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Currently, deep learning has provided an important means to solve problems in various fields. Intelligent computing will bring a
new solution to the security analysis of lightweight block cipher as its analysis becomes more and more intelligent and automatic.
In this study, the novel multiple differential distinguishers of round-reduced SIMECK32/64 based on deep learning are proposed.
Two kinds of SIMECK32/64’s 6–11 rounds deep learning distinguishers are designed by using the neural network to simulate the
case of the multiple input differences and multiple output differences in multiple differential cryptanalysis. +e general models of
the two distinguishers and the neural network structures are presented. +e random multiple ciphertext pairs and the associated
multiple ciphertext pairs are exploited as the input of the model. +e generation method of the data set is given. +e performance
of the two proposed distinguishers is compared. +e experimental results confirm that the proposed distinguishers have higher
accuracy and rounds than the distinguisher with a single difference. +e relationship between the quantity of multiple differences
and the performance of the distinguishers is also verified. +e differential distinguisher based on deep learning needs less time
complexity and data complexity than the traditional distinguisher.+e accuracy of filtering error ciphertext of our 8-round neural
distinguisher is up to 96.10%.

1. Introduction

+e size of computing device has been decreasing, and some
Internet of things applications such as smart homes and
wearable systems have widely emerged in recent years [1, 2].
In these resource-constrained applications, lightweight
block cipher usually plays a key role in ensuring data security
[3]. +is has also led to design new lightweight block cipher
[4]. +e balance between security and low consumption of
lightweight block ciphers should be fully considered in
design, which may be accompanied by the reduction of
security. +erefore, the security analysis of lightweight block
cipher is the first thing in its wide application.

+e cipher distinguisher distinguishes the random
permutation from the cipher according to the structure of
the cipher algorithm or the characteristics of its components.
+e common construction methods of distinguisher include
differential distinguisher [5], linear distinguisher [6], and
integral distinguisher [7]. Among them, the differential

distinguisher is the primary tool for differential attack, which
was first proposed by Biham et al. in 1990 [8]. Differential
attack takes advantage of the unbalanced distribution of
difference statistics in the iterative process of block cipher
algorithm. It has become the most basic and effective means
for cryptanalysis of block cipher. +e multiple differential
cryptanalysis was introduced in reference [9]. It usually has
the general form of multiple inputs and multiple outputs.

+e deep learning technology is developing rapidly in the
area of the artificial intelligence, such as computer vision
[10], biological information [11], and natural language
processing [12]. Deep learning uses the rule that is dis-
covered from data to predict and judge the future moment
and unknown situation. +e cipher distinction task is co-
incided with the classification in form. A neural network
model for classification can be established by abstracting
plaintext pairs, ciphertext pairs, and the round function.+e
author in reference [13] first proposed a lightweight block
cipher cryptanalysis based on deep learning. It successfully
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provides a new cryptanalysis approach using deep learning.
Since then, the cryptanalysis of lightweight block cipher
based on deep learning has become more and more active.

Lightweight block cipher will be fully considered to resist
differential cryptanalysis at the beginning of design. Nev-
ertheless, it will be of great significance to design a new
distinguisher and explore the unknown defects of block
cipher. Based on the attack idea of multiple differential
cryptanalysis in this study, the deep learning is applied to
construct the distinguisher in multiple differential crypt-
analysis for round-reduced SIMECK32/64. +e structure of
multiple ciphertext pairs with multiple input differences is
exploited to train the distinguisher. Our contributions are as
follows:

(1) +e deep learning distinguisher of SIMECK32/64’s
6–11 rounds for multiple differential cryptanalysis is
presented. Our neural network structure adopts
different multiple input differences, which is dif-
ferent from others.

(2) +e general models of two novel kinds of dis-
tinguishers are given. +e inputs of the two models
adopt random ciphertext pairs and associated ci-
phertext pairs respectively, both of them are based on
the multiple input differences. +e method of data
set generation is put forward.

(3) +e multiple differential distinguishers based on
deep learning have low complexity and high accu-
racy of filtering error ciphertext.

+e rest of the study is structured as follows: in Section 2,
the security analysis of relevant lightweight block cipher and
the study of the cryptography combined with deep learning
are presented. In Section 3, the preliminaries are provided,
which include the overview of SIMECK, the differential
distinguisher, and the deep learning model. In Section 4, two
kinds of neural distinguishers are proposed and discussed in
detail. In Section 5, the experiment of our distinguishers and
the comparisons are carried out, and the results are given.
Section 6 summarizes the work of the full study. Table 1 lists
the main symbols and their meanings used in this study.

2. Related Work

+e family of SIMECK cipher similar to SIMON’s structure
was designed in reference [14] on CHES’ 2015.+e ciphers of
SPECK and SIMON were released by the National Security
Agency (NSA) in 2013 [15]. SIMECK continued the good
design component of SPECK and SIMON and has an ex-
cellent performance in both hardware and software
implementation. +e designer has initially done the security
analysis of SIMECK. +e differential cryptanalysis, impos-
sible differential cryptanalysis, and linear cryptanalysis were
given.

