on each group, Bmn � SUMc

i,j�1 Amn
ij . MAX oper-

ation refers to selecting the maximum value of each group
data as the combined value, Bmn � MAXc

i,j�1 Amn
ij . (e

SUM and MAX operations are shown in Figure 5.
In this paper, SUM operation is chosen as the merge

operation because the MAX operation is not always valid.
When the detection period k � 1, MAXmerging operation is
performed on SS. Due to SSij ∈ 0, 1{ }, i, j � 1, 2, . . . , K,
Bmn � MAXc

i,j�1 Amn
ij  � 0, 1{ }. (e value of CSS in all time

windows is 0 or 1, which is not discriminative. When k> 1,
the detection period k is usually not very large. Assume that
1< k< 10, Bmn � MAXc

i,j�1 Amn
ij  � 0, 1, · · · , k{ }. (e maxi-

mum value of CSS in the attack state may be k. (e CSS in
the normal situation may also produce the maximum value
k. (erefore, CSS with MAX operation does not have the
ability to identify attacks and is invalid. When DDoS attacks
occur, compared with the traditional count-min sketch,
which concentrates the attack data in a certain number of
point data, the square sketch concentrates the attack data in
a certain column (one attack target) or several columns
(multiple attack targets). Hence, the square sketch can better
show the difference between the normal sketch and the
attack sketch and is more conducive to the subsequent attack
detection processing.

(e detailed process of all packets mapping models
based on the square sketch is described. Network traffic can
be regarded as a continuous stream (wn, vn), n� 1, 2, . . .. (e
wn refers to the key value, which can be the IPv4 address,
wn ∈ Ω � 0, 1{ }32. (e vn refers to the corresponding update
value, which can be the number of bytes or packets. In this
paper, wn refers to the key pair (sipn, dipn) composing of
source IP address and destination IP address, and v is equal
to 1. In order to monitor all packets, the update rule of the
square sketch is slightly different from the initial rule, shown
in formula (4). Compared with the 1-universal hash func-
tion, the applied 4-universal hash function can avoid the
mapping conflict to a greater extent, as shown in formula (5).

SS f1(sip), f2(di p)(  �
1 if SS f1(sip), f2(di p)(  �� 1

1 if SS f1(sip), f2(di p)(  �� 0
 ,

(4)

fi(key) � 
3

j�0
aijkey + bij modp mod K, i � 1, 2, (5)

where p is a prime and greater than the largest key value. For
a faster mapping, p is set to 231–1, which is a Mersenne
prime. aij, bij ∈ [1, p − 1] are two random values. K is the
width of the square sketch.

Table 1: Corresponding relationship between H and K at
P� 0.0046 and 0.00005.

H
K

P� 0.0046 P� 0.00005
1,000 100 317
8,000 283 894
40,000 632 2,000
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�e size of the square sketch is generally large in order to
reduce the con�ict of packet mapping, which is unfavorable for
data storage and subsequent attack detections. �erefore, after
packets in a unit period are mapped to a square sketch, the
square sketch data is compressed to a CSS according to the
grouping and merging operations. In order to realize the ef-
fective detection of CSSs, standardization is an essential step to
make the compressed square sketch data in the same standard
each time. �e CSS standardization formula is as follows:

NCSS �
CSS

n∗ c2
, (6)

where n is the number of time windows, c is the compression
unit, and c2 is the size of the compression group.

For continuous data packets, all packets are mapped to a
square sketch by multiple threads. �en the mapped square
sketch is compressed further. �e detailed process of the all-
packets mapping method based on a square sketch is shown
in Algorithm 1.

In Algorithm 1, according to multi-threads, all packets P
in time period t are mapped by the 4-universal hash function.
SS is updated according to the obtained mapping values, as
shown in lines 02–06. Lines 02 and 03 build a thread pool
including n threads. �e subfunction ipsketch is executed for

all packets P in a multi-thread manner. �e ipsketch repre-
sents the mapping process of each packet. �e mapping re-
sults Bucket_List is obtained by executing the ipsketch
function through n threads as shown in line 03. �e Buck-
et_List circularly updates SS as shown in lines 04–06. Lines 07
and 08 compress and standardize SS to obtain NCSS.