+e ability of SIMECK to resist linear attack was
evaluated in reference [16]. +e better results of differ-
ential cryptanalysis for SIMECK were presented in ref-
erence [17]. +e authors in reference [18] proposed the
novel algorithm for finding the more perfect differential

trails and gave the differential trails of rounds 14, 21, and
27 of SIMECK32/48/64, respectively. +e authors in
reference [19] studied different versions of related-key
impossible differential distinguisher of SIMECK. +ey
proposed distinguishers of SIMECK32 for round 15 using
the middle encounter method. With the help of MILP,
when the difference between input and output was limited
to one active key bit, the optimal related-key impossible
differential of SIMECK was proposed. +e authors in
reference [20] introduced a cube attack based on SMT by
using the additional information provided by the inter-
mediate state cube feature for the SMT solver in attacking
the round-reduced SIMECK32/64. A series of new dis-
tinguishers for statistical fault analysis of SIMECK based
on the ciphertext-only attack was presented in reference
[21]. +e results showed that the distinguishers can re-
store the keys on the basis of reducing errors and improve
the reliability and accuracy.

Deep learning technology is very useful for big data
analysis, which can help to discover the small links among
data. In cryptography, identifying the subtle relationship
among data plays a very important role because the subtle
relationship usually defines the security strength. +e au-
thors in reference [22] applied deep learning to side channel
analysis and discussed the applicability of deep learning
technology in classical cryptanalysis. +e authors in refer-
ence [23] evaluated the various relations between deep
learning and cryptography and proposed some possible
research directions of using deep learning in cryptanalysis. A
feedforward neural network (FNN) was developed in ref-
erence [24], which can find plaintext from the ciphertext of
AES without using key information.

On CRYPTO’19, the author in reference [13] proposed
the improved differential attack of round-reduced
SPECK32/64 based on deep learning. +e distinguisher was
constructed by training the ResNet to distinguish the ci-
phertext pairs with the encryption using fixed plaintext
difference and random data. It confirmed the effectiveness of
deep learning on security analysis of symmetric ciphers and
put forward a new research direction. +e authors in ref-
erence [25] proposed a framework of using machine
learning to extend the classical distinguisher. +e dis-
tinguisher used a single differential trail and was imple-
mented on SPECK, SIMON, and GIFT64. +is method can

Table 1: Symbols and meanings.

Symbol Description of the symbol meaning
t Quantity of the input difference
n Block size
r Round
Δi Difference
(P0, P1, ..., Pi) Plaintext pairs
(C0, C1, ..., Ci) Ciphertext pairs
N Training sample size

NDrm

Distinguisher trained with random ciphertext
pairs

NDam

Distinguisher trained with associated ciphertext
pairs
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reduce the data complexity, but the accuracy was not as high
as that of the distinguisher trained by random difference. In
reference [26], convolutional neural network (CNN) and
multilayer perceptron (MLP) were applied to construct the
neural network distinguisher of round-reduced TEA and
RAIDEN cipher. +e distinguishing task was proposed
where the traditional distinguisher could not be applied.+e
3–6 rounds of neural network distinguisher for PRESENT
cipher were constructed [27]. +e distinguisher can dis-
tinguish ciphertext data from random data with high
probability, which further expanded the application of deep
learning in block cipher. In reference [28], deep learning was
applied to perform the cryptanalysis on the simplified DES,
SPECK, and SIMON under the limited key space, and the
key bits were recovered successfully. However, this method
was not applicable when the key space was not limited. +e
authors in reference [29] used neural network to simulate
the “single input-multiple output” difference of non-Markov
cipher and simplified the distinguish task into classification
task. Several distinguishers of four ciphers Gimli, ASCON,
Knot, and Chaskey were shown. It was proved that the
complexity of each distinguisher was very low. +e authors
in reference [30] proposed the neural network distinguisher
for Chaskey, PRESENT, and DES. +e multiple ciphertext
pairs use one difference as the input. +e module was added
to extract the derived features, so as to improve the accuracy
of the distinguisher.

3. Preliminaries

3.1. Description of SIMECK. +e family of SIMECK cipher
is denoted as SIMECK 2n/mn, where 2n (n �16,24,32) is
the block size, and mn is the master key size [14]. For
example, SIMECK 32/64 refers to the encryption of 32-
bit block, and the length of master key is 64 bit. SIMECK
is designed to follow Feistel structure. +e plaintext is
firstly divided into L0 and R0, then these two parts are
encrypted by round function for r rounds, and the last
two outputs Lr and Rr consist of a complete ciphertext.
Figure 1 shows the single round encryption process of
SIMECK. +e round function Fki

(the round i) is defined
as follows:

Fki
Li+1, Ri+1( 􏼁 � Ri⊕f Li( 􏼁⊕ki, Li( 􏼁, (1)

where Li and Ri are the intermediate state of SIMECK, and ki

is the round key. +e function f is defined as follows:

f(x) � (x⊙ (x≪ 5))⊕(x≪ 1), (2)

where ⊙ is bitwise AND, ⊕ is exclusive-or (XOR), and x≪ i

represents that x is cyclically shifted left by i bits. +e en-
cryption process of SIMECK is given in Algorithm 1.

Algorithm 2 gives the process of generating round key ki

from the master key K. In order from high to low, the 64-bit
master key K’s initial condition (t2, t1, t0, k0) is 4 words. Z0
and Z1 are described in reference [14]. C is a constant. +e
function f is the reusing of SIMECK’s round function. +e
update operation of intermediate state can be defined as
follows:

ki+3 � ti

ti+3 � ki⊕f ti( 􏼁⊕C⊕ zj􏼐 􏼑
i

,
⎧⎨

⎩ (3)

where 0≤ i≤ r − 1, and ki is key of round i.

3.2. Differential and Distinguisher. Differential cryptanalysis
exploits the differential (α, β) with high probability to

Li Ri

ki

Li+1 Ki+1

☐ 5

☐ 1

Figure 1: Single round encryption of SIMECK.

Input:
P� (L0, R0)∈{0,1}2n

Output:
C� (Lr, Rr)∈{0,1}2n

(1) for i� 1 to r do
(2) Li � Ri−1, ⊕ ((Li−1≪ 5)∧Li−1) \
(3) Li � Li⊕ki−1⊕(Li−1≪ 1)

(4) Ri � Li−1
(5) end for
(6) return (Lr, Rr)

ALGORITHM 1: Encryption of SIMECK.

Input:
K∈{0,1}mn

Output: k i, 0 ≤ i≤ r− 1
(1) if n� 16 or n� 24 then
(2) j� 0
(3) else j� 1
(5) i� 0
(4) end if
(6) for i� 1 to r− 1 do
(7) ki+3 � ti
(8) ti+3 � ki ⊕ f (ti) ⊕ C ⊕ (zj)i
(9) end for
(10) return k i

ALGORITHM 2: Encryption of SIMECK.
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distinguish random data from ciphertext, and the key re-
covery attack is carried out on this basis. +erefore, the first
step of differential cryptoanalysis is to look for high prob-
ability differential.+e differential trail of a block cipher with
j rounds is defined as (α, β):

α � Δi⟶Δi+1⟶ · · ·⟶Δi+j � β, (4)

where Δi and Δi+1 are the input difference and the output
difference of round i respectively. +e difference operation
generally adopts XOR and modular subtraction. In this
study, the difference operation uses XOR; that is, Δ � Pi

0⊕Pi
1,

Pi
0 and Pi

1 are the input pairs.
Let α and β be two correlation differences with n bits, x is

a n-bit input. +e differential probability of the block cipher
is denoted as DP(α⟶ β), which refers to the probability
that α propagates to β under round function F. It can be
calculated as follows:

DP(α⟶ β) � 2− n
· | x: F(x⊕α)⊕F(x) � β􏼈 􏼉|. (5)

+e differential trail generally is composed with a se-
quence of the triplet (Δi,Δi+1, pi), respectively representing
the input differences, output differences, and corresponding
probability of the round i. +e differential gives all states in
the whole difference chain.

Multiple differential cryptanalysis is a case of multiple
linear cryptanalysis [9]. A group of input differences has no
structure, and the corresponding output differences may be
different due to the input differences. In multiple differential
cryptanalysis, an attacker will adopt a collection Δ of dif-
ferentials. +e input differences set is denoted as Δα,
Δα � Δ0α,Δ1α, . . . ,Δt

α􏼈 􏼉. For a given input difference Δi
α ∈ Δα,

the set of the output differencesΔβ can be obtained, and Δβ is

expressed as Δβ � Δi,j

β |(Δi
α,Δi,j

β ) ∈ Δ􏼚 􏼛. +erefore, the col-

lection Δ of differentials is described as Δ � (Δi
α,􏼈

Δi,j

β )|i � 0, 1, . . . , t and j � 0, 1, . . . , |Δi,j

β |}.
+e cryptography distinguisher D, or simply called

distinguisher, is a probability algorithm. A random per-
mutation O or cipher encryption C as its input. If the
distinguisher infers that the input comes from C, then the
output will be 1; otherwise, the output will be 0. When
determining the success rate of a distinguisher, there are
usually two situations. One is to identify the positive sample
as the correct output, the other is to identify the negative
sample as the correct output. A useful distinguisher often
requires that its success rate be greater than 0.5. In deep
learning, we use the accuracy to represent the success rate of
the distinguisher. +e accuracy of the distinguisher can be
improved by learning more about the hidden statistical rules
and structural features in ciphertexts.

3.3.NeuralNetwork. Feedforward neural network (FNN), or
called multilayer perceptron (MLP), is one of the deep
learning models. FNN approximates a function f∗. In

classification, y � f(x; θ) means that the input x is mapped
to a category y, and the parameter θ is learned, so that the
optimal approximation of the function is obtained. +e
framework of FNN is generally composed of the input layer,
some hidden layers, and the output layer. Finally, the
learning model is a chain structure formed bymany different
functions. +e depth of the network usually refers to the
length of the chain. Assumed that the layer l has M units, the
layer l + 1 has N units, wl

ij is the weight of the unit i in the
layer l to the unit j of the layer l + 1, and bl+1

j and fl+1
j are the

bias and activation functions of the unit j in the layer l + 1,
respectively.+e output of the unit j in the layer l of the FNN
model is formally defined as follows:

x
l+1
j � f

l+1
j 􏽘

M

i�1
w

l
ijx

j
i + b

l+1
j

⎛⎝ ⎞⎠. (6)

Convolutional neural network (CNN) uses the convo-
lution operations. CNN is a special structure of FNN. CNN
can accept matrices as input and has repetitive neuron
blocks (convolution kernels) that can across space (images)
or time (audio signals). +is special design structure makes
the convolution network has partial translation invariance.
Convolution operations are generally expressed as follows:

s(t) � (x ∗w)(t), (7)

where x represents the input and w represents the kernel
function. s(t) represents the output, which is called feature
mapping, and t represents the current coordinate. CNN
learning framework generally consists of the input layer,
several convolution layers, the pooling layer, the full con-
nection layer, and the output layer. +e convolution layer
and pooling layer are responsible for data processing, fol-
lowed by the full connection layer. +erefore, CNNs are also
known as FNN with data preprocessing.