3.2. Adversarial One-Class Classi cation for DDoS Attack
Detections. In this section, the square sketch is a matrix,
which is di�erent from the traditional feature vector. In
particular, the sketch is considered as the image of one
channel as Figure 6. Figures 6(a) and 6(b) are the visu-
alizations of the square sketch in the normal tra�c and
DDoS attack tra�c, respectively. It can be seen that under
the normal network environment, the color distribution
of pixels in the image is relatively uniform. But, when
DDoS attacks appear, a column of pixels with darker color
occurs. �is situation indicates that a destination receives
massive attack packets from multiple sources. Hence, the
deep learning model is determined as the target class
classi�cation model to achieve better detection results. An
adversarial one-class learning model is developed to au-
tomatically extract discriminative features and distinguish
target class from nontarget class [29]. �e model consists
of two parts: reconstructor (R) and discriminator (D). �e
reconstructor model learns the important features of the
target class and reconstructs the input data. �e dis-
criminator learns the features of the target class by
classifying the original input data and reconstructing data,
so as to achieve the purpose of discriminating against the
target class. Via the end-to-end training process, the R
network can reconstruct the data from the target class and
distort the nontarget class. D network can output whether
the reconstructed data belongs to the target class or not.
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Input: network packets of t-th period P, f1, f2, m, c
Output: NCSS of t-th period

(1) SS, CSS� []
(2) pool�multiprocessing.Pool(processes�m)
(3) Bucket_List� pool.map_async(ipsketch, P).get()
(4) For item in Bucket_List:
(5) SS[item[0], item[1]]� 1
(6) End for
(7) compress SS to obtain CSS
(8) standardizing CSS to obtain NCSS with formula (6)

Produce ipsketch(p, f1, f2):
(1) sip� int(p.sip), dip� int(p.dip)
(2) i� f1(sip)
(3) j� f2(dip)
(4) return i, j

ALGORITHM 1: All-packets data mapping model via square sketch.
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Figure 6: Visualizations of square sketch: (a) normal tra�c and (b) DDoS attack tra�c.
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�e model framework is shown in Figure 7. R network
reconstructs input X to generate X′ to deceive network D,
and D learns original data X to maximumly discriminate
between X and X′. In order to make the model more
robust, the Gaussian noise η is added to the original data
and fed back to the R network.

3.2.1. Network Architecture. In the R network, an encoding-
decoding convolutional neural network is trained to realize
the feature learning and reconstruction of the input data.
Obviously, for the sample data similar to the target class, the
R network can reconstruct very well. However, for outliers or
abnormal data, the reconstructed data are very poor. Hence,
it is easy for the discriminator to distinguish the target class
from the nontarget class. Figure 8(a) shows the structure of
the R network.�e R network consists of several convolution
layers (encoding) and deconvolution layers (decoding). A
batch standardization layer is added after each convolution
layer to maintain the model stability [30]. D network is
composed of multiple convolution layers and a fully con-
nected layer. �e output of the D network is a score between
0 and 1, which is equivalent to the likelihood of the target
data distribution, expressed as pt. D network architecture is
shown in Figure 8(b).

3.2.2. Model Training. �e training process of the R+D
neural network model is divided into two steps: joint
training and only automatic encoder training. �e purpose
of joint training is to train the discriminator to obtain the
ability to identify true and false data. �e only automatic
encoder training is to reconstruct the target class better,
distort the nontarget class, and increase the distance between
the target class and the nontarget class to a certain extent.
Like the traditional generative adversarial network, R and D
networks are carried out in an adversarial procedure. On the
contrary, instead of mapping the potential space Z to a data
sample with distribution pt, R maps

X � X ∼ pt( ) + η ∼ N 0, σ2I( )( )⟶ X′ ∼ pt, (7)

where η is the added noise samples from the normal dis-
tribution with the standard deviation σ, N(0, σ2I). For
simplicity, the noise model is expressed as Nσ . In the
training process, pt is the assumed distribution of the target
class. D is aware of pt, as it is exposed to samples from the
target class. �erefore, D clearly distinguishes whether
R(X̃) follows pt. �erefore, the optimization objectives of
joint training are as follows:

min
R

max
D
ΕX∼pt[log(D(X))] + tΕX∼pt+Nσ

n[log(1 −D(R(X)))]( ). (8)

To train the model, we calculate the loss LR+D as the loss
function of joint network R+D. In addition, the loss
function of the automatic encoder is LR � ‖X −X‖

2.
�erefore, the R+D network model is optimized to mini-
mize the loss function L � LR+D + λLR, where λ> 0 is a trade-
o� hyperparameter to adjust the relative importance of the
two terms. �e model training is stopped when R suc-
cessfully maps the noise data to the target class distribution.
�erefore, when R can reconstruct input samples with the
minimum error (i.e., ‖X −X‖2 < ρ, where ρ is a small pos-
itive number), we stop the training of networks.