4. Multiple Differential Distinguisher of
SIMECK 32/64

In this section, the multiple differential distinguishers of
SIMECK32/64 based on deep learning are given. +e input
structure of the model adopts the composite multiple ci-
phertexts with multiple differences. Ciphertexts use two
composite methods: random ciphertext pairs and associated
ciphertext pairs.

4.1. Distinguisher Model. +e plaintexts are generated
through multiple differences Δi, and the corresponding ci-
phertexts are obtained by encrypting these plaintexts. +e
distinguisher will classify the random data and the ci-
phertext. +e label vector Y is used to represent the clas-
sification results. If Yi is 0, it represents the random data. If
Yi is 1, it represents the encrypted ciphertext. +e definition
of Y is given as follows:

4 Security and Communication Networks



Y �

1, Pi⊕Pi+1 � Δ
i

2
andΔa ≠Δb, (a, b) ∈ 0, 1, ..., t − 1{ }, i ∈ 0, 2, 4, ..., 2t{ }

0, Pi ∈ Random, i ∈ 0, 1, 2, ..., 2t + 1{ }

.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

+en, the general model of distinguisherD is defined as
follows:

Pr Y � 1|X1, X2, ..., Xk( 􏼁 � F f2 f1 X1( 􏼁, ..., f1 Xk( 􏼁( 􏼁( 􏼁, k ∈ 0, 1, ..., N − 1{ }, (9)

where Xk is the ciphertext sample. f1(Xk) represents the
feature extracted from the set of ciphertext pairs Xk, and
f2(y1,y2, . . . , ym) represents the composite feature re-ex-
traction among multiple ciphertext information. +e
function F is the posteriori probability estimation function
after integrating global features. In this study, two composite
forms are designed. Formula (8) gives the structure of

plaintext pair using random multiple differences. Another
structure of plaintext pairs using multiple differences is
proposed that link the plaintext pairs in series, named as-
sociated multidifferences. Multiple ciphertext pairs are
combined to investigate the extraction of composite features
by the distinguisher. +e associated composite form is de-
fined as follows:

Y �
1, Pi − 1⊕Pi � Δi − 1 an dΔa≠Δb, (a, b, i) ∈ 1, 2, ..., t − 1{ }

0, Pi ∈ Ran do m, i ∈ 0, 1, 2, ..., t{ }
.􏼨 (10)

4.2. Design of Neural Network Distinguisher

(1) Input Data Format. +e input layer adopts the form
of ciphertext pairs set. CNN accepts the matrix as
input. Two input data formats of SIMECK32/64
are constructed: (2t + 2) × 16 and 4t × 16. +e
input data formats represent the byte-oriented
structure of ciphertext pairs based on multiple
differences.

(2) Network Structure. +e network structure consists of
four modules, as shown in Figure 2. Module 1 uses 32
parallel convolution kernels with size 1 for bit slicing
operation. +e matrices of (2t + 2) × 16 and 4t × 16
are mapped to 16 × 32 matrix. +e size of the matrix
remains unchanged during the mapping process.
+en, several repeated modules 2 are connected to
adjust the depth of the network. Each module 2
contains two convolution layers. Each layer uses 32
convolution kernels whose size is ks, which is able to
study the features from the input ciphertext pairs.
+e result of the addition of the output of module 2
and the output of module 1 is a residual connection.
Finally, module 3 and module 4 are fully connected
layers. Each layer has d1 and d2 neurons respectively,
which are used to synthesize global features. Each
layer of the neural network applies L2-based kernel
regularizer, batch normalization module, and a
rectifier nonlinearly to ensure the universality of the
network.

(3) Activation Function. +e gradient may disappear
when the function sigmoi d is used as the activation
function. +e reason is that the gradient value of
sigmoid function is too small in the interval of |x|> 4.
In contrast, the output of the function ReLU is

relatively stable, which is a linear function when
x> 0. At the same time, the problem of sparsity is
solved. +erefore, ReLU is used as activation func-
tion while training the distinguisher for lower
number of rounds. +e function of ReLU is defined
as follows:

ReLU(x) � max(0, x). (11)

While training the distinguisher with a high
number of rounds, the gradient explosion often
occurs in the training process because there is no
obvious difference between ciphertext pairs and
random data in the data set.+e training model may
bias to two directions. +erefore, this study selects
tanh function, whose function expression is as
follows:

tanh(x) �
sinh(x)

cosh(x)
�

e
x

− e
− x

e
x

+ e
−x . (12)

(4) Super Parameter Setting. +e mean square error is
added to L2 norm. +e effect of parameter penalty
and regularization are achieved. +e loss function is
set as follows:

L(y; f(x)) �
1
n

􏽘

n

i�1
(yi − f(xi))

2
+ λ‖w‖

2
, (13)

where f(xi) represents the neural network’s output, w

represents the neural network’s parameters, yi represents
the true label, and λ represents the penalty factor, which is
0.0001. +e optimizer uses the Adam algorithm, which
corrects the learning rate of each parameter in real time by
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first-order and second-order matrix estimates of gradi-
ents. +e learning rate decreases with the increment of
training rounds and does not decrease after 40 epochs.
+erefore, the training cycle in the algorithm is set to 40
epochs. Meanwhile, the ModelCheckPoint method is
triggered by the callback function to save the best learning
model.

4.3. Model Training and Testing

4.3.1. Data Generation. +e data set generation of the
distinguisher NDrm is shown in Algorithm 3. +e initial
plaintext of the distinguisher NDrm is obtained by the
random generator. +ey are expressed as
(Pi0, Pi2, . . . , Pi(2k)), where i ∈ 0, 1, 2, . . . , N − 1{ } and

... ...

Output

Module 1 Module 2 Module 3 Module 4

Input
16×4t

Filter1
1×4×32

Conv0
16×1×32

Conv1
16×1×32

Conv2
16×1×32

Dense1
d1×1

Dense2
d2×1

Filter2
ks×1×32

Filter3
ks×1×32

Figure 2: Neural network structure of CNN for SIMECK32/64 distinguisher.

Input:
multiple differences (Δ0, Δ1, . . ., Δt− 1)
sample number N

Output: TD’’
(1) TD″ ← (·)/∗initial data set∗/
(2) K ← Random()
(3) for i� 0 to t− 1 do
(4) P2i �Random()
(5) end for
(6) for i� 0 to t− 1 do
(7) P2i+ 1 �P2i ⊕ Δi
(8) end for
(9) for j� 0 to N− 1 do
(10) Cj ← encrypt (Pj, Kj)
(11) end for
(12) for i� 0 to N− 1 do/∗set label∗/
(13) if i&1� 0 then
(14) Ci ← Random()
(15) Yi ← 0
(16) else
(17) Yi ← 1
(18) end if
(19) end for
(20) return TD’’ ← (X(C0. . .CN− 1), Y)

ALGORITHM 3: Data generation for NDrm.

Input:
multiple differences (Δ0, Δ1, . . ., Δt− 1)
sample number N

Output: model
(1) TD ← (·); /∗initial training set∗/
(2) K ← Random()
(3) P 0 �Random()
(4) for i� 1 to t do
(5) Pi � Pt− 1 ⊕ Δi− 1
(6) end for
(7) for j� 0 to N− 1 do
(8) Cj ← encrypt (Pj, Kj)
(9) end for
(10) for i� 0 to N− 1 do/∗set training label∗/
(11) if i&1� 0 then
(12) Ci ← Random()
(13) Yi ← 0
(14) else
(15) Yi ← 1
(16) end if
(17) end for
(18) TD ← (X(C0. . .CN− 1), Y)
(19) model ← Training with TD
(20) return model

ALGORITHM 4: Training NDam model.
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k ∈ 0, 1, 2, . . . , t − 1{ }. For the given t different differencesΔi,
i ∈ 0, 1, . . . , t{ }, the bitwise XOR is performed between the
initial plaintexts and the given differences. +e corre-
sponding other half of plaintexts are (Pi1, Pi3, . . . , Pi(2k+1)),
where i ∈ 0, 1, 2, . . . , N − 1{ } and k ∈ 0, 1, 2, . . . , t − 1{ } are
obtained. Finally, the plaintexts are encrypted to generate a
sample data Ci � (Ci0, Ci1, . . . , Ci(2k+1)), i ∈ 0, 1, 2, . . . ,{

N − 1}, and k ∈ 0, 1, 2, . . . , t − 1{ }. +e bitwise AN D op-
eration is performed between the sample data and 1 to
ensure that the encrypted data and random data in the
sample space account for half respectively.

+e data set generation of the distinguisher NDam is
shown in Algorithm 4 from line 1 to line 18. +e initial
plaintext P0 of the distinguisher NDam is obtained by the
random generator. Given a difference sequence
(Δ0,Δ1, . . . ,Δt−1), next plaintext Pi is obtained by the bit-
wise XOR between the previous plaintext Pi−1 and the
corresponding given difference Δi−1, namely, Pi � Pi−1⊕Δi−1.
t plaintexts are generated. Finally, the plaintexts are
encrypted to generate a sample data
Ci � (Ci0, Ci1, . . . , Ci(k+1)), where i ∈ 0, 1, 2, . . . , N − 1{ } and
k ∈ 0, 1, 2, . . . , t − 1{ }. +e construction of the sample space
adopts the method similar to that in NDrm.

4.3.2. Training. Algorithm 4 is the training of NDam model.
+e set used for training is composed of ciphertexts and
random data. First, t associated plaintext pairs are generated
by the given P0 and the multiple input differences
(Δ0,Δ1, . . . ,Δt−1). +en, the ciphertext pairs are obtained. In
order to make the encrypted data and random data account
for half of the sample, half of the data is replaced with
random data. Finally, the trained neural network model is
saved and returned.

4.3.3. Testing. +e data sets of testing and training are
generated in the same way. +e model can be regarded as a
function F, which accepts inputs, judges, and outputs. If the
label is 0 and it is judged that the data belong to random data,
the output is 0. Similarly, if the label is 1 and the model
judged that the data belong to cipher, the output is 1. Finally,
the test accuracy of neural network model is returned. Al-
gorithm 5 describes the process of testing neural network
distinguisher model. +e process of training and testing of

the distinguisher NDrm is similar to the above NDam model,
which will not be repeated here.