When the trainedmodel is used to test the input data, the
�nal likelihood score is obtained by discriminator D. When
the score is greater than the threshold, the input data is
normal. Otherwise, the input data is an anomaly. �e dis-
crimination mechanism is as follows:

OCC1(X) �
Target Class if D(R(X))> τ
Novelty(Outlier) otherwise

{ , (9)

where τ is the detection threshold.
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Figure 7: Framework of adversarial one-class classi�cation model.
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3.3. Algorithm Description. �is section will describe the
implementation process of the DDoS attack detection
method based on all packets in ISP layer in detail. �is
process mainly includes two stages: training and testing. �e
detailed process is shown in Algorithm 2.

Algorithm 2 mainly includes the training and testing
stage. Lines 01–11 are the train stage, and lines 12–19 are the
test stage. In the train stage, line 01 sets the thread pool with
m threads. Lines 03–08 obtain the NCSSs of the �rst n
normal periods as the training data set. Line 09 reshapes the
training data set to a K/c ∗ K/c matrix that is suitable for a
convolution network. �rough a training AOCC model
epoches times by train dataset, the optimal model parameters
P_best are obtained. In the test stage, the Testt of the new
time period is obtained as lines 13–16, and the test result is
obtained according to the trained model.

4. Experimental Analysis

�is section mainly describes experiment data sets, evalu-
ation indexes, and detailed performance evaluation of the

proposed method. All experiments are carried out in the
environment of Inter(R) Core(TM) i7-8565U CPU @
1.80GHz 1.99GHz, RAM 8.0GB. In the process of exper-
iments, Python is adopted, and the adversarial one-class
classi�cation model is implemented in the Keras framework.

4.1. Data Description

4.1.1. MAWILab_BOUN.DDoS Data Set. MAWILab_BOUN.
DDS data set is a hybrid data set consisting of MAWI20200501
data set (202005011400.pcap) [31] and BOUN_DDoS data set
[32]. In theMAWI20200501 data set, normal network tra�c of
TCP and UDP protocol is extracted as background tra�c.
DDoS attack tra�c in the BOUN_DDoS data set is extracted as
attack tra�c. �e MAWI20200501 data set is obtained from
tra�c traces of the MAWI Working Group of the WIDE
Project. �e tra�c traces at the transit link of WIDE to the
upstream ISP every day. �is link is 1Gbps with a 150Mbps
committed access rate. MAWI20200501 data set contains 15
minutes of network tra�c captured on May 1, 2020, which
contains a large number of packets transmitted between tens of
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Figure 8: Network architecture of R network and D network: (a) R network and (b) D network.
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thousands of active hosts (50 million to 200million packets per
900 seconds). Hence, the MAWI20200501 data set is a rep-
resentative ISP network traffic data set. BOUN_DDoS data set
is recorded on the campus backbone network of Bogazici
University with more than 2,000 active hosts. (is data set
includes normal traffic and attack traffic, in which attack traffic
is generated by the random spoofing IP technique of Hping3.
(e victim is a server connected to the campus backbone
router.(e attack rate refers to the rate of the number of attack
packets to the total packets per unit time in the attack scenario
as formula (10) [33]. According to formula (10), the attack rate
of this data set is about 1%∼10%.(e detailed description of the
data set is shown in Table 2.

Attackrate �
Pattack

Ptotal
∗ 100%, (10)

where Pattack refers to the number of attack packets and Ptotal
refers to the total number of packets.

4.1.2. MAWILab_SDN.DDoS Data Set.
MAWILab_SDN.DDoS data set is composed of
MAWI20200712 data set (202007121400.pcap) [34] and
SDN-DDoS data set [35]. (e normal TCP and UDP traffic
in the MAWI20200712 data set is extracted as the back-
ground traffic, and DDoS attack traffic in the SDN-DDoS
data set is extracted as attack traffic. Similar to the
MAWI20200501 data set, the MAWI20200712 data set is a
15 minutes network traffic captured from traffic traces of the
MAWI Working Group of the WIDE Project on July 12,
2020. SDN-DDoS data sets are ICMP, TCP, and UDP
flooding attacks generated by using Scapy and TCPReplay in
Mininet Emulator. According to formula (10), the attack rate
of the data set is about 4%∼15%. (e detailed information is
shown in Table 3.