5. Experiment and Performance Evaluation

+e performance of some distinguishers and the compari-
sons among these distinguishers are presented in this sec-
tion. +e proposed distinguishers in this study are NDrm

and NDam. +e distinguisher NDS is realized by using the
ideas of reference [13], and the distinguisher NDM is re-
alized by using the ideas of multiple ciphertext and single
difference [30]. All experiments were conducted on a
computer with a GTX 1650 graphics card, 16GB memory.
Tensorflow is used at the back end and Keras is used at the
front end.

5.1.Results of theProposedDistinguishers. Figure 3 shows the
accuracy of distinguisher NDam and NDrm of round-re-
duced SIMECK 32/64 (6–11 rounds). +e network of the
distinguisher shown in Figure 3 adopted CNN. In our ex-
periments, the two distinguishers have the same parameters.
+e number of differences is set as t� 3, and the threshold is
set as δ > 0.5. +e training sample size is 224, and the testing
sample size is 218. +e positive and negative samples in
training set and testing set account for 1/2 of them, re-
spectively. +e input plaintext differences
Δ0 � 0x0/0x1,Δ1 � 0x0/0x2,Δ2 � 0x0/0x4 were selected.

+e experimental results show that the deep learning
distinguisher can easily learn the distinguishing character-
istics of encrypted data and random data for the low rounds,
but as the number of iteration rounds increases, the accuracy
will continue to decrease. According to the confusion and
diffusion of the block cipher, the higher iteration rounds is,
the weaker the statistical information between plaintexts and
ciphertexts become. And the corresponding positive and
negative samples have the high similarity. It becomes dif-
ficult for deep learning to select the feature effectively. In
order to make the neural network distinguisher have a
strong generalization ability, the neural network model can
be improved to a certain extent by increasing the size of
sample in training and testing or prolonging the training
epoch.

It can also be seen from Figure 3 that distinguisherNDrm

and NDam have similar trends, but the accuracy of NDam is
slightly higher than that of NDrm. +e convergence speed of
NDam is faster than that of NDrm when the number of
rounds is high. It proves that NDam has learned more
features from the associated ciphertext pairs. Compared with
the ciphertext pairs generated by random multiple differ-
ences, there are hidden features in the associated ciphertext
pairs. +erefore, the performance of the distinguisher is
improved. However, NDam distinguisher also has restric-
tions on data requirements in training and testing. Data
generation of the distinguisher NDrm is easier than that of
distinguisher NDam.

In training and testing of the distinguisher model, the
sample data required for the distinguisher of lower rounds
can be reduced. Taking NDam (r� 6, t� 3) as an example, the

Input: model F
sample number M

Output: acc
(1) TD’← (X (C0. . .Cm− 1), Y)/∗generate test data set∗/
(2) sum� 0
(3) for i� 0 to M− 1 do
(4) if F(Ci)� 1
(5) sum++
(6) end if
(7) end for
(8) return acc� sum/m

ALGORITHM 5: Testing NDam model.
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Figure 3: Continued.
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samples of the training set only need 28. Using the settings in
this study, the accuracy about 0.99 can be achieved in 25 s.
For the NDam (r� 7, t� 3), the samples of the training set
need 216, which takes about 1minute to achieve the accuracy
about 0.98.

Using the same training parameters as CNN, this study
also constructed the corresponding distinguisher using
MLP. +e MLP network consists four hidden layers, whose
neurons for each hidden layer are set as 2n, 2n, n, n. Each
hidden layer abstracts the features of the input ciphertext
pair to another dimension space to extract more abstract
features. L2 kernel regularizer and nonlinear activation
function ReLU are used in each layer. Since the number of

layers of MLP network is not very deep, the batch nor-
malization module is not used. +e training of MLP adopts
the circular learning rate scheme in reference [13], which is
different from the decreasing learning rate scheme adopted
in CNN. Table 2 lists the results of the distinguisher based on
MLP. It can be seen from the results that the accuracy of
MLP is equal to or less thanthat of CNN in each round. But it
is up to only 10 rounds at most. In the case of rounds 8 and 9,
the accuracy of NDam is significantly higher than that of
NDrm. +is also shows that the associated difference has
certain advantages.

Table 3 lists the number of learning parameters, training
time, and accuracy of 6–10 rounds of distinguisher NDam

(t� 3) when using MLP and CNN. Due to the simple
structure of MLP, the training time and the number of
parameters will be greatly reduced. It can be seen that CNN
can better converge to a local minimum and is easier to be
optimized, and the accuracy of CNN is slightly higher than
that of MLP.

Figures 4 and 5 show the prediction distribution of
distinguisher NDam and NDrm (r� 8, t� 3) based on CNN
with 512 random positive samples, respectively. It can be
seen that our 8-round CNN distinguishers have high reli-
ability in the distribution of predicted values. It is basically
consistent with the accuracy of training. Ciphertexts with
high probability difference can be easily found.

5.2. Comparisons of Distinguishers. In our experiment, the
distinguishers (t� 2, 3, and 4) were given.+e sample sizes of
training and testing are 224 and 218, respectively. +e specific
input differences used are listed in Table 4.

Table 5 lists the accuracy of t-differences neural dis-
tinguisher Drm, Dam of SIMECK’s 6–11 rounds. In the case
of the same round, the same input difference, and the same
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Figure 3: Accuracy of distinguishers for round-reduced SIMECK32/64 (6–11 rounds). (a) Round 6. (b) Round 7. (c) Round 8. (d) Round 9.
(e) Round 10. (f ) Round 11.

Table 2: Accuracy of SIMECK’s distinguisher training by MLP.

r (round) NDam NDrm

6 0.9999 0.9670
7 0.9441 0.9391
8 0.8785 0.7846
9 0.6124 0.5011
10 0.5017 -

Table 3: SIMECK32/64 distinguisher of 6–10 rounds MLP com-
pared to CNN.

r (round)
Number of
parameters Time of training Accuracy

MLP CNN MLP (s) CNN (s) MLP CNN
6 15585 44001 3362 5723 0.9999 0.9999
7 15585 44001 3481 5727 0.9432 0.9998
8 15585 44001 3401 5720 0.8801 0.9648
9 15585 44001 3408 5743 0.6128 0.7248
10 15585 44001 3361 5761 0.5016 0.5501
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size of training sets and testing sets, the accuracy of Dam is
slightly higher than that of Drm regardless of the quantity of
plaintext differences. It is indicated that Dam has stronger
feature selection ability and generalization ability. It also
shows that when t increases, the accuracies of Drm and Dam

increase. But it does not always increase with the increment
of t. Table 5 also lists that the accuracies of Drm and Dam are
all the highest when t� 3. It can be inferred from algorithm 4
and algorithm 5 that in the case of the same size of training
sets and testing sets, the more the number of input differ-
ences is, the more complex the data become. +e dis-
tinguishers are difficult to extract the features among
ciphertexts, which will not increase the accuracy of the
distinguishers.

+e input difference selected by Drm and Dam is the same
as that used in the previous experiment when t� 3.+e input
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Figure 4: Prediction distribution of 8-round distinguisher NDam.
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Figure 5: Prediction distribution of 8-round distinguisher NDrm.

Table 4: Quantity of differences and selected differences.

t Selected differences
2 Δ0 � 0x0/0x1,Δ1 � 0x0/0x2
3 Δ0 � 0x0/0x1,Δ1 � 0x0/0x2,Δ2 � 0x0/0x4
4 Δ0 � 0x0/0x1,Δ1 � 0x0/0x2,Δ2 � 0x0/0x4,Δ3 � 0x0/0x8

Table 5: Comparison of t-differences distinguishers’ accuracy.

r (round)
t� 2 t� 3 t� 4

NDrm NDam NDrm NDam NDrm NDam

6 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
7 0.9980 0.9983 0.9980 0.9998 0.9990 0.9992
8 0.9245 0.9449 0.9382 0.9645 0.9336 0.9422
9 0.6875 0.6917 0.7060 0.7151 0.6849 0.7051
10 0.5205 0.5388 0.5319 0.5505 0.5325 0.5415
11 0.5024 0.5015 0.5039 0.5029 0.5019 0.5022

Table 6: Comparison of distinguishers’ accuracy of SIMECK32/64.

r (round) Dam Drm NDS ([13]) NDM ([30])

6 0.9999 0.9999 0.9999 0.9952
7 0.9990 0.9980 0.9846 0.9718
8 0.9645 0.9382 0.9389 0.8505
9 0.7151 0.7060 0.7023 0.5898
10 0.5505 0.5319 0.5018 0.5403
11 0.5042 0.5038 — 0.5014

Table 7: Complexity of SIMECK32/64.

r (round)
Data

complexity Time complexity Memory
complexity

Dam (our) [18] Dam (our) [18] Dam (our) [18]

6 28 213 25.42 210.42 28 213

7 211 215 28.19 212.19 211 215

8 213 219 210 216 213 219

9 214 221 210.83 217.83 214 221

10 216 225 212.68 221.68 216 225

11 224 227 220.54 223.54 224 227
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difference used in NDM and NDS is Δ0 � 0x0/0x1. +e size
of samples is the same as above. Table 6 lists the accuracy of
distinguishers of SIMECK32/64’s 6–11 rounds.

Dam and Drm can reach higher rounds than NDS ob-
viously.+ey can be applied to the SIMECK 32/64 algorithm
with higher rounds; that is, the number of the round is
expanded to round 11. And the accuracy is equivalent to the
accuracy of round 10 in NDS. +e Dam and Drm have
achieved higher accuracy than NDM under the same
number of rounds and still maintain a high accuracy in
round 9 without a precipitous decline. It fully proves that our
Dam and Drm have learned some additional features from
multiple ciphertext pairs. At the same time, it also proves
that when multiple differences are introduced, the accuracy
of the distinguisher can be appropriately improved under
the same round or a higher round of the distinguisher can be
obtained. It also proves that it is feasible to train dis-
tinguishers by using multiple differences.

In reference [18], the authors presented the optimized
differential trails. +e deep learning multiple differential
distinguishers proposed in this study have better perfor-
mance compared with reference [18]. Table 7 lists the de-
tailed comparison of the complexity.