4.2. Evaluation Index. To evaluate the detection effect of the
proposed method, Acc (accuracy), TPR (true positive rate),
FPR (false-positive rate), and FNR (false-negative rate) are
adopted in this paper [18]. Acc refers to the proportion of
normal and attack behaviors identified correctly in the total
traffic behaviors. TPR refers to the proportion of the
number of attacks correctly identified as attacks in the total
attacks. FPR refers to the proportion of the number of
normal behaviors that are mistakenly identified as attacks
in the total normal behaviors. FNR measures the pro-
portion of the number of attacks that are wrongly identified
as normal behaviors in total attacks. (e whole formulas
are as follows:

Acc �
nnormal + nattack

Ntotal
,

TPR �
nattack

Nattack
,

FPR �
nnormal⟶attack

Nnormal
,

FNR �
nattack⟶normal

Nattack
,

(11)

where Ntotal � Nnormal + Nattack, Ntotal is the number of total
periods, Nnormal is the number of total normal behaviors,
Nattack is the number of total attacks, nnormal is the number of
normal behaviors correctly identified, nattack is the number of
attacks correctly identified, nnormal⟶attack is the number of
normal behaviors mistakenly identified as attacks, and
nattack⟶normal is the number of attacks wrongly identified as
normal behaviors.

Input: Packet set P, K, f1, f2, m, c, n, epoches
Output: detection result R

(1) pool�multiprocessing.Pool(processes�m)
(2) NCSS, R� []
(3) While i in range(0, n) do //(e network of first n period is normal.
(4) SS, NCSSi � []
(5) Bucket_List� pool.map_async(ipsketch, Pi).get()
(6) obtain NCSSi with lines 05–09 of algorithm 1
(7) NCSS.add(NCSSi)
(8) End while
(9) Traindataset�NCSS.reshape(–1, K/c, K/c,1)
(10) AOCC.train(Traindataset, epoches)
(11) obtain the optimal parameters P_best
(12) While t is continue do
(13) SS, NCSSt � []
(14) Bucket_List� pool.map_async(ipsketch, Pi).get()
(15) obtain NCSSt with lines (4)–(8) of algorithm 1
(16) Testt �CSSt.reshape(–1, K/c, K/c,1)
(17) Rt �AOCC.test(Testt, P_best)
(18) R.add(Rt)
(19) End While

ALGORITHM 2: All-packets-based DDoS attack detection method in ISP layer.
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4.3. Parameter Set. In this section, the parameters of this
paper are set, including the detection period ΔT, the pa-
rameters K and c of the square sketch, the parameters of the
adversarial one-class classification model, and the threshold
τ. Due to the accumulation of the square sketch, ΔT can be
set as 1 s, which can be changed by adjusting the number of
accumulations of the square sketch.(e setting of parameter
K depends on the size of the real network. In data set
MAWILab_BOUN.DDoS, H is about as 17,000. When
P� 0.0046, K� 412; when P� 0.00005, K� 1,304. In
MAWILab_SDN.DDoS, H� 18,000. When P� 0.0046,
K� 424; when K� 0.00005, K� 1,341. When the conflict rate
P� 0.00005, K is set as 211 � 2,048 in data sets MAWI-
Lab_BOUN.DDoS and MAWILab_SDN.DDoS. For the
compressed unit c, if c is too large, the attack information
will be covered. If c is too small, it will waste the storage space
and is not conducive to the next training of the deep learning
model. (e threshold τ directly determines the detection
result. (erefore, the parameters c and τ are determined by
various experiments.