To further verify our neural distinguisher as a crypto-
graphic tool, 512 random samples are used to test the ability
of filtering error ciphertext of the multiple differential
distinguishers. Using 3 input differences and 7–9 rounds of
encryption, NDam is tested. Among 512 chosen-plaintext
sets, half are positive samples and half are negative samples.
Table 8 lists the probabilities of true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) of
our Dam. It can be seen that the accuracy of filtering error
ciphertext (i.e., FN) of our neural distinguisher is 99.61%,
96.10%, and 77.34%, respectively, and our distinguisher has
high reliability.

6. Conclusions

In this study, we proposed a new deep learning distinguisher
based on multiple differences for SIMECK32/64’s 6–11
rounds. Two kinds of ciphertext pairs by using multiple
differences are designed as the input of neural network. +e
distinguishers with good performance are verified. We also
show some distinguishers and the accuracy of our dis-
tinguishers under different conditions. And the differential
distinguishers based on deep learning consume less time and
data than traditional distinguisher. +e accuracy of filtering
error ciphertext of our neural distinguisher is high. It is
further proved that the deep learning method provides
feasible means to simulate the case of the multiple input
differences and multiple output differences. We are also
trying to study deep learning distinguisher for other ciphers

with different structure and block size. In the future, we will
also adopt data preprocessing and other methods to study
the deep learning distinguisher.

Data Availability

+e data used to support the findings of this study are
available from the first author upon request.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+e work was supported by the Natural Science Foundation
of Guangxi (2019GXNSFGA245004 and
2019GXNSFAA245053), Guangxi Science and Technology
Major Project (guike AA22068072 and guike AA19254016),
and the Innovation Project of GUET Graduate Education
(2022YCXS088).

References

[1] M. Wazid, A. K. Das, V. Odelu, N. Kumar, and W. Susilo,
“Secure remote user authenticated key establishment protocol
for smart home environment,” IEEE Transactions on De-
pendable and Secure Computing, vol. 17, no. 2, pp. 391–406,
2020.

[2] S. Seneviratne, Y. Hu, T. Nguyen et al., “A survey of wearable
devices and challenges,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 4, pp. 2573–2620, 2017.

[3] R. T. Tiburski, L. A. Amaral, E. de Matos, D. F. G. de Azevedo,
and F. Hessel, “+e role of lightweight approaches towards the
standardization of a security architecture for IoTmiddleware
systems,” IEEE Communications Magazine, vol. 54, no. 12,
pp. 56–62, 2016.

[4] B. Aboushosha, R. A. Ramadan, A. D. Dwivedi, A. Elsayed,
and M. M. Dessouky, “SLIM: a lightweight block cipher for
internet of health things,” IEEE Access, vol. 8, pp. 203747–
203757, 2020.

[5] E. Bagherzadeh and Z. Ahmadian, “MILP-based automatic
differential search for LEA and HIGHT block ciphers,” IET
Information Security, vol. 14, no. 5, pp. 595–603, 2020.

[6] M. Matsui, “+e first experimental cryptanalysis of the data
encryption standard,” Advances in Cryptology-CRYPTO,
vol. 94, pp. 1–11, Berlin, Heidelberg, 1994.

[7] L. Knudsen and D. Wagner, Integral Cryptanalysis,
pp. 112–127, Fast Software Encryption, 2002.

[8] E. Biham and A. Shamir, “Differential cryptanalysis of DES-
like cryptosystems,” Journal of Cryptology, vol. 4, no. 1,
pp. 3–72, 1991.

[9] C. Blondeau and G. Benot, “Multiple differential cryptanal-
ysis: theory and practice,” in Proceedings of the 18th inter-
national conference on Fast software encryption (FSE’11),
pp. 35–54, Berlin, Heidelberg, February 2011.

[10] A. Esteva, A. Robicquet, B. Ramsundar et al., “A guide to deep
learning in healthcare,” Nature Medicine, vol. 25, no. 1,
pp. 24–29, 2019.

[11] X. Yan, B. Cui, Y. Xu, P. Shi, and Z. Wang, “A method of
information protection for collaborative deep learning under
GAN model attack,” IEEE/ACM Transactions on

Table 8: Accuracy statistical results of NDam.

r (round) TP (%) FP (%) TN (%) FN (%)
7 100.00 0.39 0.00 99.61
8 99.61 3.91 0.39 96.10
9 81.25 22.66 18.75 77.34

Security and Communication Networks 11



Computational Biology and Bioinformatics, vol. 18, no. 3,
pp. 871–881, 2021.

[12] D. W. Otter, J. R. Medina, and J. K. Kalita, “A survey of the
usages of deep learning for natural language processing,” IEEE
Transactions on Neural Networks and Learning Systems,
vol. 32, no. 2, pp. 604–624, 2021.

[13] A. Gohr, “Improving attacks on round-reduced speck32/64
using deep learning,” Advances in Cryptology-CRYPTO 2019,
pp. 150–179, Springer, Berlin, Germany, 2019.

[14] G. Yang, B. Zhu, and V. Suder, “+e SIMECK family of
lightweight block ciphers,” in Proceedings of the 17th Inter-
national Workshop on Cryptographic Hardware and Em-
bedded Systems 2015, vol. 9293, pp. 307–329, 2015.

[15] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks,
and L. Wingers, Ge SIMON and SPECK Families of Light-
weight Block Ciphers, p. 404, Cryptology ePrint Archive, 2013.

[16] N. Baherl, “Linear cryptanalysis of reduced-round SIMECK
variants,” in Proceedings of the 16th International Conference
on Cryptology, pp. 140–152, 2015.
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