An appropriate adversarial one-class classificationmodel
can improve the effect of attack detection. Proper hidden
layers can improve the generalization ability of the deep
neural network classifier. According to our experience, when
the number of input units is not very large, and the number
of hidden layers is 3 or 4, the deep neural network has the
ability of automatic feature extraction. In the hidden layer,
the activation function ReLU can avoid the gradient van-
ishing problem in the training process. In the output layer,
the function sigmoid is generally the activation function.(e
optimizer RMSprop (lr� 0.001, decay� 1e− 8) and the loss
function binary_crossentropy are used to train the AOCC
model. For the R network (encoder and decoder) and D
neural network, the parameters are set as follows:

(i) Number of hidden layers� {3, 3, 4}

(ii) Activation functions of hidden layers� {LeakyR-
eLU, ReLU, LeakyReLU}

(iii) Activation functions of output layers� {sigmoid,
sigmoid}

(iv) Optimizers� {RMSprop (lr� 0.0005, decay� 1e
− 8), RMSprop (lr� 0.0005, decay� 1e− 8)}

(v) Loss functions� {binary_crossentropy, binary_
crossentropy}

(e compression unit c and the threshold τ are set by
evaluating the detection effect. Figures 9 and 10 show the
detection effect of two data sets under c� 24, 25, 26, 27 and
τ � 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, respectively. Some combinations
of the compression unit c and threshold τ produce excellent
detection results, for example, when c� 24 and τ � 0.5 or c� 26
and τ � 0.5. For data sets MAWILab_BOUN.DDoS and
MAWILab_SDN.DDoS, the evaluation results are similar. In
this paper, due to the same background traffic of these two
data sets, it is very necessary to set the same c and τ because
the c value not only determines the detection effect but also
determines the size of the square sketch and the training and
detection time of the AOCC model, as shown in Figure 11.
(e size of the square sketch determines the size of data
storage. In the training process of the AOCC model, the
training time refers to the time consumed by training 703
CSSs with 150 epochs. Test time refers to the testing time of
each CSS. With the increase of compression units, data
storage, training time, and test time are gradually reduced.
From c� 23 to 27, the storage size reduces from 65KB to 2KB,
the training time reduces from 20,000 s to 400 s, and the test
time reduces from 0.03 s to 0.002 s. (erefore, by analyzing
the influence of parameters c and τ, c� 26 and τ � 0.5.

4.4. Analysis of All-Packets Data Mapping Model via Square
Sketch. (e performance analysis of the all-packets data
mapping model via square sketch mainly includes two parts:
storage efficiency and time efficiency. In the process of
analyzing the storage effectiveness, the storage size of the
traditional per-to-per storage mode, square sketch, and
compression square sketch is compared as shown in Table 4.
It can be seen that the amount of data storage of the original
square sketch is the largest. (is is because in order to
minimize conflicts in data mapping, the size of the square
sketch is set to be 211 ∗ 211. (e size 211 ∗ 211 is a very large
storage unit. (erefore, the recompression of square sketch
is a very important step for decreasing the data storage and
time consumption of the detection model. (e storage
consumption of compressed square sketch is only 5 KB,
which is much smaller than that of the traditional per-to-per

Table 2: Detailed description of MAWILab_BOUN.DDoS data set.

Data set name Data set description Number of total
packets

Number of
anomaly packets

Duration
(s)

MAWILab_BOUN.DDoS (e data set contains normal network traffic and DDoS
attack traffic with a rate of 1%∼10%. 32, 511, 624 386, 203 900

Table 3: Detailed description of MAWILab_SDN.DDoS data set.

Data set name Data set description Number of total
packets

Number of anomaly
packets

Duration
(s)

MAWILab_SDN.DDoS (e data set contains normal network traffic and DDoS
attack traffic with a rate of 4%∼15%. 22, 015, 542 300, 000 900
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storage mode. In addition, in the complex and changeable
network environment, once the K and c values of the square
sketch are determined, the size of the compressed square
sketch would not change with the network environment,
which is di�erent from the traditional per-to-per storage
mode and conducive to maintaining the stability of the
detection model.

Next, we will analyze the time e�ciency of the all-packets
data mapping model. Compared with the �ow-based de-
tection methods, the all-packets-based method reduces the
steps of data aggregation from packets to �ows. �e data
aggregation without sampling is a very time-consuming task.
Meanwhile, with the increase in network scale, the execution

time of aggregation �ows is close to exponential growth,
which will result in a huge delay in attack detections. In this
paper, all packets are mapped into the square sketch. Due to
the huge network tra�c of the ISP layer, this process will also
consume a certain amount of time. In order to achieve less
time consumption, the way of multiple threads is executed.
Figure 12 shows the time consumption of all packets
mapping per unit detection period by the single- and multi-
thread ways. From the �gure, we can see that in the 1 s
detection period, even by the single thread way, the exe-
cution time is only 3 s.�e execution way of multiple threads
enables a faster data mapping process. �e execution time is
only about 0.7 s in data set MAWILab_SDN.DDoS.
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Figure 9: In�uence of di�erent compressed units on the detection e�ect in MAWILab_BOUN.DDoS data set: (a) c� 24, (b) c� 25, (c) c� 26,
and (d) c� 27.
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Meanwhile, the execution way of multiple threads will lead
to a certain amount of memory and CPU consumption, but
the consumption is within an acceptable level. �e result
gives us great encouragement to realize the distributed data
mapping method. �erefore, the all-packets data mapping
model via square sketch is an e�ective data compression and
storage model.

4.5. Analysis of the AOCCModel. �is section will illustrate
the detection performance of the adversarial one-class
classi�cation model, mainly including two aspects: detection
e�ect and detection time. In the adversarial one-class
classi�cation model, CSS is classi�ed by judging the likeli-
hood score of the discriminator in the AOCC model. �e

likelihood score results of data sets MAWI-
Lab_BOUN.DDoS and MAWILab_SDN.DDoS are shown
in Figure 13. In this �gure, only a few attack tra�c was
identi�ed wrongly, and the threshold is 0.5. As can be seen
from the �gure, the threshold can e�ectively distinguish
attack tra�c and normal tra�c in these two data sets. �is is
consistent with the same background network environment
of the two data sets. �e likelihood score of attack tra�c is
less than 0.5, and the score of normal tra�c is more than 0.5.
Although the score di�erence between attack tra�c and
normal tra�c is not very big, the DDoS attack tra�c is still
detected by this threshold. �erefore, the AOCCmodel is an
e�ective detection model. �e �nal detection results are
shown in Table 5, which is a very good detection e�ect. �e
accuracy is 98%, which illustrates that the AOCC model can
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Figure 10: In�uence of di�erent compressed units on the detection e�ect in MAWILab_SDN.DDoS data set: (a) c� 24, (b) c� 25, (c) c� 26,
and (d) c� 27.
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Figure 11: In�uence of di�erent compressed units on the storage size and execution time in MAWILab_SDN.DDoS data set.

Table 4: Comparison of storage size between three storage modes (unit: KB).

MAWILab_BOUN.DDoS data set MAWILab_SDN.DDoS data set
Traditional per-to-per storage 1,669 1,102
Square sketch 16,386 16,386
Compress square sketch 5 5
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Figure 12: Execution time with di�erent threads in the processing of packets mapping.
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identify the normal and attack tra�c very well. �e false-
positive rate and false-negative rate are also very lowwith the
highest false-positive rate of 0.01 and the highest false-

negative rate of 0.04, whichmeans that the AOCCmodel will
not easily wrongly identify the normal tra�c and attack
tra�c. �erefore, this AOCC model is an e�ective attack
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Figure 13: Likelihood score results of adversarial one-class classi�cation model: (a) MAWILab_BOUN.DDoS data set and
(b) MAWILab_SDN.DDoS data set.

Table 5: Detailed results of MAWILab_BOUN.DDoS and MAWILab_SDN.DDoS data sets.

Acc TPR FPR FNR
MAWILab_BOUN.DDoS 0.98 0.98 0 0.02
MAWILab_SDN.DDoS 0.98 0.96 0.01 0.04
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Figure 14: Comparison of running time between APDD and other methods: (a) MAWILab_BOUN.DDoS data set and (b) MAWI-
Lab_SDN.DDoS data set.
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detection model. In addition, the detection time of a CSS is
only 0.003 s, which means that DDoS attack detection can be
quickly realized.

4.6. Comparison with the Existing Methods. Compared with
the existing methods, it mainly includes two parts: time
e�ect and detection e�ect. �is paper applies three kinds of
comparison methods consisting of Hellinger Distance [36],
SkyShield [18], and LDDM [37]. �ese three methods are
based on network �ows and use the traditional sketch
structure to detect DDoS attacks. �e time consumption of
our method and the three methods are shown in Figure 14.
When our method is executed by multiple threads (such as
the number of threads is 6.), the execution time is about
1.25 s and 0.76 s on these two data sets, respectively. �e
detection time of the AOCCmodel is only 0.003 s, which can
be ignored in practical application. However, for the three
�ow-based detection methods, the �ow generation process
takes a lot of time that is far more than the time of sketch
mapping and attack detection. �erefore, it is an important
strategy to build the model based on the original packets,
which plays an extremely positive role in realizing real-time
DDoS attack detection. Meanwhile, the experiment results
show that our method has an excellent time performance.

In order to further analyze the detection e�ect, the detection
e�ect of our method is compared with the above three �ow-
based detection methods. �e detection results are shown in

Figure 15. From the �gure, ourmethod has an excellent accuracy
that is close to 1 and higher than the other three methods. In
other words, this method has a good detection ability for dis-
tinguishing normal and abnormal CSSs. Meanwhile, this
method has a goodTPR, which is basically equal to the best TPR.
�eFPR and FNRare also better than or equal to othermethods.
Skyshield and LDDM methods have slightly lower detection
accuracy than our proposed method and a higher false-positive
rate.�eHellinger distance [36]method has the lowest detection
e�ect, which is due to the inapplicability of theHellinger distance
method and the threshold method in MAWILab_BOUN.DDoS
and MAWILab_SDN.DDoS data sets. �erefore, this method
has an excellent detection ability and can detect almost all at-
tacks. In conclusion, combined with the time e�ciency and
detection performance of our method, our method has better
detection e�ect and time e�ciency than the existing methods,
which can detect multi-rate DDoS attacks and is completely
suitable for the ISP layer.

5. Conclusion

In order to realize the e�ectiveDDoS attack detection in the ISP
layer, this paper proposes a new all-packets-based DDoS attack
detection method. Firstly, a novel probabilistic data structure,
square sketch, is designed.�e characteristics of parallelization,
accumulation, and recompression are analyzed. According to
the source IP and destination IP information, all packets in a
unit period are hashed to the square sketch.�emapped square
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Figure 15: Comparison of detection results between APDD and other methods: (a) MAWILab_BOUN.DDoS data set and
(b) MAWILab_SDN.DDoS data set.
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sketch is further recompressed to obtain a new compressed
square sketch with a small size. (is process completely omits
the generation of network flows in the traditional DDoS attack
detection methods, which effectively shortens the intermediate
steps of network traffic and the time delay of attack detection.
(e experimental results show that the execution time of all
packets mapping process via multiple threads is less than the
unit detection period even in the detection period of 1 s. Next,
only utilizing the historical normal compressed square
sketches, the DDoS attack detection model based on the
adversarial one-class classification model is obtained.
According to multiple training, the optimal attack detection
model is realized. (e compressed square sketch of a new
period is tested to get the detection results. Experimental results
show that our attack detection model can get an effective
detection effect only based on normal traffic, which is higher
than or equal to the existing DDoS attack detection methods.
At the same time, the detection time of the proposed APDD
method is much better than the existing detection methods.
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07/21/20200721.html, and https://data.mendeley.com/
datasets/hkjbp67rsc/1.

Conflicts of Interest

(e authors declare that they have no conflicts of interest.

Acknowledgments

(is work was supported by the National Natural Science
Foundation of China (61772449, 61802332, and 61807028),
the Natural Science Foundation of Hebei Province P. R.
China under Grant no. F2019203120, Langfang Science and
Technology Research and Development Plan under Grant
no. 2021011038, the Scientific Research Project of Colleges
and Universities in Hebei Province under Grant no.
QN2021144, and Science and Technology Project of Hebei
Education Department (BJK2022029, QN2021145).

References

[1] K. Doshi, Y. Yilmaz, and S. Uludag, “Timely detection and
mitigation of stealthy DDoS attacks via IoT networks,” IEEE
Transactions on Dependable and Secure Computing, vol. 99,
pp. 2164–2176, 2021.

[2] S. Shamshirband, “Computational intelligence intrusion de-
tection techniques in mobile cloud computing environments:
review, taxonomy, and open research issues,” Journal of In-
formation Security and Applications, vol. 55, p. 102582, 2020.

[3] A. Network, “Worldwide infrastructure security report,” 2016,
http://www.arbornetworks.com/images/documents/
wisr2016enweb.pdf.

[4] S. Alzahrani and L. Hong, “Generation of DDoS attack dataset
for effective IDS development and evaluation,” Journal of
Information Security, vol. 09, no. 4, pp. 225–241, 2018.

[5] X. Jing, Z. Yan, X. Jiang, and W. Pedrycz, “Network traffic
fusion and analysis against DDoS flooding attacks with a
novel reversible sketch,” Information Fusion, vol. 51,
pp. 100–113, 2018.
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